Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data

Frank Werner

Institute for numerical and applied mathematics
University of Göttingen, Germany
joint work with Thorsten Hohage

DMV 2012

- 1 Introduction
- 2 Results on Poisson processes
- 3 Deterministic convergence analysis
- 4 Convergence rates in expectation
- **5** Conclusion

- 1 Introduction
- 2 Results on Poisson processes
- 3 Deterministic convergence analysis
- 4 Convergence rates in expectation
- 6 Conclusion

Problem setup

Measurements: Total number N and positions $x_i \in \mathbb{M}$ of photons distributed due to a unknown photon density g^{\dagger} .

Task: Determine the reason u^{\dagger} of the photon density g^{\dagger} .

Note: The total number N of counted photons depends on the intensity of g^{\dagger} as well as a parameter t interpreted as exposure time.

Poisson Processes

Mathematical model:

Poisson Process, i.e.

$$\tilde{G}_t = \sum_{i=1}^N \delta_{x_i}$$

with the following properties:

Poisson process - Axiom I

$$N(A) := \# \{i \in \{1, ..., N\} \mid x_i \in A\}$$

Independence:

For any choice of $A_1, ..., A_n \subset \mathbb{M}$ disjoint and measurable, the random variables

$$N\left(A_{1}\right),...,N\left(A_{n}\right)$$

are independent.

Poisson process - Axiom II

$$N(A) := \# \{i \in \{1, ..., N\} \mid x_i \in A\}$$

Poisson distribution:

For any measurable $A \subset \mathbb{M}$ the random variable

is Poisson distributed with parameter

$$t\int_{\Lambda}g^{\dagger}\,\mathrm{d}x.$$

We expect 20.000 photons per second

Difficulties I

Model assumption: The imaging process can be descibed by an operator equation

$$F\left(u^{\dagger}\right)=g^{\dagger}$$

where $F: \mathfrak{B} \subset \mathcal{X} \to \mathcal{Y}$ is in general nonlinear and \mathcal{X} and \mathcal{Y} are Banach spaces.

The exact right-hand side g^{\dagger} is unknown and in general F^{-1} is not continuous.

⇒ direct reconstruction impossible, regularization necessary!

Difficulties II

Several applications yield only data for small t, i.e.

- positron emission tomography (radiation exposure)
- astronomical imaging (limited observation time, motion artifacts)
- fluorescence microscopy (photobleaching)

⇒ use a negative log-likelihood aproach to use the infomation at hand on the Poisson distribution:

Minimize

$$u\mapsto\mathcal{S}\left(\tilde{\textit{G}}_{t};\textit{F}\left(u\right)\right):=-\ln\left(\textbf{P}\left[\tilde{\textit{G}}_{t}\mid\text{the exact photon density is }\textit{F}\left(u\right)\right]\right)$$

over all admissible u.

We consider a possibly nonlinear,

ill-posed problem with Poisson data.

A. Antoniadis and J. Bigot.

Poisson inverse problems.

Ann. Statist., 34(5):2132–2158, 2006.

J. M. Bardsley.

A Theoretical Framework for the Regularization of Poisson Likelihood Estimation Problems. *Inverse Probl. Imag.*, 4:11–17, 2010.

Tackle the problem with Tikhonov-type regularization:

$$u_{\alpha} \in \underset{u \in \mathfrak{B}}{\operatorname{argmin}} \left[\mathcal{S} \left(\tilde{G}_{t}; F \left(u \right) \right) + \alpha \mathcal{R} \left(u \right) \right]$$

where \mathcal{R} is a convex penalty term and $\alpha > 0$ a regularization parameter.

- Introduction
- 2 Results on Poisson processes
- 3 Deterministic convergence analysis
- 4 Convergence rates in expectation
- 6 Conclusion

Data fidelity terms

Scaled data $G_t = \frac{1}{t} \sum_{i=1}^{N} \delta_{x_i}$, $tG_t = \tilde{G}_t$ Poisson process.

Negative log-likelihood:

$$\mathcal{S}\left(G_{t};g
ight)=\int\limits_{\mathbb{M}}g\,\mathrm{d}x-\int\limits_{\mathbb{M}}\ln\left(g
ight)\,\mathrm{d}G_{t},\qquad g\geq0$$
 a.e.

- It holds $\mathbf{E}\left[\mathcal{S}\left(G_{t};g\right)\right]=\int_{\mathbb{M}}\left[g-g^{\dagger}\ln\left(g\right)\right]\,\mathrm{d}x$
- \rightsquigarrow ideal data misfit functional for exact data g^{\dagger} given by

$$\mathbf{E}\left[\mathcal{S}\left(G_{t};g\right)\right] - \mathbf{E}\left[\mathcal{S}\left(G_{t};g^{\dagger}\right)\right] = \int_{\mathbb{M}}\left[g - g^{\dagger} - g^{\dagger}\ln\left(\frac{g}{g^{\dagger}}\right)\right] dx$$

which is the Kullback-Leibler divergence $\mathbb{KL}(g^{\dagger};g)$.

• Error at g:

$$\left|\mathcal{S}\left(G_{t};g\right)-\mathbf{E}\left[\mathcal{S}\left(G_{t};g^{\dagger}\right)\right]-\mathbb{KL}\left(g^{\dagger};g\right)\right|=\left|\int\limits_{\mathbb{R}^{d}}\ln(g)\left(\mathrm{d}G_{t}-g^{\dagger}\,\mathrm{d}x\right)\right|.$$

Controlling the error I

We obtain the following concentration inequality based on

P. Reynaud-Bouret.

Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities.

Probab. Theory Rel., 126(1):103-153, 2003.

Uniform concentration inequality (W., Hohage 2012)

- $\mathbb{M} \subset \mathbb{R}^d$ bounded and Lipschitz,
- $B_s\left(R
 ight):=\left\{\mathfrak{g}\in H^s\left(\mathbb{M}
 ight)\; \left|\; \left\|\mathfrak{g}
 ight\|_{H^s\left(\mathbb{M}
 ight)}\leq R
 ight\} \; \mathrm{with} \; s>d/2, R>1.$

Then there exists $\mathcal{C}_{\mathrm{conc}} = \mathcal{C}_{\mathrm{conc}}\left(\mathbb{M}, s, g^{\dagger}
ight) \geq 1$ such that

$$\mathbf{P}\left[\sup_{\mathfrak{g}\in B_{\mathfrak{s}}(R)}\left|\int\limits_{\mathbb{M}}\mathfrak{g}\left(\,\mathrm{d}G_{t}-g^{\dagger}\,\mathrm{d}x\right)\right|\leq \frac{\rho}{\sqrt{t}}\right]\geq 1-\exp\left(-\frac{\rho}{RC_{\mathrm{conc}}}\right)$$

for all $t \ge 1$ and $\rho \ge RC_{\rm conc.}$

Controlling the error II

- Concentration inequality requires $\mathfrak{g}\in H^s\left(\mathbb{M}\right)\subset \mathbf{L}^\infty\left(\mathbb{M}\right)$ due to s>d/2
- Error at g = F(u) leads to $g = \ln(F(u))$
- ⇒ Too strong assumption!
- \rightsquigarrow Shift by $\sigma > 0$:

$$egin{aligned} \mathcal{S}\left(G_{t};g
ight) &:= \int\limits_{\mathbb{M}} g \, \mathrm{d}x - \int\limits_{\mathbb{M}} \ln\left(g + \sigma
ight) \left(\mathrm{d}G_{t} + \sigma \mathrm{d}x
ight) \ \mathcal{T}\left(g^{\dagger};g
ight) &:= \mathbb{KL}\left(g^{\dagger} + \sigma;g + \sigma
ight) \end{aligned}$$

• Then the error is given by

$$\left| \int\limits_{\mathbb{M}} \ln \left(g + \sigma \right) \left(\mathrm{d} G_t - g^\dagger \, \mathrm{d} x \right) \right|.$$

- Introduction
- 2 Results on Poisson processes
- 3 Deterministic convergence analysis
- 4 Convergence rates in expectation
- 6 Conclusion

Noise level I

We have two data fidelity terms:

- S w.r.t. the measured data g^{obs}
- \mathcal{T} w.r.t. the photon density g^{\dagger}

As before: consider the difference between both as noise level!

Noise level

There exist constants err > 0 and $C_{err} > 1$ such that

$$\mathcal{S}\left(g^{ ext{obs}};g
ight) - \mathcal{S}\left(g^{ ext{obs}};g^{\dagger}
ight) \geq rac{1}{\mathcal{C}_{ ext{err}}}\mathcal{T}\left(g^{\dagger};g
ight) - ext{err}$$

for all $g \in F(\mathfrak{B})$.

• Classical deterministic noise model:

If
$$S(g; \hat{g}) = \mathcal{T}(g; \hat{g}) = \|g - \hat{g}\|_{\mathcal{Y}}^{r}$$
, then $C_{\text{err}} = 2^{r-1}$ and $\mathbf{err} = 2 \|g^{\dagger} - g^{\text{obs}}\|_{\mathcal{Y}}^{r}$.

Poisson data:

$$C_{\rm err}=1$$
 and

$$\operatorname{\mathsf{err}} \geq -\int\limits_{\mathbb{M}} \ln \left(g^\dagger + \sigma \right) \left(\, \mathrm{d} G_t - g^\dagger \, \mathrm{d} x \right) + \int\limits_{\mathbb{M}} \ln \left(F \left(u \right) + \sigma \right) \left(\, \mathrm{d} G_t - g^\dagger \, \mathrm{d} x \right)$$

for all $u \in \mathfrak{B}$.

Uniform concentration inequality: $\mathbf{err} \leq \frac{2\rho}{\sqrt{t}}$ with probability

$$\geq 1 - \exp(-c\rho)$$
 for some constant $c > 0$.

Source condition I

Bregman distance:

$$\mathcal{D}_{\mathcal{R}}^{u^{*}}\left(u,u^{\dagger}\right):=\mathcal{R}\left(u\right)-\mathcal{R}\left(u^{\dagger}\right)-\left\langle u^{*},u-u^{\dagger}\right\rangle$$

where $u^* \in \partial \mathcal{R} (u^{\dagger}) \subset \mathcal{X}'$.

Use a variational inequality as source condition:

$$\beta \mathcal{D}_{\mathcal{R}}^{u^*}\left(u, u^{\dagger}\right) \leq \mathcal{R}\left(u\right) - \mathcal{R}\left(u^{\dagger}\right) + \varphi\left(\mathcal{T}\left(g^{\dagger}; F\left(u\right)\right)\right)$$

for all $u \in \mathfrak{B}$ with $\beta > 0$. φ is assumed to fulfill

- $\varphi(0) = 0$.
- φ > Λ
- φ concave.

Source condition II

$$\beta \mathcal{D}_{\mathcal{R}}^{u^{*}}\left(u,u^{\dagger}\right) \leq \mathcal{R}\left(u\right) - \mathcal{R}\left(u^{\dagger}\right) + \varphi\left(\mathcal{T}\left(g^{\dagger};F\left(u\right)\right)\right)$$

- does not depend on the structure of \mathcal{X} and \mathcal{Y}
- nonlinear F: combination of source and nonlinearity condition
- \mathcal{X} , \mathcal{Y} Hilbert spaces, $\mathcal{R}(u) = \|u u_0\|_{\mathcal{Y}}^2$:
 - $F(\mathfrak{B}) \subset \mathbf{L}^{\infty}$ bounded: spectral source + nonlinearity condition imply variational inequality (use $||F(u) - g^{\dagger}||_{L^{2}}^{2} \leq CT(g^{\dagger}; F(u))$)

J. M. Borwein and A. S. Lewis.

Convergence of best entropy estimates. SIAM J. Optimization, 1:191-205, 1991.

• $\mathcal{T}(g_2; g_1) = \|g_1 - g_2\|_{\mathcal{V}}^2$: obtained convergence rates are optimal

Deterministic convergence analysis I

Suppose

- the noise assumption is fulfilled with $err \ge 0$ and
- the variational inequality holds true.

Theorem (error decomposition)

Then

$$eta \mathcal{D}_{\mathcal{R}}^{u^*}\left(u_{lpha}, u^{\dagger}\right) \leq rac{\mathsf{err}}{lpha} + (-arphi)^* \left(-rac{1}{C_{\mathrm{err}}lpha}
ight)$$

for all $\alpha > 0$.

Fenchel conjugate:

$$(-\varphi)^*(s) = \sup_{\tau>0} (s\tau + \varphi(\tau)).$$

Deterministic convergence analysis II

$$\beta \mathcal{D}_{\mathcal{R}}^{u^*} \left(u_{\alpha}, u^{\dagger} \right) \leq \frac{\mathsf{err}}{\alpha} + \left(-\varphi \right)^* \left(-\frac{1}{\mathsf{C}_{\mathrm{err}} \alpha} \right)$$

Theorem (a priori rates)

The infimum of the right-hand side it attained at $\alpha = \overline{\alpha}$ if and only if

$$\frac{-1}{C_{
m crr}\overline{lpha}}\in\partial(-arphi)(C_{
m err}\operatorname{\mathsf{err}})$$

$$\begin{bmatrix} \hat{=} & \bar{\alpha} = \frac{1}{C_{\text{err}}\varphi'(C_{\text{err}} \text{ err})} \end{bmatrix}$$

and in that case

$$eta \mathcal{D}_{\mathcal{R}}^{u^*}\left(u_{\overline{lpha}},u^{\dagger}
ight) \leq C_{\mathrm{err}} arphi\left(\mathsf{err}
ight).$$

Deterministic convergence analysis III

Suppose moreover \mathcal{X} Hilbert space, $\mathcal{R}(u) = \|u - u_0\|_{\mathcal{X}}^2$, $\beta \geq \frac{1}{2}$. Set

- r > 1
- $\alpha_j := \operatorname{err} r^{2j-2}$ for j = 2, ..., m such that $\alpha_{m-1} < 1 \le \alpha_m$
- $j_{\mathrm{bal}} := \max \left\{ j \leq m \; ig| \; \left\| u_{lpha_i} u_{lpha_j}
 ight\|_{\mathcal{X}} \leq 4\sqrt{2}r^{1-i} \; ext{for all} \; i < j
 ight\}$

Theorem (a posteriori rates)

Then for err > 0 sufficiently small:

$$\left\|u_{\alpha_{j_{\text{bal}}}} - u^{\dagger}\right\|_{\mathcal{X}}^{2} \leq 6r \min_{j=1,\dots,m} \left[\frac{\text{err}}{\alpha_{j}} + (-\varphi)^{*}\left(-\frac{1}{C_{\text{err}}\alpha_{j}}\right)\right].$$

If $\varphi^{1+\varepsilon}$ is additionally concave $(\varepsilon > 0)$, then

$$\left\|u_{\alpha_{j_{\text{bal}}}} - u^{\dagger}\right\|_{\mathcal{X}}^{2} \leq 6r^{1+\frac{1}{\varepsilon}}C_{\text{err}}\varphi\left(\text{err}\right)$$

as err \setminus 0.

- 1 Introduction
- 2 Results on Poisson processes
- 3 Deterministic convergence analysis
- 4 Convergence rates in expectation
- **6** Conclusion

Convergence rates for known φ

Suppose

- \mathcal{X} Banach space, $u^{\dagger} \in \mathfrak{B} \subset \mathcal{X}$ bounded, closed and convex
- $\mathbb{M} \subset \mathbb{R}^d$ bounded and Lipschitz
- F(u) > 0 a.e. for all $u \in \mathfrak{B}$
- there exists a Sobolev index $s > \frac{d}{2}$ such that $F(\mathfrak{B})$ is a bounded subset of $H^s(\mathbb{M})$

A priori convergence rates (W., Hohage 2012)

Then for $\alpha=lpha\left(t\right)$ such that $rac{1}{lpha}\in-\partial\left(-arphi
ight)\left(rac{1}{\sqrt{t}}
ight)$ we obtain the convergence rate

$$\mathbf{E}\left[\mathcal{D}_{\mathcal{R}}^{u^*}\left(u_{lpha},u^{\dagger}
ight)
ight]=\mathcal{O}\left(arphi\left(rac{1}{\sqrt{t}}
ight)
ight), \qquad t
ightarrow\infty$$

Suppose moreover \mathcal{X} Hilbert space, $\mathcal{R}\left(u\right) = \left\|u - u_0\right\|_{\mathcal{X}}^2$, $\beta \geq \frac{1}{2}$, $\varphi^{1+\varepsilon}$ concave $(\varepsilon > 0)$. Set

- r>1, au>0 sufficiently large
- $\alpha_j := \frac{\tau \ln(t)}{\sqrt{t}} r^{2j-2}$ for j=2,...,m such that $\alpha_{m-1} < 1 \le \alpha_m$
- $j_{\mathrm{bal}} := \max \left\{ j \leq m \; \big| \; \left\| u_{\alpha_i} u_{\alpha_j} \right\|_{\mathcal{X}} \leq 4\sqrt{2}r^{1-i} \; \text{for all} \; i < j \right\}$

A posteriori convergence rates (W., Hohage 2012)

Then we obtain

$$\mathbf{E}\left[\left\|u_{lpha_{j_{\mathrm{bal}}}}-u^{\dagger}
ight\|_{\mathcal{X}}^{2}
ight]=\mathcal{O}\left(arphi\left(rac{\mathsf{ln}\left(t
ight)}{\sqrt{t}}
ight)
ight)\qquad ext{as}\qquad t
ightarrow\infty.$$

Adaptivity causes a loss of a logarithmic factor!

A. Tsybakov.

On the best rate of adaptive estimation in some inverse problems.

C. R. Acad. Sci. Paris, 330:835-840, 2000.

- 1 Introduction
- 2 Results on Poisson processes
- 3 Deterministic convergence analysis
- 4 Convergence rates in expectation
- **5** Conclusion

Presented results

- Improvements in the theory of inverse problems with Poisson data:
 - convergence and convergence rates
 - generalized source conditions
 - a priori and a posteriori parameter choice
- regularization theory with general data fidelity terms

F. Werner and T. Hohage.

Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data.

Inverse Problems, to appear, 2012.

Thank you for your attention!