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Introduction

Statistical inverse problems

Setting: X', ) Hilbert spaces, T : X — ) bounded, linear

Task: Recover unknown f € X from noisy measurements
Y = Tf + o0&

Noise: £ is a standard Gaussian white noise process, ¢ > 0 noise
level

The model has to be understood in a weak sense:

Y :=(Tf,g)y+0( 8) forallge )y

with (€,) ~ N (0, lg]3) and E[(€. &1) (€. &2)] = (g1, £2),-
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Introduction

Statistical inverse problems

Assumptions:

e T is injective and Hilbert-Schmidt (3" 02 < 0o, ok singular values)

e o is known exactly

As the problem is ill-posed, regularization is needed. Consider filter-based
regularization schemes

Fa = qa(T* T) T Y, a > 0.

Aim:
A posteriori choice of « such that rate of convergence (as o N\, 0) is order
optimal (no loss of log-factors)

Note: Heuristic parameter choice rules might work here as well, as the
Bakushinskii veto does not hold in our setting (Becker '11).

Frank Werner, MPIbpC Géttingen Unbiased Risk Estimation October 30, 2017 5/ 34



A posteriori parameter choice methods

Outline

@ A posteriori parameter choice methods

Frank Werner, MPIbpC Géttingen Unbiased Risk Estimation October 30, 2017 6 /34



A posteriori parameter choice methods

The discrepancy principle

e For deterministic data: app = max {a >0 ‘ H Tf, — YHy < 70}

e But here: Y ¢ V! Either pre-smoothing (Y ~» Z:=T*Y € X) ...
e ... or discretization: Y € R", £ ~ N, (0, /,) and choose

app = max {a >0 ‘ HTfa — YH2 < Taﬁ}

Pros:
Cons:

* Easy to implement e How to choose 7 > 17

o e er alll g e Only discretized meaningful

e Order-optimal convergence
rates

Davies & Anderssen '86, Lukas '95, Blanchard, Hoffmann & ReiB3 '16

e Early saturation
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A posteriori parameter choice methods
The quasi-optimality criterion
e Neubauer '08 (ry (A\) =1 — Aga (N)): aqgo = argmin Hra (T*T) faH
a>0 X
e But for spectral cut-off r, (T*T) £, = 0 for all & > 0

o Alternative formulation for Tikhonov regularization if candidates
ay < ... < apn are given:

nQo = argmin fa,, — fanﬂ , QO = Qngo-
1<n<m-—1 X
Pros: Cons:
e Easy to implement, very fast e Only for special g,
e No knowledge of o necessary ¢ Additional assumptions on

e Order-optimal convergence noise and/or f necessary

rates in mildly ill-posed e Performance unclear in
situations severely ill-posed situations

Bauer & Kindermann '08, Bauer & ReiB '08, Bauer & Kindermann '09

Frank Werner, MPIbpC Géttingen Unbiased Risk Estimation October 30, 2017 8 /34



A posteriori parameter choice methods

The Lepskii-type balancing principle

e For given «, the standard deviation of f., can be bounded by

std (a) = 0\/ Tr (qak (T*T)2 T+ T)

e If candidates a3 < ... < ayy, are given:

~

fo; — Fo,

NLEP = Max {j | N < 4kstd (ak) forall 1 < k gj}

and aLEp = Qpppp

Pros: Cons:
e Works for all g, o Computationally expansive
e Robust in practice e x> 1 depends on decay of oy
e convergence rates (mildly / e |oss of log factor compared to
severely ill-posed) order-optimal rate

Bauer & Pereverzev '05, Mathé '06, Mathé & Pereverzev '06
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A posteriori parameter choice methods

Unbiased risk estimation
e Dating back to ideas of Mallows '73 and Stein '81 let

Pla,Y) = H Th

2 ~
L2 <Tfa, Y> 4 202Tr (T Tqo (T*T))

and choose ayrg = argmin,~q 7 (e, Y)
R 2
e Note that E[7 (o, Y)] =E [H Tty — Tny} — ¢ with ¢ independent
of a (Unbiased Risk Estimation)

For spectral cut-off and in mildly ill-posed situations, this gives order
optimal rates (Chernousova & Golubev '14). Besides this, only optimality
in the image space is known (Li '87, Lukas '93, Kneip '94). Distributional
behavior of ayrg: Lucka et al '17.

In general: Pros? Cons? Convergence rates? Order optimality?

Frank Werner, MPIbpC Géttingen Unbiased Risk Estimation October 30, 2017 10 / 34



Error analysis

Outline

© Error analysis

Frank Werner, MPIbpC Géttingen Unbiased Risk Estimation October 30, 2017 11 /34



Error analysis A priori parameter choice

Assumptions
Filter

algaMI <G and MgV < G-

Source condition

Wy :={fexXx \ f=¢(T"T)w,|lw|, < C}.

Note: for any f € X there exists ¢ such that f € W.

Qualification condition

The function ¢ is a qualification of g, if

sup @A) [1 = Aga(N)| < Coop()
AE[O, || T*T]|
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Error analysis A priori parameter choice

Assumptions

Let
Y (x):=#{k ’ op > x}

be the counting function of the singular values of T

Approximation by smooth surrogate
There exists S € C2, a3 € (0,||T*T||] and Cs € (0,2) such that

(1) limgno S()/X(a) =1 (approximation
(2) S'<0 (decreasing
(3) limg oo S(a) = limg oo S'() =0 (behavior above o
(4) limpnpoaS(a) =0 (Hilbert-Schmidt
(5) aS'(«) is integrable on (0, a4]

(6) 48 < S on (0,a]

— N — ~—
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Error analysis A priori parameter choice

A priori convergence rates

Bissantz, Hohage, Munk, Ruymgaart '07
Let ag(ax)? = 02S(aw).
(i) If ¢ is a qualification of g4, then
25(a)

Oly

sup E [
f€W¢

o, —f”i] Sola)? =0 as o \, 0.

(ii) If A= v/ A@()) is a qualification of the filter g, then

~ 2
sup E [HT"@* = ] < (@) = ?S(ar)  aso N0,
f€W¢ y
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Error analysis A priori parameter choice

Mildly ill-posed situation: Example

Assume o2 = k=2, Wy i= {f € X 1232, KF2 < 1} with 2> 1,5 > 0:

Bissantz, Hohage, Munk, Ruymgaart '07
Let o, = (02)3/(a+b+1)_

o If ¢ (N\) = AP/?2 is a qualification of qq, then

] s

o If ¢(N\) = AP/22+1/2 is 3 qualification of gq, then

sup E [
feEWy

A 2 2 at+b
sup E HTfa* - TfH < (0?)iha,
feWw, Yy

These rates are order optimal over W,
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Error analysis Unbiased Risk estimation as parameter choice

Unbiased risk estimation vs. the oracle

Recall that

Pla,Y) = HTFQ

2 N
L2 <Tfa, Y> 4 202Tr (T*Tqu (T*T))
is an unbiased estimator for
. 2
r(a,f) =E [H Th — TfH ] .
y
In the following, we will compare

ayre = argmin (o, Y) and a, = argmin r(c, f).
a>0 a>0
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Error analysis Unbiased Risk estimation as parameter choice

Additional assumptions
(a) a+ {qa(0?)}32, is strictly monotone and continuous as R — (2,
(b) As a0, aga(a) > ¢4 > 0.
c) For a > 0, the function A — Agqy IS non-decreasing.
F 0, the f ion A +— Agq(A) i d [

Satisfied by Tikhonov, spectral cut-off, Landweber, iterated Tikhonov and
Showalter regularization, under proper parametrization. E.g. Tikhonov
with re-parametrization o — /& (go(A) = 1/(v/a + \)) violates (b).

(d) ¥ (A) = A1 (ﬁ) is convex

(e) There exists a constant C; > ¢, 2 such that

/loo W/(Cyx) exp (—C\/§> dx < oo with W(x) = (51X(x))2

for some explicitly known C > 0.

(d) can always be satisfied by weakening ¢, (e) restricts the decay of the
singular values
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Error analysis Unbiased Risk estimation as parameter choice

Oracle inequality

Li & W. 16
There are positive constants C;, i = 1,...,6, such that for all f € Wj it
holds
2 2 1 2 2
E { Prone — f”X] <G~ (Cgr(ao, f)+ Gyo ) + Go
LG rlag, f)+o r(fao, f)
&l (Cﬁ%)

as o \ 0.

Gives a comparison of the strong risk under aygrg with the weak risk
under the oracle «,.
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Error analysis Unbiased Risk estimation as parameter choice

Convergence rates

Li & W. '16

If also A — v/Ag(\) is a qualification of the filter g, then for
axd(as)? = 02S(a) there are Cy, Gy, C3 > 0 such that

A 2 S(aw) 025 ()
E ||| fagre — || | <Cio?
fse%¢ [ URE Hx] sGo Qe G S71(GS(aw))
as o \ 0.

If there is C4 > 0 such that S(Cyx) > G3S5(x), then this equals the a priori
rate

5(04*)'

Oy

sup E [
f€W¢

fOCURE - in] 5 ¢(O‘*)2 =0’
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Error analysis Unbiased Risk estimation as parameter choice

Order optimality in mildly ill-posed situations
Assume 02 =< k=3, W, = {f EX YR kb2 < 1} with a>1,b > 0:

Oracle inequality

For all f € W:
e[

Convergence rate

A 2 a
fowr fo] < Hao, )95 + 022 (a0, £)2 + 0122 (a, £) 2.

Thus, if A — \P/22t1/2 is 3 qualification of g,, then

~

2 2b
sup E ‘ Commm — fHX < gatbil

fewy

which is order-optimal.
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Error analysis Unbiased Risk estimation as parameter choice

Unbiased risk estimation - pros and cons

~ |12 N
QURE = argmin [H Th|, -2 <Tfa, Y> 4202 Tr(T* Tgu (T*T))

a>0
Pros:
e Works for many q, Cons:
e order-optimal convergence e Computationally expansive
rates in mildly ill-posed e Early saturation
situations

e performance in severely
* no loss of log factor ill-posed situations unclear

e no tuning parameter

H. Li and F. Werner (2017). Empirical risk minimization as parameter choice rule for
general linear regularization methods. Submitted, arXiv: 1703.07809.
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Simulations Rates of convergence

A mildly ill-posed situation - antiderivative

Let T :L2([0,1]) — L2([0,1]) given by

1

(T6)() = [ min{x(1 =)y (1=} F ) dy

0

As (Tf)" = —f the singular values o) of T satisfy o) =< k=2.

We choose
X ifogxgé,
1-x ifi<x<l.

. .. ) _( 1)k
Fourier coefficients: f, =

1)k . ) 3_
Tk?l' so the optimal rate is O (04 5) for any
e > 0.
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Simulations Rates of convergence

A mildly ill-posed situation - Tikhonov regularization

Empirical MISE Empirical Variance
10° T T 102 F T T N
10° |- ﬁ
1074 [ |
1072 [
10~ | |
1074 [
\ \ \ 10-16 \ \ \
10" 107 107 107! 10" 107°  107* 107!

Figure: Empirical MISE and variance of || — f||3 over 10* repetitions:
o (—), app (—), aqo (—), arep (—), avre (—)-
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Simulations Rates of convergence

A severely ill-posed situation - satellite gradiometry

Let R > 1 and S C R2 the unit sphere. Given g = 2% on RS find f in

or

Au=0 inRY\ B,
u=r on S,
el =0 (IIxlz*) s lixll, = oo.

Corresponding T : L? (S, 1) — L2 (RS, 1) has singular values
o = |k| (|k| + 1) R7IKI=2.

We choose -
fx)=2-k, xel-ma

Optimal rate of convergence is O ((— log (a))*3+6) for any € > 0.
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Simulations Rates of convergence

A severely ill-posed situation - Tikhonov regularization

Empirical MISE Empirical Variance
T T T T 10°
10° | 8
1074
ol gl
1078 [
1072 8
! ! —12 !

| | | | | | |
1078107% 107*1073 1072 107%107% 107%1073 1072

Figure: Empirical MISE and variance of || — f||3 over 10* repetitions:
ao (—), app (—) ago (— ) arer (—), aure (—):
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Simulations Rates of convergence

A severely ill-posed situation - backwards heat equation
Let t > 0. Given g = u (-, t) find f in

% (x,t) = T4 (x,t) in (—m,m] % (0,F),
on [—m, ],

)
—m,t)=u(mt) onte(0,t].

Corresponding T : L? ([~m,7]) — L2 ([~ 7]) has singular values

ok = exp (—k*t)

We choose .
f(x):§—|x], x € [-m, 7]

Optimal rate of convergence is O ((— log (o))_3/2+5> for any ¢ > 0.
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Simulations Rates of convergence

A severely ill-posed situation - Tikhonov regularization

Empirical MISE Empirical Variance
10t T T T T T T T T T
1072 b
10°
107°F a
1071 10~ | |
_2 | | —14 |

| | | | | | |
1078107% 107*1073 1072 107%107% 107%1073 1072

Figure: Empirical MISE and variance of || — f||3 over 10* repetitions:
ao (—), app (—) aqo (— ) arer (—), aure (—)
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Simulations Efficiency simulations

Efficiency simulations

Measure the efficiency of a parameter choice rule a, by the fraction
. 2
E { f — fH }
B x
B o 2
IE[ £, — fH ]
x

Numerical approximations of these as functions of o with different
parameters a,v > 0 in the following setting:

o 0y = exp(—ak)

fu =k (1+ N (0,0.1%))
Y=ok & +N(0,02)

k =1,...,300, 10* repetitions
Tikhonov regularization
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Simulations Efficiency simulations

Efficiency simulations - results

100 LALL AL LA LI LLAL AL LRI |

10°

a=02,v=1 a=03,v=1
10—1 T T 1 S AT N MY M WA 10—1 T 1 NV R M AT11 M WA
1077107° 107° 107* 107° 1072 1077 107° 107° 107* 107 1072
g (o

Figure: Rqo (—), Rpp (—), Rugp (—), and Rure (—)
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Simulations Efficiency simulations

Efficiency simulations - results

a=04rv=1 a=06r=1
10—1 T T 1 S AT N MY M WA 10—1 T 1 NV R M AT11 M WA
1077107° 107° 107* 107° 1072 1077107° 107° 107* 107° 1072
g (o

Figure: Rqo (—), Rpp (—), Rugp (—), and Rure (—)
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Simulations Efficiency simulations

Efficiency simulations - results

T T T LT

1077 107° 107° 107* 1073 102 1077 107% 107% 107* 1073 102
g g

Figure: RQQ (7), RDP (7), RLEP (7), and RURE (7)
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Conclusion

Presented results

e Analysis of a parameter choice based on unbiased risk estimation:
e oracle inequality

e convergence rates
e order optimality in mildly ill-posed situations

e Numerical comparison:

e in this specific setting, quasi-optimality outperforms all other methods
e unbiased risk estimation has higher variance (by design)

e simulations suggest order optimality of quasi-optimality also in severely
ill-posed situations, not clear for unbiased risk estimation

Thank you for your attention!
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