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Framework
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Manymodels in sciences and engineering aim at describing the dynamics
of multiple agents/particles subject to internal and external forces.
The manipulation of these forces allows to control the systems’ dynamics
in order to perform desired tasks.

A convenient description of the configuration of multi-agent
(multi-particle) systems is achieved by means of probabilistic
or material densities.
The time evolution of these densities is governed by kinetic
models.
Optimal control theory provides the mathematical tools to
formulate and solve control problems.
Ensemble optimal control problems represent the natural
framework for designing control mechanisms and objectives
for systems governed by kinetic models.



Applications
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collective motion, ©STIR coating andmixing of powder, ©RCPE

space propulsion, ©SPARC

fusion reactor, ©ITER



Density functions
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Consideration of all possible trajectories of a multi-particle system is an
overwhelming task. For this reason, L. E. Boltzmann introduced the
concept of material density f (x, t).

In the non-interacting case, if f0(x) represents the initial density
(configuration) at time t = 0, then the evolution of this density is
modelled by

the Liouville equation

∂tf (x, t)+div (a(x, t) f (x, t)) = 0,

with drift a and initial
condition f (x, 0) = f0(x).

t

x

x0

ẋ(t) = a(x, t)

f0

f (x, T )

This fundamental result of statistical mechanics leads to the formulation
of various kinetic equations.



Role of the drift
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The Liouville equation ∂tf + div (a(x, t) f ) = 0 is the fundamental
continuity equation; the first in the hierarchy of kinetic models.

Take the dynamics
Ẋ(t) = sin(X(t))
X(0) = X0 ∼ N (µ, σ̄2),
µ = 0 and σ̄ = 0.5.
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Notice that a(x, t) = sin(x) = − d
dx cos(x) = −∇U(x)where

U(x) = cos(x). The function U can be interpreted as a potential.
Compare with moments’ equations in the case Ẋ(t) = [A(t) X(t) + b(t)]:

µ̇(t) = A(t)µ(t) + b(t), Σ̇(t) = Σ(t) A(t)> + A(t) Σ(t).



A controlmechanism
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Optimal control applications require to identify a control mechanism in
the model. A convenient structure with time-dependent controls:

a(x, t; u1, u2) = a0(x, t) + a1 u1(t) + a2 u2(t) x.

a0(x, t) ∈ Rd smooth vector field, a1, a2 ∈ R, u1(t), u2(t) ∈ Rd

Moment equations: Definem(t) as the mean, v(t) as the variance.
Choose a(x, t; u1, u2) = u1(t) + u2(t) x, and f0 as normal Gaussian
distribution.
From the Liouville equation, we obtain

ṁ(t) = u1(t) + m(t) u2(t), m(0) = m0

v̇(t) = 2 v(t) u2(t) v(0) = v0.

where
m(t) =

∫
x f (x, t) dx and v(t) =

∫
(x −m(t))2 f (x, t) dx



Ensemble cost functional
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The particles should follow
closely a desired trajectory
xD(t), t ∈ [0, T], reach a target
position xT at t = T .

Ensemble control approach:
define “attracting” potentials
θ(x, t) = Θ(|x − xD(t)|)
ϕ(x) = Φ(|x − xT |)

u(t)

f0

f(x, T )

ϕ(x)

x

Ensemble cost functional:

J(f , u) =
∫ T

0

∫
Rd
θ(x, t) f (x, t) dx dt +

∫
Rd
ϕ(x) f (x, T) dx + κ(u).



Cost of control
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For space-dependent controls inΩ:

L2(Ω), H1(Ω)

For time-dependent controls in (0, T):

L2(0, T): standard control cost.

H1(0, T): includes time-derivative of the control
(minimum attention control); turning control on
at initial time and off at terminal time.

L1(0, T): sparse controls (minimum action
control)

time
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Cost function:

κ(u) =
γ

2

∫ T

0

∣∣u(t)∣∣2 dt + δ

∫ T

0

∣∣u(t)∣∣ dt +
ν

2

∫ T

0

∣∣∣∣ ddt u(t)
∣∣∣∣2 dt



An ensemble control problem
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A Liouville ensemble optimal control problem:

min
u∈Uad

J(f , u) :=

∫ T

0

∫
Rd
θ(x, t) f (x, t) dx dt +

∫
Rd
ϕ(x) f (x, T) dx

+
γ

2

∫ T

0

∣∣u(t)∣∣2 dt + δ

∫ T

0

∣∣u(t)∣∣ dt +
ν

2

∫ T

0

∣∣∣∣ ddt u(t)
∣∣∣∣2 dt

subject to

{
∂tf (x, t) + div

(
a(x, t; u) f (x, t)

)
= 0 inRd × [0, T]

f (x, 0) = f0(x) inRd

with the set of admissible controls

Uad := {u = (u1, u2) ∈ U × U | ua ≤ u(t) ≤ ub, t ∈ [0, T]},

U = H1([0, T];Rd) or U = L2([0, T];Rd).
γ, δ, ν ≥ 0, γ + δ + ν > 0, ua < 0, ub > 0



Resultswith Liouvillemodel
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1. For u ∈ Uad there exists a unique solution
f ∈ C

(
[0, T];Hm

k (R
d)
)
of the Liouville initial-value problem.

2. The control-to-state map G, u 7→ f = G(u) is Fréchet
differentiable

3. The ensemble optimal control problem admits at least one
solution in Uad.

4. Derivation and analysis of the optimality system
5. Approximation by SSP Runge-Kutta, Kurganov-Tadmor and

Strang splitting schemes.
6. L1 stability, second-order accuracy, positivity preserving.
7. Projected semi-smooth Newtonmethod.



A kineticmodelwith collision
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In many physical systems, the density f is defined in the phase space
spanned by position x ∈ Ω ⊂ Rd and velocity v ∈ Rd , Q = Ω× Rd .

In this statistical framework, we assume that the time evolution of f is
governed by the following kinetic model

∂tf (x, v, t) + v · ∇x f (x, v, t) +∇v · [u(x, v, t) f ] = C[f ](v, t)
f |t=0 = f0,

f (x, v, t)|∂Ω×Rd
<×(0,T] = f (x, v − 2n(n · v), t)

where C[f ] represents collisions of the particles with an homogeneous
background system (as in Brownian motion: colloidals suspended in a
bath in thermal equilibrium).
We also have specular reflection space boundaries;
Rd

< := {v ∈ Rd | v · n(x) < 0}, and a control field u.



Keilson-Storer collisionmodel
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We consider the Keilson-Storer (KS) collision model:

C[f ](v, t) :=

∫
f (w, t) A(w, v) dw − f (v, t)

∫
A(v,w) dw,

It has a gain – loss structure. We have A(v,w) := A0 e
(
−β|w−γ v|2

)
and

γ ∈ [−1, 1], A0, β > 0. For post-collision velocity holds
w ∼ N (γv, (2β)−1).

γ / 1: weak collisions, Brownian motion
γ ≈ 0 : strong collision, Bhatnagar-Gross-Krook (BGK) operator
collision frequency 1

τ = A0
√
π/β

detailed balance: A(w, v) f eq(w) = A(v,w) f eq(v)
equilibrium solution f eq(v) is the Maxwellian distribution
A0 and β related to the background density and temperature



A LKS optimal control problem
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We consider the following Liouville-Keilson-Storer (LKS) problem

∂tf + v · ∇x f + u(x) · ∇v f = C[f ]
f |t=0 = f0,

f (x, v, t)|∂Ω×Rd
<×(0,T] = f (x, v − 2n(n · v), t)

with specular reflection space boundaries;Rd
< := {v ∈ Rd | v · n(x) < 0}.

The control field u is sought in H1
0(Ω).

Suppose a desired trajectory in the phase space zD(t), t ∈ [0, T], and
desired final configuration zT . We choose the potentials θ and ϕ.

Our problem is to find u ∈ H1
0(Ω) such that the following ensemble cost

functional is minimised

J(f , u) :=
∫ T

0

∫
Q
θ(x, v, t)f (x, v, t) dx dv dt +

∫
Q
ϕ(x, v)f (x, v, T) dx dv +

ν

2
‖u‖2H1

where Q = Ω× Rd .



The LKS adjoint equation
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The LKS adjoint equation is given by

−∂tq(x, v, t)− v · ∇xq(x, v, t)− u(x) · ∇vq(x, v, t) = C̃[q](x, v, t)− θ(x, v, t)

with

C̃[q](x, v, t) =
∫

A(v,w) q(x,w, t) dw − q(x, v, t)
∫

A(v,w) dw.

The operator C̃[q] has not a gain-loss structure, but such a structure can be
partially recovered defining

C∗[q](x, v, t) =∫
A∗(w, v) q(x,w, t) dw − q(x, v, t)

∫
A∗(v,w) dw,

A∗(w, v) = 1
γ A(v,w)∫ (

A(w, v)− A(v,w)
)
dw = 1−γ

τq
=: C∗

0.

‘adjoint’ mean free time τq = γ τ



Reformulation of the LKS adjoint
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We choose θ and ϕ as follows

θ(z, t) := − Cθ
2πσ2

θ

exp
(
−|z − zD(t)|2

2σ2
θ

)
, σθ > 0.

and

ϕ(z) := − Cϕ
2πσ2

ϕ

exp
(
−|z − zT)|2

2σ2
ϕ

)
, σϕ > 0.

With this choice, θ and ϕ play the role of sources (or sinks) of particles.

The resulting adjoint LKSmodel is given by

−∂tq − v · ∇xq − u(x) · ∇vq = C∗[q] + C∗
0q − θ, q|t=T = −ϕ.

The forward and adjoint problems can be written introducing the
free-streaming operators

Lu = v · ∇x + u · ∇v , and L∗u = −Lu.



LKS optimality system

15/37

∂tf (x, v, t) + Luf (x, v, t) = C[f ](x, v, t),
f (x, v, 0) = f0(x, v)
f (x, v, t)|∂Ω×Rd

<
= f (x, v − 2n(n · v), t)

− ∂tq(x, v, t) + L∗uq(x, v, t) = C∗[q](x, v, t) + C∗
0 q(x, v, t)− θ(x, v, t),

q(x, v, T) = −ϕ(x, v)
q(x, v, t)|∂Ω×Rd

>
= q(x, v − 2n(n · v), t)

−ν∆u(x) + ν u(x) +
∫ T

0

∫
Rd

q(x, v, t)∇v f (x, v, t) dv dt = 0

u|∂Ω = 0.



The reduced gradient inH1

16/37

The L2 gradient of the reduced cost functional Jr(u) := J(f (u), u) is given
by

∇Jr(u)
∣∣
L2(x) = −ν∆u(x) + ν u(x) +

∫ T

0

∫
Rd

q(x, v, t)∇v f (x, v, t) dv dt.

However, the update for the control needs the H1 reduced gradient.
Considering the Riesz representative of J′r(u) on different Hilbert spaces:(

∇Jr(u)
∣∣
L2 , δu

)
L2 =

(
∇Jr(u)

∣∣
H1 , δu

)
H1 , δu ∈ H1.

Thus, the H1 gradient is obtained as the solution to the following
boundary-value problem

−∆ψ + ψ = ∇Jr(u)
∣∣
L2 , ψ

∣∣
∂Ω

= 0.

That is,∇Jr(u)
∣∣
H1 = ψ.



Numerical optimization
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Calculate H1 gradient
Require: control u, f0, θ, ϕ.

Solve forward LKS equation with inputs: f0, u
Solve backward the adjoint LKS equation with inputs: θ, ϕ, u
Assemble the L2 gradient∇Jr(u)|L2 .
Compute the H1 gradient∇Jr(u)|H1 .
return ∇J(u)|H1(x)

Nonlinear conjugate gradient (NCG) method
Require: u0, f0, θ, ϕ.

n = 0
Compute gradient g0 = ∇Jr(u0)|H1 ; set d0 = −g0.
while ‖gn‖H1 > tol and n < nmax do

Use linesearch to determine αn
Update control: un+1 = un + αn dn

Compute gradient gn+1 = ∇Jr(un+1)|H1

Calculate the new descent direction dn+1 = −gn+1 + βn dn

Set n = n+ 1
endwhile
return un(x)



Simulation scales &Numerics
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In the long term, we are concerned with methods for calibration, control, and optimization of kinetic models in the
mesoscopic regime where probabilistic aspects of the evolution of particles play an essential role.

This is the case in the simulation of rarefied gases with high Knudsen number (the ratio of the mean-free path to the
characteristic length of the problem).

The mesoscopic setting accommodates the case where the coefficients of the model are prescribed probabilistically by
some distribution functions.

Although kinetic models are partial-integro differential equations, methods developed in a deterministic context cannot

always be applied and computation by Monte Carlo methods could be required.



Monte Carlomethod
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Split the kinetic operator: free flight & collision.

The deterministic free flight of each particle (Newton’s law of motion)
between two collisions: ẋ = v and v̇ = u(x). It is usually computed with
the Störmer–Verlet method.
The probabilistic collision is estimated according to the collision
frequency 1/τ . The free streaming time is given by

δt = −τ log(r),

where r ∈ [0, 1] is a uniform random number.
Specular reflection boundary conditions are taken into account in this
step.
Particles and their adjoint counterpart are managed in a list of pointers Fk ,
Qk storing position and velocity at time step k.



MC collision

20/37

At t + δt, a collision changes the velocity v of the particle while not
changing position x. Notice that we refer to collision of the particle with
much smaller particles in a bath.
The KS collision kernel can be written as a normal distribution:

A(v,w) = N
(
γv,

1

2β

)
,

Thus, in our case the new velocity is given by

w = γv +
p
2β
.

where p ∼ N
(
0, (2β)−1

)
is a normal random number, sampled using the

Box-Muller formula.



LKS adjoint andMonte Carlo
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∂sq− v · ∇xq − u(x) · ∇vq = C∗[q] + C∗
0q− θ, q|s=0 = −ϕ.

The LKS adjoint model consists out of a free-streaming part, a collision
part, a reaction term and a source term. We have collision frequency
(γτ)−1 and post-collision velocitiesw∗ ∼ N

(
v/γ, (2βγ2)−1

)
.

For reaction term C∗
0 q:

For all particles p in Qk: Generate r∗ := b∆t C∗
0c particles with

the velocity Qk[p].v and position Qk[p].x.
Add these particles to the existing ones in Qk.

For the source term−θ:
Generate Nfrac new particles with phase space components
having the normal distribution with mean zD(tk) and variance
σ2θ : v ∼ N

(
zD(tk), σ2θ

)
.

Add these particles to the existing ones in Qk



Monte Carlo algorithm
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Input
u0(t), f0(x, v)
θ(x, v, t), ϕ(x, v)

solve KS

equation using MC

collision + pusher

+ control

⇒ fl(x, v, t)

solve KS adjoint

equation using MC

collision + pusher

+ control + θ, ϕ
⇒ ql(x, v, t)

Calculate gradient gl ← [ fl, ql, ul

Update control

ul+1 = ul + σldl

Calculate step-direction using

the NCG method: dl ← [ gl, gl−1

Calculate step-size σl ←[ gl, f l+1, ql+1

Check termination

criterion

l = l + 1

∆t ∆t

Diagnosis,

〈(x, v)〉, (gl)l , (Jr (ul))l , . . .

l = l + 1



Num. exp. - Harmonic oscillator
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f0(x, v) = 1
2π·0.15·5.0 exp

(
− 1

2

[( x−5.0
0.15

)2
+

( v−0.0
5.0

)2])
,

zD(t) = (1.5 cos(ωt) + 5.0,−1.5 sin(ωt))T , F(x) = −ω2(x − 5)



A stabilization problem
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Now, we consider the more general model:

∂tf (x, v, t) + v · ∇x f (x, v, t) +∇v [F(x, v, t; u(x, v, t)) f ] = C[f ](x, v, t)
f (x, v, 0) = f0(x, v),

f (x, v, t)|Q− = α f (x, v − 2n(n · v), t),

where Q− := ∂Ω× Rd
< × (0, T], and α ∈ [0, 1].

Our purpose is to design a control field capable of driving an initial density
of particles randomly distributed in the phase space to reach a desired
cyclic trajectory on the phase space and follow it in a stable way.

The desired trajectory zD(t) = (xD(t), vD(t)) is the solution to

X ′(t) = V(t), V ′(t) = F0(X(t), V(t)),

where the dynamics F0 and the initial condition X(0) = X0 and V(0) = V0,
(X0, V0) ∈ Ω× Rd are chosen such that the resulting periodic trajectory
satisfies (X(t), V(t)) ∈ Ω× Rd , t ∈ [0, T].



AMarkov control field
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We choose F0 corresponding to Hooke’s law, which does not result in a
stable limit cycle dynamics: starting with a distributed f0 will result in
particles following different trajectories.
In order to drive andmaintain the particles, subject to collisions, close to
the desired trajectory, we augment F0 with a control field as follows:

F(x, v, t; u(x, v, t)) = F0(x, v) + u(x, v, t).

Our ensemble cost functional is given by

J(f , u) =
∫ T

0

∫
Ω×Rd

[
θ(x, v, t) +

ν

2
|u(x, v, t)|2

]
f (x, v, t) dx dv dt

+

∫
Ω×Rd

ϕ(x, v) f (x, v, T) dx dv.



Adjoint problem
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The adjoint kinetic model is given by

−∂tq(x, v, t) + L∗u q(x, v, t) = C∗[q](x, v, t) + C∗
0 q(x, v, t)

− θ(x, v, t)− ν

2
|u(x, v, t)|2,

q(x, v, T) = −ϕ(x, v),
q(x, v, t)|Q+ = α q(x, v − 2 n(x) (n(x) · v), t)

where Q+ := ∂Ω× Rd
> × (0, T], and the adjoint free-streaming operator

L∗u is given by

L∗u := −v · ∇x − F(x, v, t; u) · ∇v .

Further, we have C∗
0 and C∗[q](x, v, t), θ and ϕ as previously defined.



Optimality condition
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The optimality system is completed with specification of the optimality
condition equation:

∇uJr(u) := f (x, v, t)
(
ν u(x, v, t)− ∂uF(x, v, t; u)∇vq(x, v, t)

)
= 0.

However, recall our aim to construct a control field on the entire phase
space. Such a control would be required if the density f is everywhere
positive, in which case a necessary and sufficient condition for optimality
is given by

u(x, v, t) =
1

ν
∇vq(x, v, t),

since in our setting ∂uF(x, v, t; u) is the identity matrix.

A similar result would be obtained in the case of constraints on the control
and based on the PMP framework.



Feedback control
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The u = q/ν replaced in the adjoint kinetic model gives a new equation
for the adjoint variable that does not depend on the density f nor on f0. It
depends only on θ and ϕ.

The adjoint kinetic model becomes

−∂tq(x, v, t) + L∗u q(x, v, t) = C∗[q](x, v, t) + C∗
0 q(x, v, t)

− θ(x, v, t)− 1

2ν
|∇vq(x, v, t)|2,

q(x, v, T) = −ϕ(x, v),
q(x, v, t)|Q+ = α q(x, v − 2 n(x) (n(x) · v), t)

Once q is computed, we obtain a control u = q/ν having all characterizing
features of a feedback control. We solve this model with our Monte Carlo
strategy.

Our modified adjoint model has similarities with the
Hamilton-Jacobi-Bellman equation arising in the dynamic programming
approach.



A stationary control field
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A periodic orbit admits different time parametrizations. For this reason,
we construct a time-independent θ corresponding to the entire trajectory
as follows:

θ̄(x, v) =
1

T

∫ T

0

θ(x, v, t) dt.

Hence, θ̄ represents a closed valley with the bottom line corresponding to
the desired orbit.
We construct a stationary feedback law as follows

ū(x, v) =
1

T

∫ T

0

u(x, v, t) dt.

This approach is motivated by works on optimal control of periodic
processes in the field of engineering of chemical plants with cyclic
regimes.



Experimental setting
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We consider a two dimensional phase-space domain
Ω = [0, pmax]× [−vmax, vmax]with positive pmax, vmax. We set f0 equal to a
uniform distribution.
The desired orbit corresponds to a harmonic oscillator of unit mass and
force corresponding to Hooke’s law as follows

F0(x, v) = −ω2
(
x − pmax

2

)
.

The resulting trajectory is given by

zD(t) =
(
xD(t)
vD(t)

)
=

(
2.5 cos(ωt) + x0

−2.5ω sin(ωt)− v0

)
, ω =

2π

T
,

where T is the period of the orbit, and x0 = pmax/2, v0 = 0.
We have pmax = 10, vmax = 5, T = 2.5, γ = 0.9999 and ν = 10.



AMarkov control function
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Quiver plot of the calculated control. The solid ellipse is the curve zD(t),
t ∈ [0, T]. The arrows are given by the scaled vector (v, u(x, v, t))T .



Particles’ evolution
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Evolution of f starting from an uniform initial distribution and subject to
the control field u.



Stationary control and feedback
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Starting from a Gaussian initial distribution, we simulate the evolution of
these particles subject to the time-averaged control ū.

Evolution of f , starting with an initial Gaussian distribution and subject to
the averaged control ū.
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