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Introduction Model and examples

Model

In this talk we consider nonlinear inverse problems

F (f ) = g

with F : D (F ) ⊂ X → Y, X ,Y Hilbert spaces in the data model

gobs = g † + σZ + δξ

with

• exact data g † = F
(
f †
)

• random noise given by a (centered) noise process
Z : Y → L2 (Ω,A,P)

• deterministic noise ξ ∈ Y, ‖ξ‖Y ≤ 1

• and corresponding noise levels σ, δ ≥ 0.
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Introduction Model and examples

Model (cont’)

gobs = g † + σZ + δξ

As Z /∈ Y, whole model has to be understood in the weak sense:
For each g ∈ Y we can access the corresponding coefficient〈

gobs, g
〉

=
〈
g †, g

〉
+ σ 〈Z , g〉+ δ 〈ξ, g〉

under additive

deterministic noise δ 〈ξ, g〉 ≤ δ ‖g‖Y and

random noise σ 〈Z , g〉 - a centered rv with finite variance

Note: For g1, g2 ∈ Y it holds

Cov [〈Z , g1〉 , 〈Z , g2〉] = 〈g1,Cov [Z ] g2〉

with the covariance operator Cov [Z ] ∈ L (Y).
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Introduction Model and examples

Examples

gobs = g † + σZ + δξ

allows for

• completely deterministic noise models: σ = 0

• continuous Gaussian white noise models: δ = 0, Cov [Z ] = id, Z
Gaussian process

• mixtures of both, e.h. discretized Gaussian white noise models (with
ξ being the normalized discretization error)

N. Bissantz, T. Hohage, A. Munk, and F. Ruymgaart.
Convergence rates of general regularization methods for statistical inverse problems and
applications.
SIAM Journal on Numerical Analysis 45(6): 2610-2636, 2007
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Introduction Regularization

Hilbert scales

We assume that there is a Hilbert scale {Xν}ν∈R such that

• Xν := D (Lν) with a densely defined linear self-adjoint
L : D (L) ⊂ X → X
• X0 := X
• ‖f ‖ν := ‖Lν f ‖X
• Interpolation for −a < t ≤ s:

‖f ‖t ≤ ‖f ‖
s−t
s+a
−a ‖f ‖

t+a
s+a
s
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Introduction Regularization

Regularization

We consider variational regularization of the form

f̂α ∈ argmin
f ∈D(F )

[
1

2
‖F (f )‖2

Y −
〈
F (f ) , gobs

〉
+ α ‖f ‖2

s

]
=̂ argmin

f ∈D(F )

[
1

2

∥∥∥F (f )− gobs
∥∥∥2

Y
+ α ‖f ‖2

s

]
Well-known properties of minimizers (if D(F ) is closed and convex, and F
is weak-to-weak sequentially continuous):

• existence (with probability 1 in the random noise case)

• stability if s ≥ 0 (w.r.t. ξ clear, w.r.t. Z more complicated)

• convergence in the deterministic noise case (if α is chosen
appropriately)

Here we will focus on rates of convergence!
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Assumptions and discussion Deterministic noise case

Main assumption

Conditional stability estimate (CSE)

There exists a concave index function ϕ, a set Q and a constant R > 0
such that ∥∥∥f − f †

∥∥∥
−a
≤ Rϕ

(∥∥∥F (f )− g †
∥∥∥
Y

)
for all f ∈ Q.

• If F is linear, Q = X and ϕ = id, then this corresponds to
ill-posedness of degree a

• Usually Q is a subset of some unit ball in Xθ with some θ > 0.
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Assumptions and discussion Deterministic noise case

Sufficient conditions for CSE

∥∥∥f − f †
∥∥∥
−a
≤ Rϕ

(∥∥∥F (f )− g †
∥∥∥
Y

)
For differentiable F , this condition is satisfied if

(A) F ′ is ill-posed of degree a

‖h‖−a ≤ K̄ ‖F ′(f †) h‖Y

and a tangential-cone-type condition holds true

‖F ′(f †)(f − f †)‖Y ≤ K̃ ϕ(‖F (f )− F (f †)‖Y)

(B) F ′ is ill-posed of degree a and a Hölder continuity condition holds true

‖F ′(f )− F ′(f †)‖L(X ,Y) ≤ Ǩ ‖f − f †‖η
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Assumptions and discussion Deterministic noise case

CSE vs. variational source conditions∥∥∥f − f †
∥∥∥
−a
≤ Rϕ

(∥∥∥F (f )− g †
∥∥∥
Y

)
for all f ∈ Q (1)

CSE looks similar to variational source conditions:∥∥∥f − f †
∥∥∥2

s
≤ ‖f ‖2

s −
∥∥∥f †∥∥∥2

s
+ Rϕ

(∥∥∥F (f )− g †
∥∥∥
Y

)
for all f ∈ M (2)

But depending on M, the roles of f and f † might not be
interchangeable (hence no relation in general)

If M allows for interchanging f and f †, then (2) implies (1)

Both can be verified using global estimates in specific problems:

T. Hohage and F. Weidling.
Verification of a variational source condition for acoustic inverse medium
scattering problems.
Inverse Problems 31:075006, 2015.
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Assumptions and discussion Deterministic noise case

A prominent example
Consider the identification of f in

∂

∂t
u (x , t)−∆u (x , t) + f (t) u (x , t) = 0 in Ω× (0,T ]

∂

∂n
u (x , t) = 0 on ∂Ω× (0,T ]

u (x , 0) = u0 (x) on Ω

from integral data g (t) =
∫

Ω u (x , t) dx .
Then for each 1

2 ≤ θ ≤ 1 and each ρ > 0 there exists C (ρ) > 0 such that∥∥∥f − f †
∥∥∥
L2
≤ R (ρ)

∥∥∥F (f )− F
(
f †
)∥∥∥ θ

θ+1

L2

for all f , f † ∈ Q :=
{
u ∈ Hθ : ‖u‖θ ≤ ρ

}
.

B. Hofmann and M. Yamamoto.
On the interplay of source conditions and variational inequalities for nonlinear ill-posed
problems.
Appl. Anal., 89:1705–1727, 2010.
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Assumptions and discussion Deterministic noise case

Smoothness conditions

With

• a from the CSE
∥∥f − f †

∥∥
−a ≤ Rϕ

(∥∥F (f )− g †
∥∥
Y

)
• and s as in our regularization

f̂α ∈ argminf ∈D(F )

[
1
2 ‖F (f )‖2

Y −
〈
F (f ) , gobs

〉
+ α ‖f ‖2

s

]
we assume:

Smoothing properties

Furthermore f † ∈ Xu is the unique solution to F
(
f †
)

= g † and the indices
satisfy

• a ≥ 0 (smoothing property of F )

• −a < s < u (smoothing of the regularization, undersmoothing case)

• u ≤ 2s + a (smoothness of f †, saturation)
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Assumptions and discussion Random noise case

Smoothing properties of F
In the random noise case (σ > 0) we assume additionally:

Interpolation in Y

• There is a Gelfand triple (V,Y,V ′), ι : V ↪→ Y s.th. ι∗Cov [Z ] ι is
trace-class.

• F satisfies the interpolation inequality∥∥∥F (f )− g †
∥∥∥
V
≤ C

∥∥∥F (f )− g †
∥∥∥θ
Y

∥∥∥f − f †
∥∥∥1−θ

s

for all f ∈ Q with some constant C > 0 and θ ∈ (0, 1).

Note: Assumption implies

E
[
‖Z‖2

V ′
]

= trace (ι∗Cov [Z ] ι) <∞,

i.e. especially ‖Z‖V ′ <∞ a.s.
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Assumptions and discussion Random noise case

Examples

∥∥∥F (f )− g †
∥∥∥
V
≤ C

∥∥∥F (f )− g †
∥∥∥θ
Y

∥∥∥f − f †
∥∥∥1−θ

s

This condition holds true whenever

• (V,Y,V ′) is part of a Hilbert scale {Yµ}µ∈R (i.e. V = Yt , V ′ = Y−t ,
Y = Y0) and

• F : Xs → Yr is Lipschitz continuous for some r > t

Proof: ∥∥∥F (f )− g †
∥∥∥
V
≤
∥∥∥F (f )− g †

∥∥∥θ
Y

∥∥∥F (f )− g †
∥∥∥1−θ

Yr

≤ L1−θ
∥∥∥F (f )− g †

∥∥∥θ
Y

∥∥∥f − f †
∥∥∥1−θ

s

Classical example: Sobolev spaces V = Hs (Ω), Y = L2 (Ω), s > d/2.
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Results

Notation

• For an index function h denote by

h∗ (y) := sup
x≥0

[xy − h (x)]

the Fenchel conjugate of h.

• Introduce

ψu,s,a (t) :=
(
ϕ
(√

t
)) 2(u−s)

a+u
, t ≥ 0

and

ϕapp (α) := (−ψu,s,a)∗
(
− 1

α

)
, α ≥ 0
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Results Deterministic noise case

Deterministic noise case (σ = 0)

Error estimates

Whenever f̂α ∈ Q (validity set of CSE), then it holds∥∥∥f̂α − f †
∥∥∥2

s
≤ δ2

α
+ Cϕapp (8Cα)

with a constant C = C
(
R,
∥∥f †∥∥

u
, u, s, a

)
.

The function ϕapp (approximation error) is

• non-negative, monotonically increasing, ϕapp (α)→ 0 as α→ 0

• satisfies ϕapp (Cα) ≤ max
{

1,C
u−s
a+s

}
ϕapp (α) for all α,C > 0.

Note: Assumption f̂α ∈ Q can be verified using convergence statements!
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Results Deterministic noise case

Deterministic noise case (σ = 0)

Convergence rates

Assume additionally that ψu,s,a is concave, and choose α = α∗ such that

− 1

α∗
∈ ∂ (−ψu,s,a)

(
δ2
)
.

Then we obtain the convergence rate∥∥∥f̂α∗ − f †
∥∥∥
s

= O
(√

ψu,s,a (δ2)

)
= O

(
(ϕ (δ))

u−s
a+u

)
as δ → 0.

• If F is linear and ϕ a power function (Hölder case), then this rate is
order optimal.

• A posteriori choice (Lepskĭı) is also possible.
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Results Random noise case

Random noise case (σ > 0)

Error estimates

Whenever f̂α ∈ Q (validity set of CSE), then it holds (surely) that∥∥∥f̂α − f †
∥∥∥2

s
≤ C

[
σ2 ‖Z‖2

V ′ α
θ−2 +

δ2

α
+ ϕapp (8Cα)

]
with a constant C > 0.

• ‖Z‖V ′ <∞ a.s.. If Z is Gaussian noise and V ’nice’, then

P [|‖Z‖V ′ − E [‖Z‖V ′ ]| ≥ t] ≤ 2 exp
(
− 2t2

π2σ2

)
, t ≥ 0

E. Giné and R. Nickl.
Mathematical Foundations of Infinite-Dimensional Statistical Models.
Cambridge University Press, 2015.

• Assumption f̂α ∈ Q might be problematic, as consistency is unclear
(can however be verified if local Lipschitz constants of F do not
increase too fast).
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Results Random noise case

Random noise case (σ > 0)

Convergence rates

Let

Σ (α) =
√
α
√
ϕapp (α) and Σ̃ (α) = α1− θ

2

√
ϕapp (α), α > 0

and choose α such that

α ∼
(

Σ−1 (δ) + Σ̃−1 (σ)
)

as max {δ, σ} → 0.

Then we obtain the a.s. convergence rate

∥∥∥f̂α − f †
∥∥∥
s

= O

(√
ϕapp

(
Σ−1 (δ) + Σ̃−1 (σ)

))

as max {δ, σ} → 0.
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Conclusion

Conclusion and outlook

• Statistical Inverse Problems differ from deterministic ones ...

... by the fact, that the data is not an element of the space Y.

... and hence regularization has to be treated differently.

• Convergence analysis under conditional stability estimates ...

... avoids nonlinearity assumptions on the operator.

... can be carried out both in the deterministic and random noise case.

• Future research should address ...

... validity of conditional stability estimates ( Q and ϕ).

... what can be done to ensure f̂α ∈ Q under random noise?

F. Werner and B. Hofmann.
Convergence Analysis of (Statistical) Inverse Problems under Conditional Stability
Estimates.
arXiv preprint 1905.09765, 2019.

Thank you for your attention!
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