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Introduction Model & Regularization

Ill-posed linear models

Model: Recover unknown f from n indirect noisy samples

Y = Tf + σξ with T ∈ Rn×p, rank(T ) = p, ξ standard Gaussian.

Eigenvalues of T ∗T : λ1 ≥ · · · ≥ λp > 0, assume

λk � k−a with some a > 1.

Normalized eigenvectors e1, ..., ep ; Equivalent sequence model:

Yk =
√
λk fk + σξk , k = 1, . . . , p,

where Yk := 〈λ−1/2k Tek ,Y 〉, fk = 〈f , ek〉, ξk := 〈λ−1/2k Tek , ξ〉
i.i.d.∼ N (0, 1).
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Introduction Model & Regularization

Linear regularization methods

Recall: least square estimator f̂ := (T ∗T )−1T ∗Y .

Ill-posedness  stable approximation qα(·) of (·)−1, that is,

linear regularization methods: f̂α := qα(T ∗T )T ∗Y .

Definition

We call qα : [0, λ1]→ R with α ∈ A ⊆ R+ an ordered filter if

(i) There exist C ′q,C
′′
q > 0 s.t. for every α ∈ A and every λ ∈ [0, λ1]

α|qα(λ)| ≤ C ′q and λ|qα(λ)| ≤ C ′′q .

(ii) α 7→ (qα(λk))pk=1 is strictly monotone and continuous.
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Introduction Model & Regularization

Smoothness assumptions

We want to obtain minimax optimality over ellipsoids of the form

W :=
{
f ∈ Rp :

p∑
k=1

wk f
2
k ≤ 1

}
with wk � kb.

But therefore, qα must be able to take advantage of this!

Shorthand notation: sα(λ) := λqα(λ). Qualification condition

sup
α∈A, λ∈[0,λ1]

α−vλv |1− sα(λ)| ≤ Cv <∞ for all 0 < v ≤ v0.

The largest possible v0 is called the polynomial qualification index.
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Introduction Model & Regularization

Examples

Table: Summary of some ordered filters

Method qα(λ) C ′q C ′′q v0 Need SVD

Spectral cut-off 1
λ1[α,∞)(λ) 1 1 ∞ Yes

Tikhonov 1
λ+α 1 1 1 No

m-iterated Tikhonov (λ+α)m−αm

λ(λ+α)m m 1 m No

Landweber (‖T‖ ≤ 1)
∑bαc−1

j=0 (1− λ)j 1 1 ∞ No

Showalter
1−exp(− λ

α )
λ 1 1 ∞ No
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Introduction A priori rates

A-priori parameter choice

Proposition (Bissantz et al. ‘07)

Let f̂α := qα(T ∗T )T ∗Y with a filter qα, and α = αor � (σ2)a/(a+b+1).

• If the qualification index v0 ≥ b/(2a), then

R(αor,W) := sup
f ∈W

E
[
‖f̂αor − f ‖2

]
. (σ2)

b
a+b+1 .

• If further v0 ≥ b/(2a) + 1/2, then

r(αor,W) := sup
f ∈W

E
[
‖T f̂αor − Tf ‖2

]
. (σ2)

a+b
a+b+1 .

Such rates are minimax optimal in order over W.
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Introduction Unbiased risk estimation

Empirical prediction risk minimization

The optimality on the last slide relies on the smoothness of f (via αor).

We consider the parameter choice rule α̂ given by

α̂ := argmin
α∈A

[
‖T f̂α − Y ‖2 + 2σ2Trace (sα (T ∗T ))

]
.

Intuition: minimize an unbiased estimator of the prediction risk

r(α, f ) := E
[
‖T (f̂α − f )‖2

]
=

p∑
k=1

λk(1− sα(λk))
2f 2k + σ2

p∑
k=1

sα(λk)
2,

since

E
[
‖T f̂α − Y ‖2

]
=

p∑
k=1

λk(1− sα(λk))
2f 2k + σ2

p∑
k=1

sα(λk)
2

︸ ︷︷ ︸
r(α,f )

− 2σ2
p∑

k=1

sα(λk)︸ ︷︷ ︸
2σ2Trace(sα(T∗T ))

+pσ2.
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Introduction Unbiased risk estimation

Empirical prediction risk minimization (cont’)

The α̂ was first introduced in (Mallows ‘73), thus a.k.a. Mallows CL.

Practice: it is popular & attractive.

Theory: α̂ is order optimal w.r.t. prediction risk r(α, f ) (Kneip ‘94).

• Unknown: Is α̂ also optimal for the risk R(α, f ) := E
[
‖f̂α − f ‖2

]
?

• It is way more informative than r(α, f ) due to the ill-posedness.
• Spectral cut-off: this has recently been shown in (Chernousova &

Golubev ‘14.)

• Our goal: Extend it to general linear regularization methods.
• Why? Spectral cut-off relies on full SVD, thus impractical.
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Theoretical Results

Order inequality

Assumption

(i) As α↘ 0, sα(α) ≡ αqα(α) ≥ cq > 0.

(ii) For α ∈ A, the function λ 7→ sα(λ) is non-decreasing.

All mentioned regularization methods satisfy the assumption.

It requires proper parametrization. E.g. Tikhonov with re-parametrization
α 7→

√
α, i.e. qα(λ) = 1/(

√
α + λ), still an ordered filter, but violates

Ass. (i).

Theorem (Oracle inequality)

Let r(αor, f ) := minα∈A r(α, f ). Then for all f ∈ W

E
[
‖f̂α̂ − f ‖2

]
. r(αor, f )

b
a+b + σ−2ar(αor, f )1+a + σ1−2ar(αor, f )

1+2a
2 .
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Theoretical Results

Order optimality

E
[
‖f̂α̂ − f ‖2

]
. r(αor, f )

b
a+b + σ−2ar(αor, f )1+a + σ1−2ar(αor, f )

1+2a
2 .

Recall:
r(αor, f ) . σ

2(a+b)
a+b+1 if v0 ≥ b/(2a) + 1/2

Thus, if v0 ≥ b/(2a) + 1/2,

E
[
‖f̂α̂ − f ‖2

]
. σ

2b
a+b+1 . (order optimal)

v0 ≥ b/(2a) + 1/2 means we need higher qualification (early saturation)

• Same price for the deterministic discrepancy principle and GCV, which also
rely on the residual ‖T f̂α − Y ‖.

• Better than Lepskĭı (‘90) principle, where one typically looses a log-factor.
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Theoretical Results

Further results
Oracle inequality & optimality actually holds...

... in a more general setting Y = Tf + σξ where

• T is an injective and compact operator between Hilbert spaces.,

• the Eigenvalues of T ∗T decay in a general way,

• ξ is sub-Gaussian noise, and σ is unknown.

... under general smoothness assumptions:

• Source condition

f = φ(T ∗T )w for some ω with ‖w‖ ≤ C .

• Qualification condition

sup
λ∈[0,λ1]

√
λφ(λ)|1− sα(λ)| .

√
αφ(α).
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Numerical Simulations

Experiment setting

Forward operator T : L2 ([0, 1])→ L2 ([0, 1])

(Tf ) (x) =

1∫
0

k (x , y) f (y) dy , with k (x , y) = min {x (1− y) , y (1− x)} .

.Obviously, (Tf )′′ = −f , so the eigenvalues λk of T ∗T satisfy λk � k−4

The unknown truth

f (x) =

{
x if 0 ≤ x ≤ 1

2 ,

1− x if 1
2 ≤ x ≤ 1.

Then fk = (−1)k−1
4π3k2 and the optimal rate is O

(
σ

3
4
−ε
)

for any ε > 0.
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Numerical Simulations

Results
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(a) Tikhonov regularization
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(b) Showalter regularization

Figure: Average of ‖f̂ − f ‖22 over 104 repetitions.
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Numerical Simulations

Conclusion

Theoretical explanations for the well-known parameter choice rule via
empirical prediction risk minimization

Open questions

• Nonlinear problems;

• Different noise models;

• Exponentially ill-posed problems.

H. Li and F. Werner (2017).
Empirical risk minimization as parameter choice rule for general linear
regularization methods.
arXiv: 1703.07809.
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