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Many models in sciences and engineering aim at describing the dynamics
of multiple agents/particles subject to internal and external forces.

The manipulation of these forces allows to control the systems’ dynamics
in order to perform desired tasks.

= A convenient description of the configuration of multi-agent
(multi-particle) systems is achieved by means of probabilistic
or material densities.

= The time evolution of these densities is governed by kinetic
models.

= Optimal control theory provides the mathematical tools to
formulate and solve control problems.

= Ensemble optimal control problems represent the natural

framework for designing control mechanisms and objectives

for systems governed by kinetic models.

Eﬁﬁs‘ﬁl{?
WURZBURG 1/37



Applications

coating and mixing of powder, ©ORCPE

collective motion, ©STIR

fusion reactor, ©ITER

space propulsion, ©SPARC
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Density functions

Consideration of all possible trajectories of a multi-particle system is an
overwhelming task. For this reason, L. E. Boltzmann introduced the
concept of material density f(x, t).

In the non-interacting case, if fo(x) represents the initial density
(configuration) at time t = 0, then the evolution of this density is
modelled by

8

the Liouville equation f@,T)

Bif (x, t)+div (a(x, t) f(x, £)) = 0, / ;

fo
with drift @ and initial 4 o
condition f(x,0) = fo(x). ;

This fundamental result of statistical mechanics leads to the formulation
of various kinetic equations.
s




Role of the drift

The Liouville equation d;f + div (a(x, t) f) = 0is the fundamental
continuity equation; the first in the hierarchy of kinetic models.
Take the dynamics
X(t) = sin(X(t))
X(0) = Xo ~ N(n, &°),
e pw=0andag = 0.5.

Notice that a(x, t) = sin(x) = — & cos(x) = —VU(x) where
U(x) = cos(x). The function U can be interpreted as a potential.
Compare with moments’ equations in the case X(t) = [A(t) X(t) + b(O)]:

(t) = AMD) p(®) + b, T() = SOAD | +AWD) ().

Eﬁi{;ﬁ“
WURZBURG 4/37



A control mechanism

Optimal control applications require to identify a control mechanism in
the model. A convenient structure with time-dependent controls:

a(x,t;uy,us) = ag(x,t) + ay ur(t) + axua(t)x.

ao(x, t) € RY smooth vector field, a;,as € R, uy(t), us(t) € RY

Moment equations: Define m(t) as the mean, v(t) as the variance.

Choose a(x, t; uy, us) = uy(t) + us(t) x, and fy as normal Gaussian
distribution.

From the Liouville equation, we obtain

m(t) = ur(t) + m(t) ua(t), m(0) = mg
v(t) = 2v(t) ua(t) v(0) = vo.

where
m(t) = [xf(x,t)dx and v(t) = [(x = m(t))*f(x,t) dx
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Ensemble cost functional

The particles should follow
closely a desired trajectory
xp(t), t € [0, T], reach a target
positionxr att =T.

Ensemble control approach:
define “attracting” potentials

0(x; t) = O(]x —xp(t)])
p(x) = @(|x —xr[)

Ensemble cost functional:

.
J(f,u) :/0 /]Rd O(x,t) f(x,t)dxdt + /]Rd eX)fFx, T)dx + k(u).
= ..




Cost of control

For space-dependent controls in €2:
L2(Q), H'(Q)

control

For time-dependent controlsin (0, T):

L2(0, T): standard control cost.

H(0, T): includes time-derivative of the control
(minimum attention control); turning control on
atinitial time and off at terminal time.

control

L1(0,T): sparse controls (minimum action
control)

Cost function:

q T ) T v [T
n(u)—§/0 |u(t)] dt+5/0 |lu(t)| dt + 5/0

%U(t)
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An ensemble control problem

A Liouville ensemble optimal control problem:

min J(f,u) := / dﬁxt) f(x, t)dxdt—l—/ o(x) f(x, T)dx

u€Uag R
2
/\u |dt+6/ lu(t)] dt + ~ / Gu(o)| dt
; : _ i d
subject to Oef (x,t) + div(a(x, t;u) f(x,t)) =0 !nR x [0, T]
f(x,0) = fo(x) in R4

with the set of admissible controls

Ugg :={u = (u1,u2) € Ux Ulug < u(t) <up, t€0,T]},
U= HY([0,T];RY) or U = L2([0, T}; RY).
v, 0,v>0,7v+0+v>0,us <0,up >0
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Results with Liouville model

1. Foru € U,q there exists a unique solution
f € ¢([0, T]; HP(R?)) of the Liouville initial-value problem.

2. The control-to-state map G, u — f = G(u) is Fréchet
differentiable

3. The ensemble optimal control problem admits at least one
solution in Ugy.

4. Derivation and analysis of the optimality system

5. Approximation by SSP Runge-Kutta, Kurganov-Tadmor and
Strang splitting schemes.

6. L! stability, second-order accuracy, positivity preserving.
7. Projected semi-smooth Newton method.
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A kinetic model with collision

In many physical systems, the density f is defined in the phase space
spanned by position x € Q ¢ R? and velocityv € RY, Q = Q x R¢.

In this statistical framework, we assume that the time evolution of f is
governed by the following kinetic model

Of (x, v, t) + v - Vif(x,v,t) + V, - [u(x,v,t) f] = C[f](v,t)
fli=o = fo,

fx, v, Olaaxre x 0,1 = F(X,v —2n(n-v),t)

where C|[f] represents collisions of the particles with an homogeneous
background system (as in Brownian motion: colloidals suspendedin a
bath in thermal equilibrium).

We also have specular reflection space boundaries;

R4 :={v € R?|v - n(x) < 0}, and a control field u.
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Keilson-Storer collision model

We consider the Keilson-Storer (KS) collision model:

Clfl(v,t) :== /f(w,t)A(W, v)dw — f(v,t)/A(v7 w) dw,

It has a gain - loss structure. We have A(v, w) := Ag e(=#*=7vI") and
v € [-1,1],Ap, B > 0. For post-collision velocity holds
w~ N(yw, (28)71).

< 1: weak collisions, Brownian motion

-

= v~ 0 : strong collision, Bhatnagar-Gross-Krook (BGK) operator
= collision frequency 2 = Ag\/7/B

= detailed balance: A(w,v) fe9(w) = A(v,w) fé9(v)

= equilibrium solution fé9(v) is the Maxwellian distribution

= Ap and [ related to the background density and temperature
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A LKS optimal control problem

We consider the following Liouville-Keilson-Storer (LKS) problem

Of + v - Vif +u(x) - V,f = CIf]
f|t:0 = va
FX, v, )]oaxre x (o, = fx, v —2n(n-v), t)

with specular reflection space boundaries; RZ := {v € RY|v - n(x) < 0}.
The control field u is sought in H} (€2).

Suppose a desired trajectory in the phase space zy(t), t € [0, T], and
desired final configuration zr. We choose the potentials 6 and ¢.

Our problem s to find u € H{ () such that the following ensemble cost
functional is minimised

;
J(f,u) == /O/Q O(x,v,t)f(x,v,t) dXdth-l—/Q(p(X,V)f(X, v, T) dxdv+g||u||,31

where Q = Q x RY. G
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The LKS adjoint equation

The LKS adjoint equation is given by

—0:q(x,v,t) — v - Veq(x,v, t) — u(x) - V,q(x,v,t) = C[q](x, v, t) — O(x,v,t)

with

Clgl(x,v,t) = /A(V,W)q(x, w,t) dw — q(x, v,t)/A(v, w) dw.

The operator C[g] has not a gain-loss structure, but such a structure can be
partially recovered defining
= Clalix,v,t) =
JA*(w,v) q(x,w,t)dw — q(x,v,t) [A*(v,w)dw,
= Af(w,v) = }YA(V, w)

= [ (Aw,v) —A(v,w)) dw = 10 =: ;.

Tq
= ‘adjoint’ mean free time 7g = v 7
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Reformulation of the LKS adjoint

We choose 6 and ¢ as follows

Co |z —2p(1)?
0(z,t) .= — —_—— 0.
(Za ) 271_0_5 €xp ( 203 s og >
and | 2
G, zZ—2z7
p(z) == 902 exp ( 202 ) , op > 0.

With this choice, 8 and ¢ play the role of sources (or sinks) of particles.
The resulting adjoint LKS model is given by
—0q —v-Vixq —ulx)- Vg = C[q] + Coqg — 0, Q=1 = —¢
The forward and adjoint problems can be written introducing the
free-streaming operators
Ly=v-Vy+u-V,, and Ly =—L,.
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LKS optimality system

Of (x, v, t) + Lyf(x,v,t) = C[f](x,v,t),
f(x,v,0) = fo(x,v)
FX, v, t)aaxre = flx,v —2n(n-v),t)

—0q(x, v, t) + L;q(x, v, t) = C*[q](x,v,t) + C; q(x,v,t) — O(x, v, 1),

q(X7 v, T) = _QD(X7 V)
Q(X, v, t)'BQXR‘; = Q(X, vV — 2n(n : V)v t)

—vAu(x) +rvu(x // (x,v,t) V f(x,v,t)dvdt =0
R4

Ujpa = 0.

mﬁ%ﬁﬂ
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The reduced gradient in H!

The L2 gradient of the reduced cost functional J, (u) := J(f(u), u) is given
by

Vdr(u)|,.(X) = —v Au(x) + vu(x // (x,v,t) V,f(x,v,t)dvdt.
R4

2

However, the update for the control needs the H! reduced gradient.
Considering the Riesz representative of J;(u) on different Hilbert spaces:

(VIr(U)] 2, 00) 5 = (VI (U)| 0, 00) 0, Ou€H.

Thus, the H! gradient is obtained as the solution to the following
boundary-value problem

_A¢+¢ = VJI’(U)’L27 I/J‘BQ:O
Thatis, VJ(u)|,, = ¢.
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Numerical optimization

Calculate H! gradient
Require: controlu, fy, 6, .
Solve forward LKS equation with inputs: fy, u
Solve backward the adjoint LKS equation with inputs: 6, ¢, u
Assemble the L2 gradient VJ,(u)|,2.
Compute the H! gradient VJ,(u)]|u.
return VJ(u)|q: (x)
Nonlinear conjugate gradient (NCG) method
Require: u°, 1,0, .
n=20
Compute gradient g° = VJ,(u°)|1; setd® = —g°.
while ||g"||4: > toland n < Ny do
Use linesearch to determine a,,
Update control: u"*! = u" 4+ o, d”
Compute gradient "1 = VJ, (u"1) |

Calculate the new descent direction d"*! = —g" ™! + 3, d"
Setn=n+1
end while E\iﬁk‘é‘i?ﬂ
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Figure I The Knudsen-number limits on the conventional mathematical models of neutral
gas flows.

In the long term, we are concerned with methods for calibration, control, and optimization of kinetic models in the
mesoscopic regime where probabilistic aspects of the evolution of particles play an essential role.

This is the case in the simulation of rarefied gases with high Knudsen number (the ratio of the mean-free path to the
characteristic length of the problem).

The mesoscopic setting accommodates the case where the coefficients of the model are prescribed probabilistically by
some distribution functions.

Although kinetic models are partial-integro differential equations, methods developed in a deterministic context cannot

I UNIVERSITAT
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Monte Carlo method

Split the kinetic operator: free flight & collision.

The deterministic free flight of each particle (Newton’s law of motion)
between two collisions: x = vand v = u(x). Itis usually computed with
the Stérmer-Verlet method.

The probabilistic collision is estimated according to the collision
frequency 1/7. The free streaming time is given by

ot = —7 log(r),

where r € [0,1] is a uniform random number.

Specular reflection boundary conditions are taken into account in this
step.

Particles and their adjoint counterpart are managed in a list of pointers F¥,
Q¥ storing position and velocity at time step k.
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MC collision

Att + ot, a collision changes the velocity v of the particle while not
changing position x. Notice that we refer to collision of the particle with
much smaller particles in a bath.

The KS collision kernel can be written as a normal distribution:

Av, w) = N (w %) ,

Thus, in our case the new velocity is given by

- L
W—7V+2,8.

wherep ~ N (0, (26)‘1) is a normal random number, sampled using the
Box-Muller formula.
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LKS adjoint and Monte Carlo

0sq—v-Vyq — u(x)-Vyq = C*[q] + C5q—0, qls=0 = —¥-

The LKS adjoint model consists out of a free-streaming part, a collision
part, a reaction term and a source term. We have collision frequency
(y7)~! and post-collision velocities w* ~ N (v/~, (26v%)71).

For reaction term Cj g:

2 Forall particles p in Q¥: Generate r, := | At C}| particles with
the velocity Q¥ [p].v and position Q[p].x.

* Add these particles to the existing ones in Q.

For the source term —#6:

= Generate Ng,. new particles with phase space components
having the normal distribution with mean z(t¥) and variance
oF:v ~ N (2p(th), o).

* Add these particles to the existing ones in Q¥

Eﬁ%ﬁ“
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Monte Carlo algorithm

Check termination

criterion >

Update control
Uyl = w +oid;

ug(t), fo(w,v)

Input 0(z,v,t), p(x,v)

solve KS solve KS adjoint
equation using MC equation using MC
collision + pusher collision + pusher

+ contro At + contre (iﬂf

= fi(z,v,t) D = q(z,v,t) D

Diagnosis,
(@), (90) s (Tr (@) 5

A

Calculate gradient g; < fi, q,w

Calculate step-direction using
the NCG method: d; < g, 911

Calculate step-size o7 < gg, [1:1. 7141
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WURZSURG /37




Num. exp. - Harmonic oscillator

v PlOt B T T T 52 54 56 58 6 s..x:.
of mean values ((x),(v)) (---) Optimal control (- --) and elastic
and desired zp (—). force F(x) of the harmonic

oscillator(—). Comparison of
results with number of particles
N¢ and with two times Nf (-----),
four times Ny (xx %), eight times Ny
(+++)_

folx,v) = 5515570 €XP (*% [(X(Iffsu)z + (VE.%U)ZD ;

2p(t) = (1.5 cos(wt) + 5.0, —1.5sin(wt))", F(x) = —w?(x — 5)
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A stabilization problem

Now, we consider the more general model:

Of (x,v,t) + v - Vif(x,v,t) + V[F(x,v, t;u(x, v, t)) f] = C[f](x,v,t)
f(X,V,O) :fO(X7V)7
fx,v,t)[o- = af(x,v —2n(n-v),t),

where 9~ := 90 x RZ x (0,T],and a € [0, 1].

Our purpose is to design a control field capable of driving an initial density
of particles randomly distributed in the phase space to reach a desired
cyclic trajectory on the phase space and follow it in a stable way.

The desired trajectory zp(t) = (xp(t), vp(t)) is the solution to
X(t)=v(D),  V'(t)=FoX(), V(1))

where the dynamics Fy and the initial condition X(0) = X, and V(0) = Vj,
(Xo, Vo) € © x RY are chosen such that the resulting periodic trajectory
satisfies (X(t),V(t)) € @ x R, t € [0, T].

= ...



A Markov control field

We choose Fj corresponding to Hooke’s law, which does not result in a
stable limit cycle dynamics: starting with a distributed fy will result in
particles following different trajectories.

In order to drive and maintain the particles, subject to collisions, close to
the desired trajectory, we augment Fy with a control field as follows:

F(Xa v, t;U(X,V,t)) = FO(X)V) + U(X,V, t)'
Our ensemble cost functional is given by
J(f,u) / / 0(x,v,t) | (x, v, O)°] f(x,v,t) dx dv dt
QxRI 2

+ / ox,v) fx,v,T)dxdv.
QxRI
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Adjoint problem

The adjoint kinetic model is given by
—8tCI(X, v, t) + L: CI(X, v, t) = C*[q] (X) v, t) + CS Q(X, v, t)
— 00, v,0) = 2 lulx, v, ),

q<X)V7 T) = _@(X7V)7
q(x,v,t)|o+ = aq(x,v —2n(x) (n(x) - v),t)

where Q% := 9Q x RZ x (0, T], and the adjoint free-streaming operator
L} is given by
Ly :=—v-Vy—F(x,v,t;u) - V,.

u

Further, we have C and C*[q](x, v, t), @ and ¢ as previously defined.
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Optimality condition

The optimality system is completed with specification of the optimality
condition equation:

Vudr(u) :=f(x,v,t) (z/ u(x,v,t) — OyF(x,v, t; u)V,q(x, v, t)) =0.

However, recall our aim to construct a control field on the entire phase
space. Such a control would be required if the density f is everywhere
positive, in which case a necessary and sufficient condition for optimality
is given by

1
U(X7 v, t) = ;qu(Xa v, t)a
since in our setting 9,F (x, v, t; u) is the identity matrix.

A similar result would be obtained in the case of constraints on the control
and based on the PMP framework.
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Feedback control

The u = q/v replaced in the adjoint kinetic model gives a new equation
for the adjoint variable that does not depend on the density f nor on fy. It
depends only on 6§ and .

The adjoint kinetic model becomes
=0 q(x, v, t) + L, q(x, v, t) = C7[q](x, v, t) + Coq(x, v, 1)
1 2
- Q(Xa v, t) - g'vvq(xa v, t)l 5
q(X7 v, T) = _@(Xv V)a
q(x, v, t)[o+ = aq(x,v —2n(x) (n(x) - v), t)

Once g is computed, we obtain a control u = g/v having all characterizing
features of a feedback control. We solve this model with our Monte Carlo
strategy.

Our modified adjoint model has similarities with the
Hamilton-Jacobi-Bellman equation arising in the dynamic programming

approach.
EVE}&]}R}
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A stationary control field

A periodic orbit admits different time parametrizations. For this reason,
we construct a time-independent 6 corresponding to the entire trajectory
as follows:

_ 1 [T
9(X,V)=?/(; O(x,v,t)dt.

Hence,  represents a closed valley with the bottom line corresponding to
the desired orbit.
We construct a stationary feedback law as follows

1 T
u(x,v) = ?/0 u(x,v,t)dt.

This approach is motivated by works on optimal control of periodic
processes in the field of engineering of chemical plants with cyclic
regimes.
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Experimental setting

We consider a two dimensional phase-space domain
Q = [0, Pmax] X [—Vmax, Vmax] With positive pmax, Vmax- We set fy equal to a
uniform distribution.

The desired orbit corresponds to a harmonic oscillator of unit mass and
force corresponding to Hooke’s law as follows

Fo(x,v) = —w? (x - [%) :

The resulting trajectory is given by

2(t) = (XD(t)) _ ( 2.5 cos(wt) + xo )’ " 2_77’

vp(t) —2.5wsin(wt) — vp

where T is the period of the orbit, and xg = pmax/2, vo = 0.
We have ppax = 10, Vipax = 5, T = 2.5,y = 0.9999 and v = 10.
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A Markov control function

Control feid at timestep 12

Quiver plot of the calculated control. The solid ellipse is the curve zp(t),
t € [0, T]. The arrows are given by the scaled vector (v, u(x, v, t))’.
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Particles’ evolution

e oz

R ] o desred oz o desred oz

Evolution of f starting from an uniform initial distribution and subject to
the control field u.
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Stationary control and feedback

Starting from a Gaussian initial distribution, we simulate the evolution of
these particles subject to the time-averaged control u.

— desred ozl

- desred otz P e R e Py

Evolution of f, starting with an initial Gaussian distribution and subject to
the averaged control u.
= ...
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