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Introduction Motivation

Why focusing on Poisson data?

• In various applications measurements are photon counts:
• Flourescence microscopy
• Astonomical imaging
• X-ray diffraction imaging
• Positron Emission Tomography
• ...

• At low energies the quantization of energy is the main source of noise

• Given an ideal photon detector, the data is purely Poisson distributed
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Introduction Motivation

Discrete model

• Suppose the imaging procedure is modelled by a mapping
F : Rn → Rm

• Let u† ∈ Rn denote the exact solution we seek for and g † := F
(
u†
)
,

require g † ≥ 0

• For the data gobs ∈ Rm the value gobs
i is the number of photon

counts in detector region i ∈ {1, ...,m}
• In the ideal case gobs ∈ Rm is a random variable such that

gobs
i ∼ Poi

(
g †i

)
, e.g.

P
[
gobs
i = k

]
=

(
g †i

)k
k!

exp
(
−g †i

)
.
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A continuous model

Continuous model I

• Now F : X → Y with Banach spaces X and Y ⊂ L1 (M)

• Consequently u† ∈ X and g † := F
(
u†
)
∈ L1 (M), require g † ≥ 0

Deterministic approach

Suppose the observed data gobs ∈ Y satisfies a noise bound∥∥∥gobs − g †
∥∥∥
Y
≤ δ.

Alternatively, the norm ‖· − ·‖Y could be replaced by a different norm or a
general loss d .
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A continuous model

Continuous model II

• In the ideal case, the data still consists of photon counts

• Say the total number of observed photons is n and their positions are
xi ∈M

• n can be influenced by the ’exposure time’, mathematically described
by a scaling factor t > 0

• Associate the measure G̃t =
∑n

i=1 δxi

Statistic approach

The observed data is a scaled Poisson process Gt = G̃t/t with intensity
g †, i.e. the measure G̃t satisfies the following axioms:

1 For each choice of disjoint, measurable sets A1, ...,An ⊂M the
random variables G̃t (Aj) are stochastically independent.

2 E
[
G̃t (A)

]
=
∫
A tg † dx for all A ⊂M measurable.
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A continuous model

Deterministic vs. statistic model

• Deterministic model:
• Clear definition of the noise level, but ...
• ... the relation to a Poisson distribution is lost!

• Statistic model:
• Poisson distribution incorporated, in fact it holds

G̃t (A) ∼ Poi

t

∫
A

g† dx


for all measurable A ⊂M, but ...

• ... Gt /∈ Y and no clear definition of the noise level so far!

• Note: Similar statistic model is used by Cavalier & Koo 2002,
Antoniadis & Bigot 2006.
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A continuous model

Statistic model: noise level I

• For a function g let ∫
M
g dG̃t :=

n∑
i=1

g (xi )

• Then

E

[ ∫
M
g dGt

]
=

∫
M
gg † dx ,

Var

[ ∫
M
g dGt

]
=

1

t2
E

[ ∫
M
g2 dG̃t

]
=

1

t

∫
M
g2g † dx .

• Thus any bounded linear functional of g † can be estimated unbiasedly
with a variance proportional to 1

t .

• This suggests that the noise level should be proportional to 1/
√
t.

Frank Werner, Göttingen, Germany Inverse Problems with Poisson data May 26th, IPMS 2014 10 / 27



A continuous model

Statistic model: noise level II
• Any bounded linear functional of g † can be estimated unbiasedly with

a variance proportional to 1
t .

 For our analysis, such a property is needed uniformly!
• The following result is based on the work of Renaud-Bouret 2003.

Uniform concentration inequality (W., Hohage 2012)

Suppose M ⊂ Rd is bounded & Lipschitz, s > d/2 and set

G(R) := {g ∈ Hs(M) : ‖g‖Hs ≤ R}.

Then ∃ c = c
(
M, s,

∥∥g †∥∥
L1

)
> 0 such that

P

[
sup

g∈G(R)

∣∣∣∣∫
M
g
(
dGt − g † dx

)∣∣∣∣ ≥ ρ√
t

]
≤ exp

(
− ρ

cR

)
for all R ≥ 1, t ≥ 1 and ρ ≥ cR.
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Regularization methods Prelimilaries

Some notation

• Replace the discontinuous mapping F−1 by continuous
approximations Rα

• Often solutions restricted to B ⊂ X
� Deterministic  Rα : Y → B

Statistic  Rα : M (M)→ B where M (M) =̂space of all measures

• α chosen by a parameter choice rule ᾱ

� Deterministic  ᾱ : (0,∞)× Y → (0,∞)
Statistic  ᾱ : (0,∞)×M (M)→ (0,∞)

• We aim for ’convergence’ w.r.t. a loss d : B×B→ [0,∞) with
d (u, u) = 0 for all u ∈ B

• Typical examples: Bregman distance

d
(
u, u†

)
= Du∗

R

(
u, u†

)
:= R (u)−R

(
u†
)
−
〈
u∗, u − u†

〉
where u∗ ∈ ∂R

(
u†
)
⊂ X ′ or norm d

(
u, u†

)
=
∥∥u − u†

∥∥
X .
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Regularization methods Definitions

Regularization schemes

Deterministic Regularization Scheme

(Rα, ᾱ) is called a deterministic regularization scheme w.r.t. d if

lim
δ↘0

sup
{
d
(
Rᾱ(δ,gobs)

(
gobs

)
, u†
) ∣∣ gobs ∈ Y, ‖gobs − F (u†)‖ ≤ δ

}
= 0

Statistical Regularization Scheme

(Rα, ᾱ) is called a (consistent) statistical regularization scheme under
Poisson data w.r.t. d if

∀ ε > 0 : lim
t→∞

P
[
d
(
Rᾱ(t,Gt) (Gt) , u

†
)
> ε
]

= 0,

where Gt is a scaled Poisson process with intensity F
(
u†
)
.
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Regularization methods Definitions

Convergence rates
• let ψ : [0,∞)→ [0,∞), ψ ↗, ψ (0) = 0, M ⊂ B.

Deterministic convergence rates

(Rα, ᾱ) obeys the deterministic convergence rate ψ on M w.r.t. d if

d
(
Rᾱ(δ,gobs)

(
gobs

)
, u†
)

= O (ψ (δ)) , δ ↘ 0

for all u† ∈ M and
∥∥gobs − F

(
u†
)∥∥
Y ≤ δ.

Statistical convergence rates

(Rα, ᾱ) obeys the statistical convergence rate ψ on M w.r.t. d if

E
[
d
(
Rᾱ(δ,Gt) (Gt) , u

†
)]

= O (ψ (t)) , t →∞

for all u† ∈ M where Gt is a scaled Poisson process with intensity F
(
u†
)
.
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Examples for regularization methods Projection methods

Regularization by projection

• Suppose F = T is bounded, linear and positive definite, for simplicity
X = Y = L2 (M).

• Regularization by projection: Vn ⊂ X with dim (Vn) <∞ and

uprojn := argmin
u∈Vn

∥∥∥Tu − gobs
∥∥∥2

Y
(1)

• If {v1, ..., vn} is an orthonormal basis of Vn, then

uprojn ∈ Vn :
〈
Tuprojn , vj

〉
=

∫
M
vjg

obs dx , 1 ≤ j ≤ n.

• Define uprojn also in the statistical case by replacing gobs by Gt .

• In principle the norm in (1) can be replaced by any other loss, but ...

• ... for the natural Poissonian choice this leads to problems proving
existence of uprojn and stability.
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Examples for regularization methods Projection methods

Some (simplified) results

uprojn ∈ Vn :
〈
Tuprojn , vj

〉
=

∫
M
vj dGt , 1 ≤ j ≤ n.

• Cavalier & Koo 2002:
• Vn = suitable wavelet space, T = Radon transform
• The projection estimator exists and depends continuously on the data
• Explicit convergence rate as t →∞

• Problem: uprojn in general not non-negative
• Antoniadis & Bigot 2006:

• Vn = exp (Un) with a suitable Wavelet space Un

• Corresponding estimator (if existent) is always non-negative and
depends continuously on the data

• As t →∞, the estimator exists with probability 1.
• Explicit convergence rate as t →∞

• Consistency of the estimator is unknown, i.e. it is unclear if uprojn

yields a statistical regularization scheme.
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Examples for regularization methods Tikhonov regularization

Variational regularization I

• Disadvantage of the aformentioned methods: design does not rely on
Poisson distribution!

• Different approach: likelihood methods!
Minimize

u 7→ S (Gt ;F (u)) := − ln
(
P
[
Gt

∣∣ the exact density is F (u)
])

over all admissible u.

• Still ill-posed due to ill-posedness of the original problem. This gives
rise to the following variant of Tikhonov regularization:

uα ∈ argmin
u∈B

[S (Gt ;F (u)) + αR (u)]

where R is a convex penalty term and α > 0 a regularization
parameter.
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Examples for regularization methods Tikhonov regularization

Variational regularization II

uα ∈ argmin
u∈B

[S (Gt ;F (u)) + αR (u)]

• Main issue in the analysis: data fidelity term lacks of a triangle-type
inequality!

• References for deterministic regularization properties:
Eggermont & LaRiccia 1996, Resmerita & Anderssen 2007, Pöschl
2007, Bardsley & Laobeul 2008, Bardsley & Luttman 2009, Bardsley
2010, Flemming 2010 & 2011, Lorenz & Worliczek 2013 ...

• References for deterministic convergence rates:
Benning & Burger 2011, Flemming 2010 & 2011 ...

• Here: statistic case.
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Examples for regularization methods Tikhonov regularization as a statistical regularization scheme

Data fidelity terms

• Negative log-likelihood for a scaled Poisson process:

S0 (Gt ; g) =

∫
M
g dx −

∫
M

ln (g) dGt , g ≥ 0 a.e.

• ideal data misfit functional for exact data g † given by

E [S0 (Gt ; g)]− E
[
S0

(
Gt ; g

†)] =

∫
M

[
g − g† − g† ln

(
g

g†

)]
dx

which is the Kullback-Leibler divergence KL
(
g †; g

)
.

• we introduce a shift σ > 0 and consider

Sσ (Gt ; g) :=

∫
M
g dx −

∫
M

ln (g + σ) (dGt + σdx)

T
(
g †; g

)
:= KL

(
g † + σ; g + σ

)
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Examples for regularization methods Tikhonov regularization as a statistical regularization scheme

Assumptions

Assumptions on the problem

• (X , τX ) top. vector space, τX weaker than norm topology, and
B ⊂ X closed and convex.

• F : B→ L1 (M) with M ⊂ Rd bounded & Lipschitz and

1 F : B→ L1 (M) is τX − τω-sequentially continuous.
2 F (u) ≥ 0 a.e. for all u ∈ B.
3 There exists s > d/2 such that F (B) is a bounded subset of Hs (M).

Assumptions on the method

• R : B→ (−∞,∞] is convex, proper and τX -sequentially lower
semicontinuous.

• R-sublevelsets
{
u ∈ X

∣∣ R (u) ≤ M
}

are τX -sequentially
pre-compact.
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Examples for regularization methods Tikhonov regularization as a statistical regularization scheme

Statistical regularization properties

uα ∈ argmin
u∈B

[Sσ (Gt ;F (u)) + αR (u)]

Under those assumptions, a minimizer uα exists with probability one.

Regularization properties (Hohage, W. 2014)

RαGt := uα with any minimizer uα equipped with any parameter choice
rule ᾱ fulfilling

lim
t→∞

ᾱ (t,Gt) = 0, lim
t→∞

ln (t)√
tᾱ (t,Gt)

= 0

defines a statistical regularization scheme under Poisson data w.r.t. the
Bregman distance.

T. Hohage and F. Werner.
Inverse Problems with Poisson Data: statistical regularization theory, applications and
algorithms.
In preparation, 2014
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Examples for regularization methods Statistical convergence rates

Source condition

• As the problem is ill-posed, convergence rates can only be obtained
for a strict subset M ⊂ X

• Here the set M is described by a variational inequality as source
condition:

βDu∗
R

(
u, u†

)
≤ R (u)−R

(
u†
)

+ ϕ
(
T
(
g †;F (u)

))
(2)

for all u ∈ B with β > 0. ϕ is assumed to fulfill
• ϕ (0) = 0,
• ϕ↗,
• ϕ concave.

• Now the source set M = Mϕ
R (β) consists of all u† ∈ B satisfying (2).
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Examples for regularization methods Statistical convergence rates

Statistical convergence rates

A priori convergence rates (W., Hohage 2012)

Then for α = α (t) chosen appropriately we obtain the statistical
convergence rate ψ (t) = ϕ

(
1/
√
t
)

on Mϕ
R (β) w.r.t. Du∗

R
(
·, u†

)
, i.e.

E
[
Du∗
R

(
uα, u

†
)]

= O
(
ϕ

(
1√
t

))
, t →∞.

Under suitable assumptions α can be chosen according to a Lepsk̆ı-type
balancing principle yielding the same rate up to a log-factor.

F. Werner and T. Hohage.
Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems
with Poisson data.
Inverse Problems 28, 104004, 2012
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Conclusion

Presented results

• Regularization theory for inverse problems with Poisson data:
• Sound mathematical model
• Definition of regularization properties
• Convergence rates

• Projection-type estimators

• Tikhonov regularization obeys all those properties under reasonable
assumptions

Thank you for your attention!

Frank Werner, Göttingen, Germany Inverse Problems with Poisson data May 26th, IPMS 2014 27 / 27


