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Introduction Motivation

Photonic imaging

e Photonic imaging consists in counting photons which have interacted
with some unknown object of interest.

e We want to reconstruct information on the unknown object f
contained in these photon counts.

e Formulation as an operator equation

Flp)=¢g

where g describes the photon density on the manifold where
measurements are taken.

e For fundamental physical reasons, photon count data g°® are Poisson
distributed with mean g (true photon density).
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Introduction Motivation

Examples

photon density photon detections photon counts after gridding
10

Positron Emission Tomography (PET)

e astronomical imaging
scanning fluorescence microscopy, e.g. standard confocal, 4Pi or
STED microscopy

coherent x-ray imaging
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Introduction Regularization

[[l-Posedness

The forementioned problems are ill-posed in the sense that ¢ does not
depend continuously on F (¢). Hence, the problem cannot be solved
directly or by a usual Newton method but regularization is needed.

For nonlinear F one of the most popular methods is the iteratively
regularized Gauss-Newton method (IRGNM)

2
(j41 = argmin <HF e — )+ F o) =™,
©EB

2
fo |\90—800|||_2>

with some initial guess g € 8.

The regularization parameters «; control the stability and fulfill

o
ag <1, aj\O, 1§7J§ Ciec for all jeN
Qj+1
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Introduction Regularization

Noise adjusted regularization
The IRGNM corresponds to a Gaussian noise structure. Hence,
e the information about the noise structure is ignored and

e especially for low intensity we get bad reconstructions.

Our idea is to use another data misfit functional S which incorporates the
special structure of the noise and take

pni1 = argminS (F () + F' (10 — 7)1 8™) + R ()
e

where S (+; g°) is some convex data misfit functional and R some
convex penalty term. For Poisson data the first choice would be the

negative log-likelihood

S (g:g"bs> = /g —g°In(g) dx.
Q
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Introduction Regularization

Alternatives

An alternative approach is nonlinear Tikhonov regularization
Po = argminS (F(sO) :gObS> +aR ()
peB
which has been considered by several authors:

ﬁ J. M. Bardsley.
A theoretical framework for the regularization of Poisson likelihood estimation problems.
Inverse Problems and Imaging, 4:11-17, 2010.

ﬁ M. Benning and M. Burger.
Error estimates for general fidelities.
Electronic Transactions on Numerical Analysis, 38:44—68, 2011.

ﬁ J. Flemming.
Theory and examples of variational regularisation with non-metric fitting functionals.

Journal of Inverse and Ill-Posed Problems, 18(6):677—-699, 2010.

ﬁ O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen.
Variational Methods in Imaging.
Applied Mathematical Sciences. Springer, 2008.
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An iteratively regularized Newton method Assumptions

Source condition |
The usual Hilbert space source condition

A= (7 4] )
implies by spectral theory and Jensen's inequality

IF [1] (o — o) ||?
le — ot

chI,sD - ¢T>‘ < o] Hso - @TH A
This is the prototype of a variational source condition.

@ B. Kaltenbacher and B. Hofmann.
Convergence Rates for the lteratively Regularized Gauss-Newton Method in Banach

Spaces.
Inverse Problems, 26(3):035007, 2010.
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An iteratively regularized Newton method Assumptions

Source condition |l

We will assume the following generalization:
Multiplicative variational source condition

There exists @1 € OR (goT) C X', B> 0 and a concave index function

A :(0,00) — (0,00) (i.e. continuous, monotonically increasing and
A(0) = 0) such that

<<pl,s0T — s0> < BA (cp, w*)él\ (‘W) for all ¢ € B.

Moreover, we assume that t — % is monotonically decreasing.

A (o, ng) =R(p)—R (goT) — <gpi, w— ng> is the Bregman distance.
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An iteratively regularized Newton method Assumptions

Noise |

In case of § being the r-th power of a norm one usually assumes

|g°" — g'|| < & which by the triangle inequality leads to
217r g _g-i- r _< Hg . gobs r < 2r71 Hg _gTHr + 2r715r
forallge .

In case of Poisson noise and the negative log-likelihood as data misfit, we
obtain the following difficulties:

e The data misfit functional does not fulfill a triangle inequality.

e S (g;gObS) might be co even if S (g;gT) is finite and vice versa.

Frank Werner, Géttingen Iteratively regularized Newton methods May 25, 2011 12 /29



An iteratively regularized Newton method Assumptions

Noise Il

In case of S being the r-th power of a norm one usually assumes

HgObS — gTH < ¢ which by the triangle inequality leads to
ol—r g_gT ’ —5r< Hg_gobs r < or—1 "g_gT"r+2r—15r
forall g € V.

Generalization:

Noise level
There exists some Cq; > 1 and a functional err : ) — [0, co] such that

1
Cerr

S(gig’) —err(g) <S(g:8°) < CenS (g:8") + Cerverr (g)

forall g € V.
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An iteratively regularized Newton method Assumptions

Nonlinearity estimate
Generalized tangential cone condition

There exist constants 7 (later assumed to be sufficiently small) and
Cic > 1 such that

CltCS (F(w) :gT> -nS (F(sO):g‘L)
<s (F(w) + F (o) — w):gT)

<GS (F(l/J) ;gT> +nS (F(go);gT) for all v, € B.

For S(g;8) = |lg — &||" this follows from the standard tangential cone
condition

|F () = F(¥) = F' (i — )| < llF () = F(¥)]-
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An iteratively regularized Newton method Assumptions

Rate function and stopping rule
Our convergence rates result uses the following rate function:
O (t) 1= tA*(t).

© and ©71 are index functions.
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An iteratively regularized Newton method Assumptions

Rate function and stopping rule

Our convergence rates result uses the following rate function:
O (t) 1= tA*(t).
© and ©7! are index functions. Moreover define
errj = err(F (o)) + F (05041 — ¥)))
+Carerr (F () + F (00" —¢)))
and use the following stopping index:

Stopping rule

We define
e (errj) :==min{j € N | ©(ayj) < Terr;}

with some tuning parameter 7 > 1.
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An iteratively regularized Newton method Convergence rates results

Rates of convergence
Convergence theorem

Let the Assumptions from above hold and let 7, A (¢, ¢T) and

S (F (o) ; g") sufficiently small. Then the iterates (i;) for exact data
g = gt fulfill

A (g t) = 0 (W (ay)
s (F(e)igt) =0(@())
as j — oo, and in case of noisy data for sufficiently large 7 > 1 we get
err;
A (s, 61) =0 (N (07 (o)) = © <J> ,

61 (err;.)
S (Fei)igh) = 0(erm).
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An iteratively regularized Newton method Convergence rates results

Extensions

e Same convergence rates in terms of

1
errj = ~—err (F (¢j+1)) + 2nCcerr (F (¢))) + Cic Corr €rr (gT> :

if the nonlinearity condition also holds for noisy data g°Ps.
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An iteratively regularized Newton method Convergence rates results

Extensions

e Same convergence rates in terms of

1
errj = ~—err (F (¢j+1)) + 2nCcerr (F (¢))) + Cic Corr €rr (gT> :

if the nonlinearity condition also holds for noisy data g°Ps.

e Error decomposition and Lepskii-type parameter choice rule in the
case of an additive variational inequality

< Lol - 30> < /A (90, sOT) + B2/ (S (F(sO) ;gT)) :

@ B. Hofmann, B. Kaltenbacher, C. Péschl, and O. Scherzer.
A convergence rates result for Tikhonov regularization in Banach spaces with
non-smooth operators.
Inverse Problems, 23(3):987-1010, 2007.
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An iteratively regularized Newton method Convergence rates results

Extensions

e Same convergence rates in terms of

1
errj = ~—err (F (¢j+1)) + 2nCcerr (F (¢))) + Cic Corr €rr (gT> :

if the nonlinearity condition also holds for noisy data g°Ps.

e Error decomposition and Lepskii-type parameter choice rule in the
case of an additive variational inequality

< Lol - s0> < /A (90, sOT) + B2/ (S (F(sO) ;gT)) :

@ B. Hofmann, B. Kaltenbacher, C. Péschl, and O. Scherzer.
A convergence rates result for Tikhonov regularization in Banach spaces with
non-smooth operators.
Inverse Problems, 23(3):987-1010, 2007.

e Convergence rates under Holder-type variational inequalities with
index v € [%, 1) in combination with a Lipschitz assumption.
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Important special case: Poisson data Deterministic Poisson model

Poisson data
Let Y = L}(Q,v) N L°®(Q,v) for some measure space (2, v), and
Fl¢)>0 v—a.e for all ¢ € B.

Moreover we assume that our noisy data g°" fulfills g°™ >0, g°» =0
where gt =0 and
g — &'

< 1

V p—

gt Tt
{570}

for some t > 0.

e This is motivated by the fact that for a Poisson process the variance
decays like % where t is proportional to the expected number of
photons.

e t can be interpreted as an illumination time and we want to study the
limit t — oo.
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Important special case: Poisson data Deterministic Poisson model

Bounding err

The Kullback-Leibler divergence has a singularity at 0, so we define an

offset version with e > 0 by

Se (g:8°%) = /gf (g +e)In <g:e> dx
Q

for g > —5. The deterministic noise model implies

‘Se(g:g‘)bs) - Se(g:gT)‘ < \/?

for some constant C > 0 if —5 < g < B. Hence the inequalities for
err (F(p) + F (¢;9 — ¢)), @, € B are fulfilled with

Corr = 1 and err = %
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Important special case: Poisson data Convergence rates result

Convergence theorem

Convergence rates

Let the Assumptions from above hold and assume that the nonlinearity
condition is true for exact data. Moreover let

sup ||F (o) + F (pi9 — )| ;o0 < 00.
PRI

Then the a-priori stopping rule j, := min {j eN } O (o)) < %} with a
sufficiently large parameter 7 > 0 leads to the convergence rates

A(pie') =0 (r2 (07 (22))).
KL, (F(%) ;gT) —0 (t—1/2) .
Frank Werner, Géttingen
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Important special case: Poisson data Convergence rates result

Extensions

e If the nonlinearity condition also holds for noisy data g°, then the
offset e can be set to 0 under a suitable variance condition on F.
= similar rates.
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Important special case: Poisson data Convergence rates result

Extensions

e If the nonlinearity condition also holds for noisy data g°, then the
offset e can be set to 0 under a suitable variance condition on F.
= similar rates.

e Similar rates for a Lepskii-type parameter choice rule in case of an
additive variational inequality.

e Ongoing work on convergence rates in case of full stochastic data, i.e.
the data are given by a Poisson process.
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Application to a phase retrieval problem
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Application to a phase retrieval problem

The setting

‘,LJ
Au+ k*n?u =0

}: - F:H*(B,) — L=([-k, ’i]2)’
& | 2
o e I [ et g

w(a',0) = exp (ip (z')) B,

‘ 0
p(a) = 2 / ("2 (a', 23) = 1) day
- |uf* ~ | F (exp (ig))|*

[3 M. V. Kiibanov.
On the recovery of a 2-D function from the modulus of its Fourier transform.

J. Math. Anal. Appl., 323(2):818-843, 2006.
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Application to a phase retrieval problem

Median results for t = 10* expected counts

(c) IRGNM

(d) observed data (logy,) (e) exact data (logy,) (f) our algorithm (logy,)

@ K. Giewekemeyer et al, Phys. Rev. A, 83:023804, 2011.
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Conclusion

Shown results / Outlook

Convergence analysis for iteratively regularized Newton methods with
arbitrary data misfit functional and arbitrary penalty term.

Our results include the known results for the IRGNM.

Applications to Poisson data via choosing S to be the negative
log-likelihood.

Good numerical results in case of Poisson data.

@ T. Hohage and F. Werner.
Iteratively regularized Newton methods for general data misfit functionals and applications
to Poisson data.
http: //arziv. org/ abs/ 1105. 2690v1, 2011.
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