Convergence Rates for Inverse Problems with Impulsive Noise

Frank Werner (joint work with Thorsten Hohage)

Institute for Numerical and Applied Mathematics University of Göttingen, Germany

Workshop on Inverse Problems and Regularization Theory, Shanghai September 27th, 2013

Outline

1 Impulsive Noise

- 2 Analysis of Tikhonov regularization
- 3 Application to Impulsive Noise
- **4** Numerical simulations

5 Conclusion

Impulsive Noise

Outline

1 Impulsive Noise

2 Analysis of Tikhonov regularization

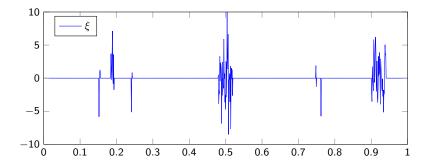
3 Application to Impulsive Noise

4 Numerical simulations

6 Conclusion

What is Impulsive Noise?

- noise ξ is small in large parts of the domain $\mathbb M,$ but large on small parts of the domain
- occurs e.g. in digital image acquisition
- caused by faulty memory locations, malfunctioning pixels etc.
- popular example: salt-and-pepper noise



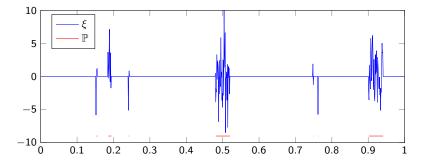
Impulsive Noise

A continuous model for impulsive noise Suppose $\xi \in L^1(\mathbb{M})$, $\mathfrak{B}(\mathbb{M}) \stackrel{\circ}{=} Borel \sigma$ -algebra of \mathbb{M} .

Noise model

There exist two parameters $\varepsilon, \eta \geq 0$ such that

$$\exists \mathbb{P} \in \mathfrak{B}(\mathbb{M}): \qquad \|\xi\|_{\mathsf{L}^{1}(\mathbb{M}\setminus\mathbb{P})} \leq \varepsilon, \qquad |\mathbb{P}| \leq \eta.$$



Frank Werner

Impulsive Noise

Inverse Problems with Impulsive Noise

• we want to reconstruct f^{\dagger} from

$$g^{\mathrm{obs}} = F\left(f^{\dagger}\right) + \xi =: g^{\dagger} + \xi$$

where ξ is impulsive noise

- natural setup: $F: D(F) \subset \mathcal{X} \to L^1(\mathbb{M}) \subseteq \mathcal{Y}$, possibly nonlinear
- Favorable method: Tikhonov regularization

$$\widehat{f}_{\alpha} \in \underset{f \in D(F)}{\operatorname{argmin}} \left[\frac{1}{\alpha r} \left\| F(f) - g^{\operatorname{obs}} \right\|_{\mathcal{Y}}^{r} + \mathcal{R}(f) \right]$$

• Minimizer \hat{f}_{α} exists under reasonable assumptions.

How to choose $\mathcal Y$ and r

here: F = linear integral operator (two times smoothing) on $\mathbb{M} = [0,1]$

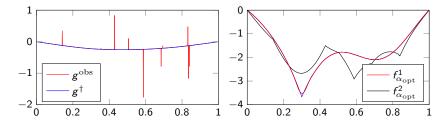
$$f_{\alpha}^{r} = \underset{f \in \mathsf{L}^{2}(\mathbb{M})}{\operatorname{argmin}} \left[\frac{1}{r\alpha} \left\| F(f) - g^{\operatorname{obs}} \right\|_{\mathsf{L}^{r}(\mathbb{M})}^{r} + \left\| f \right\|_{\mathsf{L}^{2}(\mathbb{M})}^{2} \right], \qquad r = 1, 2$$

computation of f_{α}^{1} via dual formulation, see e.g.

C. Clason, B. Jin, K. Kunisch.

A semismooth Newton method for ${\sf L}^1$ data fitting with automatic choice of regularization parameters and noise calibration.

SIAM J. Imaging Sci., 3:199-231, 2010.



Outline

1 Impulsive Noise

2 Analysis of Tikhonov regularization

3 Application to Impulsive Noise

4 Numerical simulations

6 Conclusion

Theoretical state of the art

- known theory provides rates of convergence as $\|\xi\|_{\mathcal{V}}$ tends to 0
- this does not fully explain the remarkable quality of the ${\sf L}^1\mbox{-}{\rm reconstruction!}$

Example: 'Most impulsive' noise. $\mathcal{Y}=\mathfrak{M}\left(\mathbb{M}\right)$ (space of all signed measures) and

$$\xi = \sum_{j=1}^{N} c_j \delta_{x_j}$$

with $N \in \mathbb{N}$, $c_j \in \mathbb{R}$ and $x_j \in \mathbb{M}$ for $1 \le j \le N$. Then $\|\xi\|_{\mathfrak{M}(\mathbb{M})} = \sum_{j=1}^{N} |c_j|$ might be large! However

$$\left\| \boldsymbol{g} - \boldsymbol{g}^{\mathrm{obs}} \right\|_{\mathfrak{M}(\mathbb{M})} = \left\| \boldsymbol{g} - \boldsymbol{g}^{\dagger} \right\|_{\mathsf{L}^{1}(\mathbb{M})} + \sum_{j=1}^{N} |c_{j}| = \left\| \boldsymbol{g} - \boldsymbol{g}^{\dagger} \right\|_{\mathsf{L}^{1}(\mathbb{M})} + \left\| \xi \right\|_{\mathfrak{M}(\mathbb{M})}.$$

So ξ does not influence the minimizer \hat{f}_{α} !

Frank Werner

Improving the noise level

'Most impulsive' noise ξ influences $g \mapsto ||g - g^{\text{obs}}||_{\mathfrak{M}(\mathbb{M})}$ only as an additive constant, no influence on \widehat{f}_{α} ! Idea: For general ξ study the influence of ξ on the data fidelity term $||g - g^{\text{obs}}||_{\mathcal{Y}}^{r}$ for all g.

Variational noise assumption

Suppose there exist $C_{err} > 0$ and a noise level function err : $F(D(F)) \rightarrow [0, \infty]$ such that

$$\left\|g-g^{\mathrm{obs}}\right\|_{\mathcal{Y}}^{r}-\left\|\xi\right\|_{\mathcal{Y}}^{r}\geq rac{1}{C_{\mathrm{err}}}\left\|g-g^{\dagger}\right\|_{\mathcal{Y}}^{r}-\mathrm{err}\left(g
ight),\qquad g\in F(D\left(F
ight)).$$

Frank Werner

Inverse Problems with Impulsive Noise

September 27th, 2013 10 / 32

Examples for the noise function err

$$\left\|g-g^{\mathrm{obs}}\right\|_{\mathcal{Y}}^{r}-\left\|\xi\right\|_{\mathcal{Y}}^{r}\geq rac{1}{C_{\mathrm{err}}}\left\|g-g^{\dagger}\right\|_{\mathcal{Y}}^{r}-\mathrm{err}\left(g
ight),\qquad g\in F(D\left(F
ight)).$$

It follows from the triangle inequality that the Assumption is always fulfilled with

$$C_{
m err} = 2^{r-1}$$
 and $\operatorname{err} \equiv 2 \|\xi\|_{\mathcal{Y}}^r$.

② In the Example of 'most impulsive' noise (𝒴 = 𝔅(𝔅), r = 1) the Assumption holds true with the optimal parameters

$$C_{\rm err} = 1$$
 and $err \equiv 0$.

Convergence analysis under the variational noise assumption

• Bregman distance:

$$\mathcal{D}_{\mathcal{R}}^{f^{*}}\left(f,f^{\dagger}
ight):=\mathcal{R}\left(f
ight)-\mathcal{R}\left(f^{\dagger}
ight)-\left\langle f^{*},f-f^{\dagger}
ight
angle$$

where $f^* \in \partial \mathcal{R}\left(f^{\dagger}\right) \subset \mathcal{X}'$.

• use a variational inequality as source condition:

$$\beta \mathcal{D}_{\mathcal{R}}^{f^{*}}\left(f, f^{\dagger}\right) \leq \mathcal{R}\left(f\right) - \mathcal{R}\left(f^{\dagger}\right) + \varphi\left(\left\|F\left(f\right) - g^{\dagger}\right\|_{\mathcal{Y}}^{r}\right)$$

for all $f \in D(F)$ with $\beta > 0$. φ is assumed to fulfill

- $\varphi(0)=0$,
- *φ* ∕,
- φ concave.

Frank Werner

Convergence rates

suppose

- the noise assumption is fulfilled with a function ${\rm err}\geq 0$ and
- the variational inequality holds true.

Theorem (error decomposition)

$$\beta \mathcal{D}_{\mathcal{R}}^{f^*}\left(\widehat{f}_{\alpha}, f^{\dagger}\right) \leq \frac{\operatorname{err}\left(F\left(\widehat{f}_{\alpha}\right)\right)}{r\alpha} + (-\varphi)^* \left(-\frac{1}{rC_{\operatorname{err}}\alpha}\right),$$
$$\left|F\left(\widehat{f}_{\alpha}\right) - g^{\dagger}\right\|_{\mathcal{Y}}^{r} \leq \frac{C_{\operatorname{err}}}{\lambda} \operatorname{err}\left(F\left(\widehat{f}_{\alpha}\right)\right) + \frac{rC_{\operatorname{err}}\alpha}{\lambda} \left(-\varphi\right)^* \left(-\frac{1-\lambda}{rC_{\operatorname{err}}\alpha}\right)$$

for all $\alpha > 0$ and $\lambda \in (0, 1)$.

Fenchel conjugate:

$$(-arphi)^{*}\left(s
ight)=\sup_{ au\geq0}\left(s au+arphi\left(au
ight)
ight).$$

Frank Werner

Application to Impulsive Noise

Outline

1 Impulsive Noise

2 Analysis of Tikhonov regularization

3 Application to Impulsive Noise

4 Numerical simulations

5 Conclusion

Frank Werner

Inverse Problems with Impulsive Noise

September 27th, 2013 14 / 32

Working schedule

 consider Tikhonov regularization for Inverse Problems with Impulsive Noise (𝒴 = L¹ (𝔄), r = 1):

$$\widehat{f}_{\alpha} \in \underset{f \in D(F)}{\operatorname{argmin}} \left[\frac{1}{\alpha} \left\| F(f) - g^{\operatorname{obs}} \right\|_{\mathsf{L}^{1}(\mathbb{M})} + \mathcal{R}(f) \right]$$

• recall: noise ξ fulfills

$$\exists \ \mathbb{P} \in \mathfrak{B}(\mathbb{M}): \qquad \|\xi\|_{\mathsf{L}^1(\mathbb{M} \setminus \mathbb{P})} \leq \varepsilon, \qquad |\mathbb{P}| \leq \eta$$

 \rightsquigarrow need to estimate ${f err}(g)$ with $g={\sf F}\left(\widehat{f}_lpha
ight)$ defined by

$$\left\| g - g^{ ext{obs}}
ight\|_{\mathsf{L}^1(\mathbb{M})} - \left\| \xi
ight\|_{\mathsf{L}^1(\mathbb{M})} \geq rac{1}{C_{ ext{err}}} \left\| g - g^{\dagger}
ight\|_{\mathsf{L}^1(\mathbb{M})} - ext{err}\left(g
ight)$$

First step: triangle inequalities

$$\left\|g-g^{ ext{obs}}
ight\|_{\mathsf{L}^{1}(\mathbb{M})}-\|\xi\|_{\mathsf{L}^{1}(\mathbb{M})}\geq rac{1}{C_{ ext{err}}}\left\|g-g^{\dagger}
ight\|_{\mathsf{L}^{1}(\mathbb{M})}- ext{err}\left(g
ight)$$

$$\begin{split} \left\| g - g^{\mathrm{obs}} \right\|_{\mathsf{L}^{1}(\mathbb{M})} &- \left\| \xi \right\|_{\mathsf{L}^{1}(\mathbb{M})} = \int_{\mathbb{M}\setminus\mathbb{P}} \left[\left| g^{\mathrm{obs}} - g \right| - \left| \xi \right| \right] \, \mathrm{d}x + \int_{\mathbb{P}} \left[\left| g^{\mathrm{obs}} - g \right| - \left| \xi \right| \right] \, \mathrm{d}x \\ &\geq \left\| g - g^{\dagger} \right\|_{\mathsf{L}^{1}(\mathbb{M}\setminus\mathbb{P})} - 2\varepsilon - \left| \mathbb{P} \right| \left\| g - g^{\dagger} \right\|_{\mathsf{L}^{\infty}(\mathbb{P})} \\ &\geq \left\| g - g^{\dagger} \right\|_{\mathsf{L}^{1}(\mathbb{M})} - 2\varepsilon - 2\eta \left\| g - g^{\dagger} \right\|_{\mathsf{L}^{\infty}(\mathbb{P})} \end{split}$$

Here we used

- the first triangle inequality on $\mathbb{M} \setminus \mathbb{P}$ and
- the second triangle inequality on \mathbb{P} .

Frank Werner

Second step: improving the bound

$$\left\| \boldsymbol{g} - \boldsymbol{g}^{\mathrm{obs}} \right\|_{\mathsf{L}^{1}(\mathbb{M})} - \left\| \boldsymbol{\xi} \right\|_{\mathsf{L}^{1}(\mathbb{M})} \geq \left\| \boldsymbol{g} - \boldsymbol{g}^{\dagger} \right\|_{\mathsf{L}^{1}(\mathbb{M})} - 2\varepsilon - 2\eta \left\| \boldsymbol{g} - \boldsymbol{g}^{\dagger} \right\|_{\mathsf{L}^{\infty}(\mathbb{P})}$$

If F is smoothing and g = F(f), then $\|g - g^{\dagger}\|_{L^{\infty}(\mathbb{P})}$ also decays with η !

Theorem (Hohage, W.)

If k>d/p, then for all $\mathit{C}_{\mathrm{err}}>1$ there exist $\mathit{C}>0$ and $\eta_0>0$ such that

$$\|v\|_{\mathsf{L}^{\infty}(\mathbb{M})} \leq C\eta^{\frac{k}{d} - \frac{1}{p}} \|v\|_{W^{k,p}(\mathbb{M})} + \frac{\mathcal{C}_{\mathrm{err}} - 1}{2\mathcal{C}_{\mathrm{err}} \eta} \|v\|_{\mathsf{L}^{1}(\mathbb{M})}$$

for all $v \in W^{k,p}(\mathbb{M})$ and $\eta \in (0, \eta_0]$.

Follows from techniques used in approximation theory / FEM analysis (Ehrling's lemma and Sobolev's embedding theorem).

Frank Werner

Second step: improving the bound (cont')

Smoothing assumption on F

 $\mathbb{M}\subset\mathbb{R}^d$ bounded & Lipschitz, $\exists\ k\in\mathbb{N}_0,p\in[1,\infty],k>d/p$ and $q\in(1,\infty)$ such that

$$F(D(F)) \subset W^{k,p}(\mathbb{M}) \quad \text{and} \quad \left|F(f) - g^{\dagger}\right|_{W^{k,p}(\mathbb{M})} \leq C_{F,k,p}\mathcal{D}_{\mathcal{R}}^{f^{*}}\left(f,f^{\dagger}
ight)^{rac{1}{q}}$$

for all $f \in D(F)$ with some $C_{F,k,p} > 0$.

This allows us to use $v = F(f) - g^{\dagger}$, e.g. it follows

$$\left\|F(f) - g^{\dagger}\right\|_{\mathsf{L}^{\infty}(\mathbb{M})} \leq C\eta^{\frac{k}{d} - \frac{1}{p}} \left|F(f) - g^{\dagger}\right|_{W^{k,p}(\mathbb{M})} + \frac{C_{\mathrm{err}} - 1}{2C_{\mathrm{err}}\eta} \left\|F(f) - g^{\dagger}\right\|_{\mathsf{L}^{1}(\mathbb{M})}$$

whenever η is sufficiently small.

Second step: improving the bound (cont')

$$\begin{split} \|F(f) - g^{\operatorname{obs}}\|_{\mathbf{L}^{1}(\mathbb{M})} &= \|\xi\|_{\mathbf{L}^{1}(\mathbb{M})} \\ \geq \|F(f) - g^{\dagger}\|_{\mathbf{L}^{1}(\mathbb{M})} - 2\varepsilon - 2\eta \|F(f) - g^{\dagger}\|_{\mathbf{L}^{\infty}(\mathbb{P})} \\ \geq \left(1 - \frac{C_{\operatorname{err}} - 1}{C_{\operatorname{err}}}\right) \|F(f) - g^{\dagger}\|_{\mathbf{L}^{1}(\mathbb{M})} - 2\varepsilon - 2C\eta^{\frac{k}{d} - \frac{1}{p} + 1} |F(f) - g^{\dagger}|_{W^{k,p}(\mathbb{M})} \\ \geq \frac{1}{C_{\operatorname{err}}} \|F(f) - g^{\dagger}\|_{\mathbf{L}^{1}(\mathbb{M})} - 2\varepsilon - 2CC_{F,k,p}\eta^{\frac{k}{d} - \frac{1}{p} + 1}\mathcal{D}_{\mathcal{R}}^{f*}\left(f, f^{\dagger}\right)^{\frac{1}{q}} \\ \stackrel{!}{\geq} \frac{1}{C_{\operatorname{err}}} \|F(f) - g^{\dagger}\|_{\mathbf{L}^{1}(\mathbb{M})} - \operatorname{err}\left(F\left(f\right)\right) \\ \|F(f) - g^{\dagger}\|_{\mathbf{L}^{\infty}(\mathbb{M})} \leq C\eta^{\frac{k}{d} - \frac{1}{p}} |F(f) - g^{\dagger}|_{W^{k,p}(\mathbb{M})} + \frac{C_{\operatorname{err}} - 1}{2C_{\operatorname{err}}\eta} \|F(f) - g^{\dagger}\|_{\mathbf{L}^{1}(\mathbb{M})} \\ & |F(f) - g^{\dagger}|_{W^{k,p}(\mathbb{M})} \leq C_{F,k,p}\mathcal{D}_{\mathcal{R}}^{f*}\left(f, f^{\dagger}\right)^{\frac{1}{q}} \end{split}$$
Thus for any $C_{\operatorname{err}} > 1$ we can choose

Application to Impulsive Noise Estimating err

Third step: final estimate for $\operatorname{err}\left(F\left(\widehat{f}_{\alpha}\right)\right)$ Calculation above:

 $\operatorname{err}\left(F\left(\widehat{f}_{\alpha}\right)\right) = 2\varepsilon + 2C_{F,k,p}C\eta^{\frac{k}{d}-\frac{1}{p}+1}\mathcal{D}_{\mathcal{R}}^{f^{*}}\left(\widehat{f}_{\alpha},f^{\dagger}\right)^{\frac{1}{q}}$

General convergence analysis:

$$\beta \mathcal{D}_{\mathcal{R}}^{f^*}\left(\widehat{f}_{\alpha}, f^{\dagger}\right) \leq \frac{\operatorname{err}\left(F\left(\widehat{f}_{\alpha}\right)\right)}{\alpha} + \left(-\varphi\right)^* \left(-\frac{1}{C_{\operatorname{err}}\alpha}\right)$$

This implies using Young's inequality and $(a+b)^{rac{1}{q}} \leq a^{rac{1}{q}} + b^{rac{1}{q}}$ that

$$\operatorname{err}\left(F\left(\widehat{f}_{\alpha}\right)\right) \leq 2q'\varepsilon + (q'-1)\frac{\eta^{\frac{q'k}{d}} + \frac{q'(p-1)}{p}}{\alpha^{q'-1}} + C'\left(-\varphi\right)^{*}\left(-\frac{1}{C_{\operatorname{err}}\alpha}\right)$$

where 1/q+1/q'=1 and C'>0 whenever $\alpha>0$ and $\eta\geq 0$ is sufficiently small.

Frank Werner

Error bound for Tikhonov regularization

Insert the estimate for $\operatorname{err}\left(F\left(\widehat{f}_{\alpha}\right)\right)$ into the general error decomposition to obtain

Theorem (Hohage, W.)

Suppose the variational inequality is fulfilled and F obeys the smoothing assumption. Then we have for arbitrary $C_{\rm err}>1$ and all $\alpha>0$ and $\eta>0$ sufficiently small

$$\beta \mathcal{D}_{\mathcal{R}}^{f^*}\left(\widehat{f}_{\alpha}, f^{\dagger}\right) \leq 2q'\frac{\varepsilon}{\alpha} + (q'-1)\frac{\eta^{\frac{q'k}{d}} + \frac{q'(p-1)}{p}}{\alpha^{q'}} + C'\left(-\varphi\right)^*\left(-\frac{1}{C_{\mathrm{err}}\alpha}\right)$$
$$\left|F\left(\widehat{f}_{\alpha}\right) - g^{\dagger}\right\|_{\mathsf{L}^{1}(\mathbb{M})} \leq 4q'\varepsilon + 2(q'-1)\frac{\eta^{\frac{q'k}{d}} + \frac{q'(p-1)}{p}}{\alpha^{q'-1}} + 2C'C_{\mathrm{err}}\alpha\left(-\varphi\right)^*\left(-\frac{1}{C_{\mathrm{err}}\alpha}\right)$$

For simplicity we study only q = 2 and $\varphi(\tau) = c\tau^{\kappa}$ with c > 0 and $\kappa \in (0, 1)$ in the following.

Frank Werner

Inverse Problems with Impulsive Noise

September 27th, 2013 21 / 32

An optimal a priori parameter choice

$$\beta \mathcal{D}_{\mathcal{R}}^{f^*}\left(\widehat{f}_{\alpha}, f^{\dagger}\right) \leq 4\frac{\varepsilon}{\alpha} + \frac{\eta^{\frac{2k}{d} + \frac{2(p-1)}{p}}}{\alpha^2} + C'\left(-\varphi\right)^*\left(-\frac{1}{C_{\mathrm{err}}\alpha}\right)$$

If
$$\varphi(t) = c \cdot t^{\kappa}$$
 with $c > 0$ and $\kappa \in (0, 1)$, then $(-\varphi)^* \left(-\frac{1}{\alpha}\right) = C \cdot \alpha^{\frac{n}{1-\kappa}}$.
So for $\alpha \sim \max\left\{\varepsilon^{1-\kappa}, \eta^{\left(\frac{1-\kappa}{2-\kappa}\right)\left(\frac{2k}{d} + \frac{2(p-1)}{p}\right)}\right\}$ we obtain
 $\mathcal{D}_{\mathcal{R}}^{f^*}\left(\widehat{f}_{\alpha}, f^{\dagger}\right) = \mathcal{O}\left(\max\left\{\varepsilon^{\kappa}, \eta^{\frac{\kappa\gamma}{2-\kappa}}\right\}\right)$
with $\gamma := \frac{2k}{d} + \frac{2(p-1)}{p}$ as $\max\left\{\varepsilon, \eta\right\} \searrow 0$.

Inverse Problems with Impulsive Noise

v

Functional dependence of ε and η

$$\exists \mathbb{P} \in \mathfrak{B}(\mathbb{M}): \qquad \|\xi\|_{\mathsf{L}^{1}(\mathbb{M}\setminus\mathbb{P})} \leq \varepsilon, \qquad |\mathbb{P}| \leq \eta \tag{1}$$

- model allows for different choices of ε and η which depend on each other
- study the dependence function

$$arepsilon_{\xi}\left(\eta
ight):=\inf\left\{\left\|\xi
ight\|_{\mathsf{L}^{1}\left(\mathbb{M}\setminus\mathbb{P}
ight)}\ \left|\ \mathbb{P}\in\mathfrak{B}(\mathbb{M}),\left|\mathbb{P}
ight|\leq\eta
ight\}
ight.$$

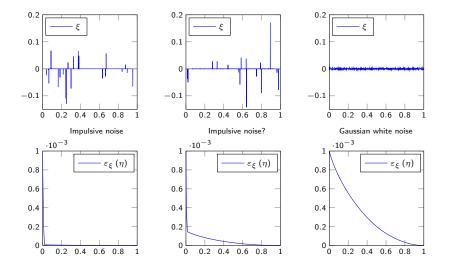
- then for any $\eta \geq 0$ eq. (1) is fulfilled with $\varepsilon = \varepsilon_{\xi}(\eta)$
- for $\xi \in \mathbf{L}^1(\mathbb{M})$ the following holds true:

1
$$\varepsilon_{\xi}(0) = ||\xi||_{\mathbf{L}^{1}(\mathbb{M})}, \ \varepsilon_{\xi}(|\mathbb{M}|) = 0$$

2 ε_{ξ} is continuous, decreasing, and convex

Frank Werner

Examples for ε_{ξ}



Convergence rates in terms of an optimal η

- Recall: $\mathcal{D}_{\mathcal{R}}^{f^*}\left(\widehat{f}_{\alpha}, f^{\dagger}\right) = \mathcal{O}\left(\max\left\{\varepsilon^{\kappa}, \eta^{\frac{\kappa\gamma}{2-\kappa}}\right\}\right)$
- Substituting ε by $\varepsilon_{\xi}(\eta)$ yields

$$\mathcal{D}_{\mathcal{R}}^{f^*}\left(\widehat{f}_{lpha}, f^{\dagger}
ight) \leq C \inf_{0 \leq \eta \leq |\mathbb{M}|} \left[\varepsilon_{\xi}(\eta)^{\kappa} + \eta^{rac{\kappa}{2-\kappa}\gamma}
ight] \qquad ext{as} \qquad \xi o 0$$

- Note that ξ and ε_ξ are unknown in general, but possibly an upper bound for ε_ξ can be calculated
- As $\varepsilon_{\xi} \searrow$ and $\eta^{\frac{\kappa}{2-\kappa}\gamma} \nearrow$ in η , there exists an intersecting point $\bar{\eta} > 0$
- Thus we have

$$\mathcal{D}_{\mathcal{R}}^{f^*}\left(\widehat{f}_{lpha},f^{\dagger}
ight)\leq 2Carepsilon_{\xi}(ar{\eta})^{\kappa} \qquad ext{as}\qquad \xi
ightarrow 0$$

• The state-of-the-art analysis yields $(\eta=0)$

$$\mathcal{D}^{f^*}_\mathcal{R}\left(\widehat{f}_lpha,f^\dagger
ight)\leq ilde{\mathcal{C}}arepsilon_\xi(0)^\kappa \qquad ext{as}\qquad \xi o 0.$$

→ improvement measured by the factor $(\varepsilon_{\xi}(0) / \varepsilon_{\xi}(\bar{\eta}))^{\kappa}$, which is arbitrary large for impulsive noise

Frank Werner

Outline

1 Impulsive Noise

2 Analysis of Tikhonov regularization

3 Application to Impulsive Noise

4 Numerical simulations

6 Conclusion

Considered operator

• $\mathbb{M}=[0,1]$ and $\mathcal{T}:\mathsf{L}^{2}\left(\mathbb{M}
ight)\to\mathsf{L}^{2}\left(\mathbb{M}
ight)$ defined by

$$(Tf)(x) = \int_{0}^{1} k(x, y) f(y) dy, \qquad x \in \mathbb{M}$$

with kernel $k(x, y) = \min \{x \cdot (1 - y), y \cdot (1 - x)\}, x, y \in \mathbb{M}.$

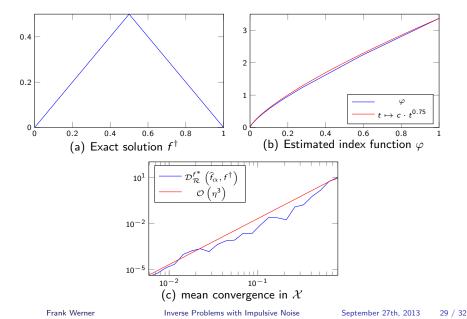
- then (Tf)'' = f for any $f \in L^2(\mathbb{M})$ and T is 2 times smoothing (k = 2 and p = 2).
- the smoothing Assumption is valid with exponent $\gamma = 2k/d + 2(p-1)/p = 5$ and q = 2
- discretization: equidistant points $x_1 = \frac{1}{2n}, x_2 = \frac{3}{2n}, \dots, x_n = \frac{2n-1}{2n}$ and composite midpoint rule

$$(Tf)(x) = \int_{0}^{1} k(x, y) f(y) dy \approx \frac{1}{n} \sum_{i=1}^{n} k(x, x_i) f(x_i).$$

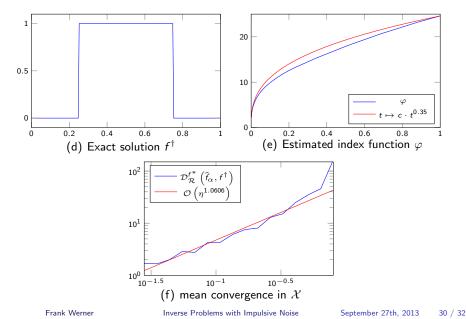
Simulations

- f^{\dagger} and g^{\dagger} are calculated analytically to avoid an inverse crime
- we consider 'purely impulsive noise' ($\varepsilon=$ 0) for different values of η
- generation of ξ :
 - given η , choose randomly $\lceil \eta \cdot n \rceil$ grid points forming $\mathbb P$
 - simulate ξ such that $\xi_{|_{\mathbb{M} \setminus \mathbb{P}}} = 0$ and $\xi_{|_{\mathbb{P}}} = \pm 1/\eta$ with probability 1/2 respectively for each $x_i \in \mathbb{P}$
- for each $\eta_j = (4/5)^j$, j = 1, ... we perform 10 experiments
- in each experiment α is chosen optimally by trial and error
- following plots show η vs. empirical mean of $\mathcal{D}_{\mathcal{R}}^{f^*}\left(\widehat{f}_{lpha}, f^{\dagger}
 ight)$

Example 1



Example 2



Conclusion

Outline

- 1 Impulsive Noise
- 2 Analysis of Tikhonov regularization
- 3 Application to Impulsive Noise
- **4** Numerical simulations

5 Conclusion

Conclusion

Presented results and future work

- Inverse Problems with Impulsive noise
 - · continuous model for Impulsive noise
 - improved convergence rates
- numerical examples suggest order optimality
- future work: infinitely smoothing operators!

T. Hohage and F. Werner Convergence rates for Inverse Problems with Impulsive Noise. Submitted, *arXiv*: 1308.2536.

Thank you for your attention!