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Impulsive Noise

What is Impulsive Noise?

• noise ξ is small in large parts of the domain M, but large on small
parts of the domain

• occurs e.g. in digital image acquisition

• caused by faulty memory locations, malfunctioning pixels etc.

• popular example: salt-and-pepper noise
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Impulsive Noise

A continuous model for impulsive noise
Suppose ξ ∈ L1 (M), B(M) =̂ Borel σ-algebra of M.

Noise model

There exist two parameters ε, η ≥ 0 such that

∃ P ∈ B(M) : ‖ξ‖L1(M\P) ≤ ε, |P| ≤ η .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

ξ

P

Frank Werner Inverse Problems with Impulsive Noise September 27th, 2013 5 / 32



Impulsive Noise

Inverse Problems with Impulsive Noise

• we want to reconstruct f † from

gobs = F
(
f †
)

+ ξ =: g † + ξ

where ξ is impulsive noise

• natural setup: F : D (F ) ⊂ X → L1 (M) ⊆ Y, possibly nonlinear

• Favorable method: Tikhonov regularization

f̂α ∈ argmin
f ∈D(F )

[
1

αr

∥∥∥F (f )− gobs
∥∥∥r
Y

+R (f )

]
• Minimizer f̂α exists under reasonable assumptions.
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Impulsive Noise

How to choose Y and r
here: F = linear integral operator (two times smoothing) on M = [0, 1]

f rα = argmin
f ∈L2(M)

[
1

rα

∥∥∥F (f )− gobs
∥∥∥r
Lr (M)

+ ‖f ‖2
L2(M)

]
, r = 1, 2

computation of f 1
α via dual formulation, see e.g.

C. Clason, B. Jin, K. Kunisch.

A semismooth Newton method for L1 data fitting with automatic choice of regularization
parameters and noise calibration.
SIAM J. Imaging Sci., 3:199–231, 2010.
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Analysis of Tikhonov regularization

Theoretical state of the art

• known theory provides rates of convergence as ‖ξ‖Y tends to 0

• this does not fully explain the remarkable quality of the
L1-reconstruction!

Example: ’Most impulsive’ noise. Y = M (M) (space of all signed
measures) and

ξ =
N∑
j=1

cjδxj

with N ∈ N, cj ∈ R and xj ∈M for 1 ≤ j ≤ N.

Then ‖ξ‖M(M) =
N∑
j=1
|cj | might be large! However

∥∥∥g − gobs
∥∥∥
M(M)

=
∥∥∥g − g †

∥∥∥
L1(M)

+
N∑
j=1

|cj | =
∥∥∥g − g †

∥∥∥
L1(M)

+ ‖ξ‖M(M) .

So ξ does not influence the minimizer f̂α!
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Analysis of Tikhonov regularization

Improving the noise level

’Most impulsive’ noise ξ influences g 7→
∥∥g − gobs

∥∥
M(M)

only as an

additive constant, no influence on f̂α!
Idea: For general ξ study the influence of ξ on the data fidelity term∥∥g − gobs

∥∥r
Y for all g .

Variational noise assumption

Suppose there exist Cerr > 0 and a noise level function
err : F (D (F ))→ [0,∞] such that∥∥∥g − gobs

∥∥∥r
Y
− ‖ξ‖rY ≥

1

Cerr

∥∥∥g − g †
∥∥∥r
Y
− err (g) , g ∈ F (D (F )).
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Analysis of Tikhonov regularization

Examples for the noise function err

∥∥∥g − gobs
∥∥∥r
Y
− ‖ξ‖rY ≥

1

Cerr

∥∥∥g − g †
∥∥∥r
Y
− err (g) , g ∈ F (D (F )).

1 It follows from the triangle inequality that the Assumption is always
fulfilled with

Cerr = 2r−1 and err ≡ 2 ‖ξ‖rY .

2 In the Example of ’most impulsive’ noise (Y = M (M), r = 1) the
Assumption holds true with the optimal parameters

Cerr = 1 and err ≡ 0.

Frank Werner Inverse Problems with Impulsive Noise September 27th, 2013 11 / 32



Analysis of Tikhonov regularization

Convergence analysis under the variational noise
assumption

• Bregman distance:

Df ∗
R

(
f , f †

)
:= R (f )−R

(
f †
)
−
〈
f ∗, f − f †

〉
where f ∗ ∈ ∂R

(
f †
)
⊂ X ′.

• use a variational inequality as source condition:

βDf ∗
R

(
f , f †

)
≤ R (f )−R

(
f †
)

+ ϕ

(∥∥∥F (f )− g †
∥∥∥r
Y

)
for all f ∈ D (F ) with β > 0. ϕ is assumed to fulfill
• ϕ (0) = 0,
• ϕ↗,
• ϕ concave.
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Analysis of Tikhonov regularization

Convergence rates
suppose

• the noise assumption is fulfilled with a function err ≥ 0 and
• the variational inequality holds true.

Theorem (error decomposition)

βDf ∗
R

(
f̂α, f

†
)
≤

err
(
F
(
f̂α
))

rα
+ (−ϕ)∗

(
− 1

rCerrα

)
,

∥∥∥F (f̂α)− g †
∥∥∥r
Y
≤ Cerr

λ
err
(
F
(
f̂α
))

+
rCerrα

λ
(−ϕ)∗

(
− 1− λ
rCerrα

)
for all α > 0 and λ ∈ (0, 1).

Fenchel conjugate:

(−ϕ)∗ (s) = sup
τ≥0

(sτ + ϕ (τ)) .
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Application to Impulsive Noise

Working schedule

• consider Tikhonov regularization for Inverse Problems with Impulsive
Noise (Y = L1 (M), r = 1):

f̂α ∈ argmin
f ∈D(F )

[
1

α

∥∥∥F (f )− gobs
∥∥∥
L1(M)

+R (f )

]
• recall: noise ξ fulfills

∃ P ∈ B(M) : ‖ξ‖L1(M\P) ≤ ε, |P| ≤ η

 need to estimate err(g) with g = F
(
f̂α
)

defined by

∥∥∥g − gobs
∥∥∥
L1(M)

− ‖ξ‖L1(M) ≥
1

Cerr

∥∥∥g − g †
∥∥∥
L1(M)

− err (g)
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Application to Impulsive Noise Estimating err

First step: triangle inequalities

∥∥∥g − gobs
∥∥∥
L1(M)

− ‖ξ‖L1(M) ≥
1

Cerr

∥∥∥g − g †
∥∥∥
L1(M)

− err (g)

∥∥g − gobs
∥∥
L1(M)

− ‖ξ‖L1(M) =

∫
M\P

[∣∣gobs − g
∣∣− |ξ|] dx +

∫
P

[∣∣gobs − g
∣∣− |ξ|] dx

≥
∥∥g − g†

∥∥
L1(M\P)

− 2ε− |P|
∥∥g − g†

∥∥
L∞(P)

≥
∥∥g − g†

∥∥
L1(M)

− 2ε− 2η
∥∥g − g†

∥∥
L∞(P)

Here we used

• the first triangle inequality on M \ P and

• the second triangle inequality on P.
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Application to Impulsive Noise Estimating err

Second step: improving the bound

∥∥∥g − gobs
∥∥∥
L1(M)

− ‖ξ‖L1(M) ≥
∥∥∥g − g †

∥∥∥
L1(M)

− 2ε− 2η
∥∥∥g − g †

∥∥∥
L∞(P)

If F is smoothing and g = F (f ), then
∥∥g − g †

∥∥
L∞(P)

also decays with η!

Theorem (Hohage, W.)

If k > d/p, then for all Cerr > 1 there exist C > 0 and η0 > 0 such that

‖v‖L∞(M) ≤ Cη
k
d
− 1

p |v |W k,p(M) +
Cerr − 1

2Cerrη
‖v‖L1(M)

for all v ∈W k,p(M) and η ∈ (0, η0].

Follows from techniques used in approximation theory / FEM analysis
(Ehrling’s lemma and Sobolev’s embedding theorem).
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Application to Impulsive Noise Estimating err

Second step: improving the bound (cont’)

Smoothing assumption on F

M ⊂ Rd bounded & Lipschitz, ∃ k ∈ N0, p ∈ [1,∞], k > d/p and
q ∈ (1,∞) such that

F (D (F )) ⊂W k,p (M) and
∣∣∣F (f )− g †

∣∣∣
W k,p(M)

≤ CF ,k,pDf ∗
R

(
f , f †

) 1
q

for all f ∈ D (F ) with some CF ,k,p > 0.

This allows us to use v = F (f )− g †, e.g. it follows

∥∥F (f )− g†
∥∥
L∞(M)

≤ Cη
k
d−

1
p

∣∣F (f )− g†
∣∣
W k,p(M)

+
Cerr − 1

2Cerrη

∥∥F (f )− g†
∥∥
L1(M)

whenever η is sufficiently small.
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Application to Impulsive Noise Estimating err

Second step: improving the bound (cont’)

∥∥F (f )− gobs
∥∥
L1(M)

− ‖ξ‖L1(M)

≥
∥∥F (f )− g†

∥∥
L1(M)

− 2ε− 2η
∥∥F (f )− g†

∥∥
L∞(P)

≥
(

1− Cerr − 1

Cerr

)∥∥F (f )− g†
∥∥
L1(M)

− 2ε− 2Cη
k
d−

1
p +1
∣∣F (f )− g†

∣∣
W k,p(M)

≥ 1

Cerr

∥∥F (f )− g†
∥∥
L1(M)

− 2ε− 2CCF ,k,pη
k
d−

1
p +1Df ∗

R
(
f , f †

) 1
q

!
≥ 1

Cerr

∥∥F (f )− g†
∥∥
L1(M)

− err (F (f ))

∥∥F (f )− g†
∥∥
L∞(M)

≤ Cη
k
d−

1
p

∣∣F (f )− g†
∣∣
W k,p(M)

+
Cerr − 1

2Cerrη

∥∥F (f )− g†
∥∥
L1(M)∣∣F (f )− g†

∣∣
W k,p(M)

≤ CF ,k,pDf ∗

R
(
f , f †

) 1
q

Thus for any Cerr > 1 we can choose

err (F (f )) = 2ε+ 2CF ,k,pCη
k
d−

1
p +1Df ∗

R
(
f , f †

) 1
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Application to Impulsive Noise Estimating err

Third step: final estimate for err
(
F
(
f̂α
))

Calculation above:

err
(
F
(
f̂α
))

= 2ε+ 2CF ,k,pCη
k
d
− 1

p
+1Df ∗

R

(
f̂α, f

†
) 1

q

General convergence analysis:

βDf ∗
R

(
f̂α, f

†
)
≤

err
(
F
(
f̂α
))

α
+ (−ϕ)∗

(
− 1

Cerrα

)
This implies using Young’s inequality and (a + b)

1
q ≤ a

1
q + b

1
q that

err
(
F
(
f̂α
))
≤ 2q′ε+ (q′ − 1)

η
q′k
d

+ q′(p−1)
p

αq′−1
+ C ′ (−ϕ)∗

(
− 1

Cerrα

)
where 1/q + 1/q′ = 1 and C ′ > 0 whenever α > 0 and η ≥ 0 is sufficiently
small.
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Application to Impulsive Noise An error bound

Error bound for Tikhonov regularization

Insert the estimate for err
(
F
(
f̂α
))

into the general error decomposition

to obtain

Theorem (Hohage, W.)

Suppose the variational inequality is fulfilled and F obeys the smoothing
assumption. Then we have for arbitrary Cerr > 1 and all α > 0 and η > 0
sufficiently small

βDf ∗

R

(
f̂α, f

†
)
≤ 2q′

ε

α
+ (q′ − 1)

η
q′k
d + q′(p−1)

p

αq′
+ C ′ (−ϕ)∗

(
− 1

Cerrα

)
∥∥∥F (f̂α)− g†

∥∥∥
L1(M)

≤ 4q′ε+ 2(q′ − 1)
η

q′k
d + q′(p−1)

p

αq′−1
+ 2C ′Cerrα (−ϕ)∗

(
− 1

Cerrα

)

For simplicity we study only q = 2 and ϕ (τ) = cτκ with c > 0 and
κ ∈ (0, 1) in the following.

Frank Werner Inverse Problems with Impulsive Noise September 27th, 2013 21 / 32



Application to Impulsive Noise Rates of convergence

An optimal a priori parameter choice

βDf ∗
R

(
f̂α, f

†
)
≤ 4

ε

α
+
η

2k
d

+ 2(p−1)
p

α2
+ C ′ (−ϕ)∗

(
− 1

Cerrα

)

If ϕ (t) = c · tκ with c > 0 and κ ∈ (0, 1), then (−ϕ)∗
(
− 1
α

)
= C · α

κ
1−κ .

So for α ∼ max

{
ε1−κ, η

( 1−κ
2−κ)

(
2k
d

+ 2(p−1)
p

)}
we obtain

Df ∗
R

(
f̂α, f

†
)

= O
(

max
{
εκ, η

κγ
2−κ
})

with γ := 2k
d + 2(p−1)

p as max {ε, η} ↘ 0.

Frank Werner Inverse Problems with Impulsive Noise September 27th, 2013 22 / 32



Application to Impulsive Noise Functional dependence of η and ε

Functional dependence of ε and η

∃ P ∈ B(M) : ‖ξ‖L1(M\P) ≤ ε, |P| ≤ η (1)

• model allows for different choices of ε and η which depend on each
other

• study the dependence function

εξ (η) := inf
{
‖ξ‖L1(M\P)

∣∣ P ∈ B(M), |P| ≤ η
}
.

• then for any η ≥ 0 eq. (1) is fulfilled with ε = εξ (η)

• for ξ ∈ L1 (M) the following holds true:

1 εξ(0) = ‖ξ‖L1(M), εξ(|M|) = 0
2 εξ is continuous, decreasing, and convex
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Application to Impulsive Noise Functional dependence of η and ε

Examples for εξ
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Application to Impulsive Noise Functional dependence of η and ε

Convergence rates in terms of an optimal η
• Recall: Df ∗

R

(
f̂α, f

†
)

= O
(

max
{
εκ, η

κγ
2−κ
})

• Substituting ε by εξ (η) yields

Df ∗
R

(
f̂α, f

†
)
≤ C inf

0≤η≤|M|

[
εξ(η)κ + η

κ
2−κγ

]
as ξ → 0

• Note that ξ and εξ are unknown in general, but possibly an upper
bound for εξ can be calculated

• As εξ ↘ and η
κ

2−κγ ↗ in η, there exists an intersecting point η̄ > 0
• Thus we have

Df ∗
R

(
f̂α, f

†
)
≤ 2Cεξ(η̄)κ as ξ → 0

• The state-of-the-art analysis yields (η = 0)

Df ∗
R

(
f̂α, f

†
)
≤ C̃εξ(0)κ as ξ → 0.

 improvement measured by the factor (εξ (0) /εξ (η̄))κ, which is
arbitrary large for impulsive noise
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Numerical simulations
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Numerical simulations

Considered operator

• M = [0, 1] and T : L2 (M)→ L2 (M) defined by

(Tf ) (x) =

1∫
0

k (x , y) f (y) dy , x ∈M

with kernel k (x , y) = min {x · (1− y) , y · (1− x)} , x , y ∈M.

• then (Tf )′′ = f for any f ∈ L2 (M) and T is 2 times smoothing
(k = 2 and p = 2).

• the smoothing Assumption is valid with exponent
γ = 2k/d + 2(p − 1)/p = 5 and q = 2

• discretization: equidistant points x1 = 1
2n , x2 = 3

2n , . . . , xn = 2n−1
2n and

composite midpoint rule

(Tf ) (x) =

1∫
0

k (x , y) f (y) dy ≈ 1

n

n∑
i=1

k (x , xi ) f (xi ) .
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Numerical simulations

Simulations

• f † and g † are calculated analytically to avoid an inverse crime

• we consider ’purely impulsive noise’ (ε = 0) for different values of η

• generation of ξ:
• given η, choose randomly dη · ne grid points forming P
• simulate ξ such that ξ|M\P = 0 and ξ|P = ±1/η with probability 1/2

respectively for each xi ∈ P
• for each ηj = (4/5)j , j = 1, ... we perform 10 experiments

• in each experiment α is chosen optimally by trial and error

• following plots show η vs. empirical mean of Df ∗
R

(
f̂α, f

†
)
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Numerical simulations

Example 1
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Numerical simulations

Example 2
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Conclusion

Presented results and future work

• Inverse Problems with Impulsive noise
• continuous model for Impulsive noise
• improved convergence rates

• numerical examples suggest order optimality

• future work: infinitely smoothing operators!
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Thank you for your attention!
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