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Introduction Photonic imaging

Problem setup
Measurements: Total number N and positions x; € M of photons
distributed due to a unknown photon density g'.
Task: Determine the reason u' of the photon density g.

Note: The total number N of counted photons depends on the
intensity of gt as well as a parameter t interpreted as
exposure time.
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Poisson Processes
Mathematical model:

Poisson Process, i.e.

N
Gt - Z 5X;
i=1

with the following properties:
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Introduction Photonic imaging

Poisson process - Axiom |

N(A):=#{ie{1,.,N} | x € A}
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Introduction Photonic imaging

Poisson process - Axiom |l

N(A):=#{ie{l,..N} | xj € A}

Poisson distribution:

°
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Introduction Photonic imaging

Influence of t

We expect 20.000 photons per second
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Introduction Difficulties and approaches

Difficulties |

Model assumption: The imaging process can be descibed by an operator
equation
F (UT> =gl

where F : 8 C X — ) is in general nonlinear and X and ) are Banach
spaces.

The exact right-hand side g is unknown and in general F~1 is not
continuous.

= direct reconstruction impossible, regularization necessary!
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Introduction Difficulties and approaches

Difficulties Il

Several applications yield only data for small ¢, i.e.
e positron emission tomography (radiation exposure)
e astronomical imaging (limited observation time, motion artifacts)

e fluorescence microscopy (photobleaching)

= use a negative log-likelihood aproach to use the infomation at hand on
the Poisson distribution:

Minimize
u—S ((N;t; F(u)) :=—1In (P [@t ’ the exact photon density is F(u)])

over all admissible wu.
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Introduction Difficulties and approaches

Approach

We consider a possibly nonlinear,

ill-posed problem with Poisson data.

@ A. ANTONIADIS AND J. BiGor.

Poisson inverse problems.
Ann. Statist., 34(5):2132-2158, 2006.

@ J. M. BARDSLEY.

A Theoretical Framework for the Regularization of Poisson Likelihood Estimation Problems.
Inverse Probl. Imag., 4:11-17, 2010

Tackle the problem with Tikhonov-type regularization:

U € arugen%in [S ((N;t; F(u)) + ozR(u)]

where R is a convex penalty term and « > 0 a regularization parameter.
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Results on Poisson processes
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Results on Poisson processes

Data fidelity terms
N -
Scaled data G; = % > 0y, tGy = G; Poisson process.

=1
o Negative log-likelihood:

S(Gt;g):/gdx—/ln(g) dG;, g>0ae
M M

e It holds E[S (G g)]l = [y, [g — & In(g)] dx
e ~ ideal data misfit functional for exact data g given by

€15 (Gl ~E[5 (Gig")] = [ |z &' (£)] ax

which is the Kullback-Leibler divergence KL (gT;g).
e Error at g:

/In(g) (dG; — g! dx)

M

S(Giig) —E[S(Gig")] —KL (g% 8)| =
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Results on Poisson processes

Controlling the error |
We obtain the following concentration inequality based on

@ P. Reynaud-Bouret.

Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration
inequalities.
Probab. Theory Rel., 126(1):103-153, 2003.

Uniform concentration inequality (W., Hohage 2012)

e M c RY bounded and Lipschitz,
o B,(R) = {g € HE (M) | lgllquay < R} with s > d/2,R > 1.
>1

Then there exists Ceonc = Ceonc (M, s, g7) such that

' P p
P | sup /g dG—gde < — >1—exp<— )
g€Bs(R) o ( ‘ ) \/E RC(:()n(:

forall t > 1 and p > RCeonc-
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Results on Poisson processes

Controlling the error Il

o Concentration inequality requires g € H® (M) C L* (M) due to
s>d/2
e Error at g = F (u) leads to g = In(F (v))
= Too strong assumption!
~» Shift by ¢ > 0:

S (Gt g) ::/gdx—/ln(g—i-a) (dG¢ + odx)
M M

T <gT;g> =KL <gT +o,8+ a)
e Then the error is given by

/In (g +0) (th — g dx) .

M
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Deterministic convergence analysis
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Deterministic convergence analysis Assumptions

Noise level |

We have two data fidelity terms:

e S w.r.t. the measured data g

e T w.r.t. the photon density gf
As before: consider the difference between both as noise level!
Noise level

There exist constants err > 0 and G > 1 such that

S (gObs;g) -S (gObs;gT) > C:HT (gT;g) —err

for all g € F (B).
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Deterministic convergence analysis Assumptions

Noise level Il

o Classical deterministic noise model:
If S(g:8) =T (g:28) =g — &% then Cor = 2"~ and
err =2 HgT — gObSH;.
e Poisson data:
Cerr =1 and

err > —/In (g"+0) (th—gde)+/In(F(u)+a)(th—gde)

M M
for all u € 8.
Uniform concentration inequality: err < % with probability

> 1 — exp(—cp) for some constant ¢ > 0.
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Deterministic convergence analysis Assumptions

Source condition |

e Bregman distance:

DY (u, uT) =R((u)—R <UT> - <u*, u— uT>
where u* € OR (uf) C X
e Use a variational inequality as source condition:
8D (u.u') <R () =R (o) +¢ (T (¢": F ()

for all u € B with 5 > 0. ¢ is assumed to fulfill

° ¢(0)=0,
* v/,

® (p concave.
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Deterministic convergence analysis Assumptions

Source condition |l

BD;’{ (u, uT> <R(u)—R (UT) + (T (gT; F(u)))

e does not depend on the structure of X and Y
e nonlinear F: combination of source and nonlinearity condition
X, Y Hilbert spaces, R (u) = ||lu — w3
e F(B) C L* bounded: spectral source + nonlinearity condition imply
variational inequality (use HF (u) — g]LHi2 < CT (gh; F(u)))
@ J. M. Borwein and A. S. Lewis.
Convergence of best entropy estimates.

SIAM J. Optimization, 1:191-205, 1991

° T(g:g) =g~ ng%,: obtained convergence rates are optimal
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Deterministic convergence analysis Assumptions

Deterministic convergence analysis |

Suppose

e the noise assumption is fulfilled with err > 0 and

e the variational inequality holds true.

Theorem (error decomposition)

Then .
u* ) < err —o) [ —
A% (a) < =54 (0)" (~ 2

for all & > 0.

Fenchel conjugate:

(=) (s) = sup (s7+ ¢ (7).
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Deterministic convergence analysis Assumptions

Deterministic convergence analysis ||

BDE (uavu') < =2+ (=) (— ! )

Cerrav

Theorem (a priori rates)

The infimum of the right-hand side it attained at @ = @ if and only if

=1l 1
- Cerr = A= e
Cerra < 8( 90)( err) |: “ CeerOI (Cerr err)}

and in that case
8D (um,ut) < Carp (em).

Frank Werner, Géttingen Inverse Problems with Poisson data September 17th, DMV 2012 22 /28



Deterministic convergence analysis Assumptions

Deterministic convergence analysis |lI

Suppose moreover X' Hilbert space, R (u) = ||lu — w5, 8 > 5. Set
e r>1
° aj:=err r2=2 for j =2,...,msuch that am_1 <1< ap

® jbal ‘= max {J S m ‘ Hua,- - u(lJ'HX S 4\@”17’. for all I<j}

Theorem (a posteriori rates)

Then for err > 0 sufficiently small:

2 rr 1
- TH <6r min |4 (—o) (= :
‘ ud!bal Y X rj:T.l.rlm Q; - ( (P) Cerraj

If 1< is additionally concave (¢ > 0), then
|o
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Convergence rates in expectation Main results

Convergence rates for known ¢

Suppose

e X Banach space, u' € B C X bounded, closed and convex
M c R bounded and Lipschitz
F(u) >0 a.e. for all u € B

there exists a Sobolev index s > ¢ such that F(B) is a bounded
subset of H® (M)

A priori convergence rates (W., Hohage 2012)

Then for o = a (t) such that £ € —9(—¢) (
convergence rate

ot )] -0 ()
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Convergence rates in expectation Main results

Convergence rates for unknown ¢

Suppose moreover X' Hilbert space, R (u) = ||lu — w5, 8 > 1 pte
concave (¢ > 0). Set

e r>1, 7> 0 sufficiently large

° )= L\/(Et)rzf'*2 for j=2,...,msuch that am_1 <1< ap

® jhal := Max {j <m ‘ H“af — “%’HX < 4/2r77 for all i<j}

A posteriori convergence rates (W., Hohage 2012)

Then we obtain

L)oo () = oo

Adaptivity causes a loss of a logarithmic factor!

A. Tsybakov.

On the best rate of adaptive estimation in some inverse problems.
C. R. Acad. Sci. Paris, 330:835-840, 2000.
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Conclusion

Presented results

e Improvements in the theory of inverse problems with Poisson data:

e convergence and convergence rates
e generalized source conditions
e a priori and a posteriori parameter choice

e regularization theory with general data fidelity terms

@ F. Werner and T. Hohage.
Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems

with Poisson data.
Inverse Problems, to appear, 2012.

Thank you for your attention!
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