Statistical regularization theory for Inverse Problems with Poisson data

Frank Werner^{1,2}, joint with Thorsten Hohage

¹Statistical Inverse Problems in Biophysics Group Max Planck Institute for Biophysical Chemistry

²Felix Bernstein Institute for Mathematical Statistics in the Biosciences University of Göttingen

Frank Werner, Göttingen, Germany

Outline

1 Introduction

- 2 A continuous model
- **3** Regularization methods
- **4** Examples for regularization methods

5 Conclusion

Frank Werner, Göttingen, Germany

Introduction

Outline

1 Introduction

- 2 A continuous model
- **3** Regularization methods
- **4** Examples for regularization methods
- **5** Conclusion

Frank Werner, Göttingen, Germany

Why focusing on Poisson data?

- In various applications measurements are photon counts:
 - Flourescence microscopy
 - Astonomical imaging
 - X-ray diffraction imaging
 - Positron Emission Tomography
 - ...
- At low energies the quantization of energy is the main source of noise
- Given an ideal photon detector, the data is purely Poisson distributed

Discrete model

- Suppose the imaging procedure is modelled by a mapping $F: \mathbb{R}^n \to \mathbb{R}^m$
- Let $u^{\dagger} \in \mathbb{R}^n$ denote the exact solution we seek for and $g^{\dagger} := F(u^{\dagger})$, require $g^{\dagger} \ge 0$
- For the data $g^{obs} \in \mathbb{R}^m$ the value g_i^{obs} is the number of photon counts in detector region $i \in \{1, ..., m\}$
- In the ideal case $g^{\text{obs}} \in \mathbb{R}^m$ is a random variable such that $g_i^{\text{obs}} \sim \text{Poi}\left(g_i^{\dagger}\right)$, e.g.

$$\mathbf{P}\left[g_{i}^{\text{obs}}=k\right]=\frac{\left(g_{i}^{\dagger}\right)^{k}}{k!}\exp\left(-g_{i}^{\dagger}\right).$$

Frank Werner, Göttingen, Germany

A continuous model

Outline

1 Introduction

2 A continuous model

3 Regularization methods

4 Examples for regularization methods

5 Conclusion

Frank Werner, Göttingen, Germany

Continuous model I

- Now $F: \mathcal{X} \to \mathcal{Y}$ with Banach spaces \mathcal{X} and $\mathcal{Y} \subset \mathsf{L}^1(\mathbb{M})$
- Consequently $u^{\dagger}\in\mathcal{X}$ and $g^{\dagger}:=$ $F\left(u^{\dagger}
 ight)\in\mathsf{L}^{1}\left(\mathbb{M}
 ight)$, require $g^{\dagger}\geq0$

Deterministic approach

Suppose the observed data $g^{\mathrm{obs}} \in \mathcal{Y}$ satisfies a noise bound

$$\left\| \boldsymbol{g}^{\mathrm{obs}} - \boldsymbol{g}^{\dagger} \right\|_{\mathcal{Y}} \leq \delta$$

Alternatively, the norm $\|\cdot - \cdot\|_{\mathcal{Y}}$ could be replaced by a different norm or a general loss d.

Frank Werner, Göttingen, Germany

Inverse Problems with Poisson data

May 26th, IPMS 2014 7 / 27

Continuous model II

- In the ideal case, the data still consists of photon counts
- Say the total number of observed photons is n and their positions are $x_i \in \mathbb{M}$
- n can be influenced by the 'exposure time', mathematically described by a scaling factor t > 0

• Associate the measure
$$ilde{G}_t = \sum_{i=1}^n \delta_{\mathsf{x}_i}$$

Statistic approach

The observed data is a scaled **Poisson process** $G_t = \tilde{G}_t/t$ with intensity g^{\dagger} , i.e. the measure \tilde{G}_t satisfies the following axioms:

1 For each choice of disjoint, measurable sets $A_1, ..., A_n \subset \mathbb{M}$ the random variables $\tilde{G}_t(A_j)$ are stochastically independent.

2
$$\mathbf{E}\left[\tilde{G}_{t}\left(A\right)\right] = \int_{A} tg^{\dagger} dx$$
 for all $A \subset \mathbb{M}$ measurable.

Frank Werner, Göttingen, Germany

Deterministic vs. statistic model

- Deterministic model:
 - Clear definition of the noise level, but ...
 - ... the relation to a Poisson distribution is lost!
- Statistic model:
 - Poisson distribution incorporated, in fact it holds

$$ilde{G}_t(A) \sim \operatorname{Poi}\left(t\int\limits_A g^\dagger \,\mathrm{d}x
ight)$$

for all measurable $A \subset \mathbb{M}$, but ...

- ... $G_t \notin \mathcal{Y}$ and no clear definition of the noise level so far!
- Note: Similar statistic model is used by Cavalier & Koo 2002, Antoniadis & Bigot 2006.

Frank Werner, Göttingen, Germany

A continuous model

Statistic model: noise level I

• For a function g let

$$\int_{\mathbb{M}} g \,\mathrm{d}\tilde{G}_t := \sum_{i=1}^n g\left(x_i\right)$$

Then

$$\mathbf{E}\left[\int_{\mathbb{M}} g \,\mathrm{d}G_t\right] = \int_{\mathbb{M}} g g^{\dagger} \,\mathrm{d}x,$$
$$\mathbf{Var}\left[\int_{\mathbb{M}} g \,\mathrm{d}G_t\right] = \frac{1}{t^2} \mathbf{E}\left[\int_{\mathbb{M}} g^2 \,\mathrm{d}\tilde{G}_t\right] = \frac{1}{t} \int_{\mathbb{M}} g^2 g^{\dagger} \,\mathrm{d}x.$$

- Thus any bounded linear functional of g^{\dagger} can be estimated unbiasedly with a variance proportional to $\frac{1}{t}$.
- This suggests that the noise level should be proportional to $1/\sqrt{t}$.

Statistic model: noise level II

- Any bounded linear functional of g^{\dagger} can be estimated unbiasedly with a variance proportional to $\frac{1}{t}$.
- \rightsquigarrow For our analysis, such a property is needed uniformly!
 - The following result is based on the work of Renaud-Bouret 2003.

Uniform concentration inequality (W., Hohage 2012)

Suppose $\mathbb{M} \subset \mathbb{R}^d$ is bounded & Lipschitz, s > d/2 and set

$$\mathfrak{G}(R) := \{g \in H^{\mathfrak{s}}(\mathbb{M}) : \|g\|_{H^{\mathfrak{s}}} \leq R\}.$$

Then $\exists \ c = c \left(\mathbb{M}, s, \left\| g^{\dagger} \right\|_{\mathbf{L}^1}
ight) > 0$ such that

$$\mathbf{P}\left[\sup_{\mathfrak{g}\in\mathfrak{G}(R)}\left|\int_{\mathbb{M}}\mathfrak{g}\left(\,\mathrm{d}\,G_t-g^{\dagger}\,\mathrm{d}x\right)\right|\geq\frac{\rho}{\sqrt{t}}\right]\leq\exp\left(-\frac{\rho}{cR}\right)$$

for all $R \ge 1$, $t \ge 1$ and $\rho \ge cR$.

Regularization methods

Outline

1 Introduction

2 A continuous model

3 Regularization methods

4 Examples for regularization methods

5 Conclusion

Frank Werner, Göttingen, Germany

Inverse Problems with Poisson data

May 26th, IPMS 2014 12 / 27

Some notation

- Replace the discontinuous mapping F^{-1} by **continuous** approximations R_{α}
- Often solutions restricted to $\mathfrak{B}\subset\mathcal{X}$
- ♦ Deterministic $\rightsquigarrow R_{\alpha} : \mathcal{Y} \to \mathfrak{B}$ Statistic $\rightsquigarrow R_{\alpha} : \mathfrak{M}(\mathbb{M}) \to \mathfrak{B}$ where $\mathfrak{M}(\mathbb{M}) \triangleq$ space of all measures
- α chosen by a parameter choice rule $\bar{\alpha}$
- ♦ Deterministic $\rightsquigarrow \bar{\alpha} : (0, \infty) \times \mathcal{Y} \to (0, \infty)$ Statistic $\rightsquigarrow \bar{\alpha} : (0, \infty) \times \mathfrak{M}(\mathbb{M}) \to (0, \infty)$
- We aim for 'convergence' w.r.t. a loss $d: \mathfrak{B} \times \mathfrak{B} \to [0, \infty)$ with d(u, u) = 0 for all $u \in \mathfrak{B}$
- Typical examples: Bregman distance

$$d\left(u,u^{\dagger}\right) = \mathcal{D}_{\mathcal{R}}^{u^{\ast}}\left(u,u^{\dagger}\right) := \mathcal{R}\left(u\right) - \mathcal{R}\left(u^{\dagger}\right) - \left\langle u^{\ast},u-u^{\dagger}\right\rangle$$

where $u^* \in \partial \mathcal{R}\left(u^\dagger\right) \subset \mathcal{X}'$ or norm $d\left(u, u^\dagger\right) = \left\|u - u^\dagger\right\|_{\mathcal{X}}$.

Frank Werner, Göttingen, Germany

Regularization schemes

Deterministic Regularization Scheme

 $(R_{\alpha}, \bar{\alpha})$ is called a **deterministic regularization scheme** w.r.t. *d* if

$$\lim_{\delta\searrow 0} \sup\left\{d\left(R_{\bar{\alpha}\left(\delta, g^{\mathrm{obs}}\right)}\left(g^{\mathrm{obs}}\right), u^{\dagger}\right) \ \left| \ g^{\mathrm{obs}} \in \mathcal{Y}, \left\|g^{\mathrm{obs}} - F(u^{\dagger})\right\| \le \delta\right\} = 0$$

Statistical Regularization Scheme

 $(R_{\alpha}, \bar{\alpha})$ is called a (consistent) statistical regularization scheme under Poisson data w.r.t. *d* if

$$\forall \ \varepsilon > 0 \ : \qquad \lim_{t \to \infty} \mathbf{P}\left[d\left(R_{\bar{\alpha}(t,G_t)}\left(G_t\right), u^{\dagger}\right) > \varepsilon\right] = 0,$$

where G_t is a scaled Poisson process with intensity $F(u^{\dagger})$.

Frank Werner, Göttingen, Germany

Convergence rates

• let
$$\psi : [0,\infty) \to [0,\infty)$$
, $\psi \nearrow, \psi(0) = 0$, $M \subset \mathfrak{B}$.

Deterministic convergence rates

 $(R_{\alpha}, \bar{\alpha})$ obeys the **deterministic convergence rate** ψ on M w.r.t. d if

$$d\left(R_{\bar{\alpha}\left(\delta, g^{\mathrm{obs}}\right)}\left(g^{\mathrm{obs}}\right), u^{\dagger}\right) = \mathcal{O}\left(\psi\left(\delta\right)\right), \qquad \delta \searrow 0$$

for all
$$u^{\dagger} \in M$$
 and $\left\| g^{\mathrm{obs}} - F\left(u^{\dagger}
ight) \right\|_{\mathcal{Y}} \leq \delta.$

Statistical convergence rates

 $(R_{\alpha}, \bar{\alpha})$ obeys the statistical convergence rate ψ on M w.r.t. d if

$$\mathsf{E}\left[d\left(R_{\bar{\alpha}\left(\delta,G_{t}\right)}\left(G_{t}\right),u^{\dagger}\right)\right]=\mathcal{O}\left(\psi\left(t\right)\right),\qquad t\rightarrow\infty$$

for all $u^{\dagger} \in M$ where G_t is a scaled Poisson process with intensity $F(u^{\dagger})$.

Outline

1 Introduction

- 2 A continuous model
- **3** Regularization methods
- **4** Examples for regularization methods

5 Conclusion

Frank Werner, Göttingen, Germany

Inverse Problems with Poisson data

May 26th, IPMS 2014 16 / 27

Regularization by projection

- Suppose F = T is bounded, linear and positive definite, for simplicity *X* = *Y* = L² (M).
- Regularization by projection: $V_n \subset \mathcal{X}$ with dim $(V_n) < \infty$ and

$$u_n^{\text{proj}} := \underset{u \in V_n}{\operatorname{argmin}} \left\| Tu - g^{\text{obs}} \right\|_{\mathcal{Y}}^2$$
(1)

• If $\{v_1, ..., v_n\}$ is an orthonormal basis of V_n , then

$$u_n^{\mathrm{proj}} \in V_n: \qquad \left\langle T u_n^{\mathrm{proj}}, v_j \right\rangle = \int_{\mathbb{M}} v_j g^{\mathrm{obs}} \, \mathrm{d}x, \qquad 1 \leq j \leq n.$$

- Define u_n^{proj} also in the statistical case by replacing g^{obs} by G_t .
- In principle the norm in (1) can be replaced by any other loss, but ...
- ... for the natural Poissonian choice this leads to problems proving existence of $u_n^{\rm proj}$ and stability.

Frank Werner, Göttingen, Germany

Projection methods

Some (simplified) results

$$u_n^{\mathrm{proj}} \in V_n$$
: $\langle Tu_n^{\mathrm{proj}}, v_j \rangle = \int_{\mathbb{M}} v_j \, \mathrm{d}G_t, \quad 1 \leq j \leq n.$

- Cavalier & Koo 2002:
 - V_n = suitable wavelet space, T = Radon transform
 - The projection estimator exists and depends continuously on the data
 - Explicit convergence rate as $t \to \infty$
- Problem: u_n^{proj} in general not non-negative
- Antoniadis & Bigot 2006:
 - $V_n = \exp(U_n)$ with a suitable Wavelet space U_n
 - Corresponding estimator (if existent) is always non-negative and depends continuously on the data
 - As $t \to \infty$, the estimator exists with probability 1.
 - Explicit convergence rate as $t \to \infty$
- Consistency of the estimator is unknown, i.e. it is unclear if u_n^{proj} yields a statistical regularization scheme.

Frank Werner, Göttingen, Germany

Variational regularization I

- Disadvantage of the aformentioned methods: design does not rely on Poisson distribution!
- Different approach: likelihood methods! Minimize

$$u\mapsto\mathcal{S}\left(\mathsf{G}_{t};\mathsf{F}\left(u
ight)
ight):=-\ln\left(\mathsf{P}\left[\mathsf{G}_{t}\;\middle|\; ext{the exact density is }\mathsf{F}\left(u
ight)
ight]
ight)$$

over all admissible u.

• Still ill-posed due to ill-posedness of the original problem. This gives rise to the following variant of Tikhonov regularization:

$$u_{\alpha} \in \underset{u \in \mathfrak{B}}{\operatorname{argmin}} \left[\mathcal{S} \left(G_{t}; F(u) \right) + \alpha \mathcal{R} \left(u \right)
ight]$$

where \mathcal{R} is a convex penalty term and $\alpha > 0$ a regularization parameter.

Frank Werner, Göttingen, Germany

Inverse Problems with Poisson data

May 26th, IPMS 2014 19 / 27

Variational regularization II

$$u_{\alpha} \in \operatorname*{argmin}_{u \in \mathfrak{B}} \left[\mathcal{S} \left(G_t; F(u) \right) + lpha \mathcal{R} \left(u \right) \right]$$

- Main issue in the analysis: data fidelity term lacks of a triangle-type inequality!
- References for deterministic regularization properties: Eggermont & LaRiccia 1996, Resmerita & Anderssen 2007, Pöschl 2007, Bardsley & Laobeul 2008, Bardsley & Luttman 2009, Bardsley 2010, Flemming 2010 & 2011, Lorenz & Worliczek 2013 ...
- References for deterministic convergence rates: Benning & Burger 2011, Flemming 2010 & 2011 ...
- Here: statistic case.

Frank Werner, Göttingen, Germany

Data fidelity terms

• Negative log-likelihood for a scaled Poisson process:

$$\mathcal{S}_0\left(G_t;g
ight) = \int_{\mathbb{M}} g \,\mathrm{d}x - \int_{\mathbb{M}} \ln\left(g
ight) \,\mathrm{d}G_t, \qquad g \geq 0 \,\,\mathrm{a.e.}$$

• ideal data misfit functional for exact data g^{\dagger} given by

$$\mathbf{E}\left[\mathcal{S}_{0}\left(G_{t};g\right)\right] - \mathbf{E}\left[\mathcal{S}_{0}\left(G_{t};g^{\dagger}\right)\right] = \int_{\mathbb{M}} \left[g - g^{\dagger} - g^{\dagger} \ln\left(\frac{g}{g^{\dagger}}\right)\right] \, \mathrm{d}x$$

which is the Kullback-Leibler divergence $\mathbb{KL}(g^{\dagger}; g)$.

• we introduce a shift $\sigma > 0$ and consider

$$egin{aligned} &\mathcal{S}_{\sigma}\left(\mathcal{G}_{t};g
ight) := \int_{\mathbb{M}} g \, \mathrm{d}x - \int_{\mathbb{M}} \ln\left(g+\sigma
ight) \left(\mathrm{d}\mathcal{G}_{t}+\sigma \mathrm{d}x
ight) \ &\mathcal{T}\left(g^{\dagger};g
ight) := \mathbb{KL}\left(g^{\dagger}+\sigma;g+\sigma
ight) \end{aligned}$$

Frank Werner, Göttingen, Germany

Assumptions

Assumptions on the problem

- $(\mathcal{X}, \tau_{\mathcal{X}})$ top. vector space, $\tau_{\mathcal{X}}$ weaker than norm topology, and $\mathfrak{B} \subset \mathcal{X}$ closed and convex.
- F: ℬ → L¹ (M) with M ⊂ R^d bounded & Lipschitz and
 F: ℬ → L¹ (M) is τ_X − τ_ω-sequentially continuous.
 F(u) ≥ 0 a.e. for all u ∈ ℬ.
 There exists s > d/2 such that F(ℬ) is a bounded subset of H^s (M).

Assumptions on the method

- $\mathcal{R}: \mathfrak{B} \to (-\infty, \infty]$ is convex, proper and $\tau_{\mathcal{X}}$ -sequentially lower semicontinuous.
- \mathcal{R} -sublevelsets $\{u \in \mathcal{X} \mid \mathcal{R}(u) \leq M\}$ are $\tau_{\mathcal{X}}$ -sequentially pre-compact.

Frank Werner, Göttingen, Germany

Inverse Problems with Poisson data

May 26th, IPMS 2014 22 / 27

Statistical regularization properties

$$u_{\alpha} \in \underset{u \in \mathfrak{B}}{\operatorname{argmin}} \left[\mathcal{S}_{\sigma} \left(\mathsf{G}_{t}; \mathsf{F} \left(u \right) \right) + \alpha \mathcal{R} \left(u \right) \right]$$

Under those assumptions, a minimizer u_{α} exists with probability one.

Regularization properties (Hohage, W. 2014)

 $R_{\alpha}G_t := u_{\alpha}$ with any minimizer u_{α} equipped with any parameter choice rule $\bar{\alpha}$ fulfilling

$$\lim_{t \to \infty} \bar{\alpha}(t, G_t) = 0, \qquad \lim_{t \to \infty} \frac{\ln(t)}{\sqrt{t}\bar{\alpha}(t, G_t)} = 0$$

defines a statistical regularization scheme under Poisson data w.r.t. the Bregman distance.

 T. Hohage and F. Werner. Inverse Problems with Poisson Data: statistical regularization theory, applications and algorithms. In preparation, 2014
 Frank Werner, Göttingen, Germany
 Inverse Problems with Poisson data
 May 26th, IPMS 2014
 23 / 27

Source condition

- As the problem is ill-posed, convergence rates can only be obtained for a strict subset $M \subset \mathcal{X}$
- Here the set *M* is described by a variational inequality as source condition:

$$\beta \mathcal{D}_{\mathcal{R}}^{u^{*}}\left(u, u^{\dagger}\right) \leq \mathcal{R}\left(u\right) - \mathcal{R}\left(u^{\dagger}\right) + \varphi\left(\mathcal{T}\left(g^{\dagger}; F\left(u\right)\right)\right)$$
(2)

for all $u \in \mathfrak{B}$ with $\beta > 0$. φ is assumed to fulfill

- $\varphi(0)=0$,
- *φ* ∕,
- φ concave.

• Now the source set $M = M_{\mathcal{R}}^{\varphi}(\beta)$ consists of all $u^{\dagger} \in \mathfrak{B}$ satisfying (2).

Frank Werner, Göttingen, Germany

Inverse Problems with Poisson data

May 26th, IPMS 2014 24 / 27

Statistical convergence rates

A priori convergence rates (W., Hohage 2012)

Then for $\alpha = \alpha(t)$ chosen appropriately we obtain the statistical convergence rate $\psi(t) = \varphi(1/\sqrt{t})$ on $M_{\mathcal{R}}^{\varphi}(\beta)$ w.r.t. $\mathcal{D}_{\mathcal{R}}^{u^*}(\cdot, u^{\dagger})$, i.e.

$$\mathsf{E}\left[\mathcal{D}_{\mathcal{R}}^{u^{*}}\left(u_{lpha},u^{\dagger}
ight)
ight]=\mathcal{O}\left(arphi\left(rac{1}{\sqrt{t}}
ight)
ight),\qquad t
ightarrow\infty.$$

Under suitable assumptions α can be chosen according to a Lepskĭ-type balancing principle yielding the same rate up to a log-factor.

F. Werner and T. Hohage.

Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data.

Inverse Problems 28, 104004, 2012

Frank Werner, Göttingen, Germany

Conclusion

Outline

1 Introduction

- 2 A continuous model
- **3** Regularization methods
- **4** Examples for regularization methods

5 Conclusion

Frank Werner, Göttingen, Germany

Inverse Problems with Poisson data

May 26th, IPMS 2014 26 / 27

Conclusion

Presented results

- Regularization theory for inverse problems with Poisson data:
 - Sound mathematical model
 - Definition of regularization properties
 - Convergence rates
- Projection-type estimators
- Tikhonov regularization obeys all those properties under reasonable assumptions

Thank you for your attention!

Frank Werner, Göttingen, Germany

Inverse Problems with Poisson data

May 26th, IPMS 2014 27 / 27