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Introduction to scanning fluorescence microscopy

Scanning fluorescence microscopy in a nutshell

Pulsed scanning fluorescence microscopy

→ For each scanning position s repeat

1 Visible laser pulse focused to s (illumination)

2 Light is absorbed by fluorophores (excitation)

3 Fluorophores emit light of different wavelength (emission)

4 The emitted light is recorded (detection)

→ Until the markers start to bleach (say t times)

light source detector

OFF

OFF

OFF
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Introduction to scanning fluorescence microscopy

Resolution

• Abbe’s diffraction limit: light cannot be focused to a point

 When scanning at s, also markers at neighboring positions are excited
and may emit light

 Recordings are blurred by the so-called point-spread-function, which
limits the resolution to approximately half the wavelength of the
excitation light.

• However, super-resolution is possible!
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Introduction to scanning fluorescence microscopy

Super-Resolution

”for the development of super-resolved fluorescence microscopy”
Frank Werner, MPIbpC Göttingen Statistical inference for molecules April 19, 2018 6 / 29



Introduction to scanning fluorescence microscopy

STimulated Emission Depletion (Hell & Wichmann ’94)

OFF

ON

depletion pulseexcitation pulse

fluorescence

Timo Aspelmeier, Alexander
Egner, and Axel Munk
Modern Statistical
Challenges in
High-Resolution
Fluorescence Microscopy
Ann. Rev. Statist. Appl. 2,
163–202 (2015).
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Introduction to scanning fluorescence microscopy

Modeling

• Let k be the psf determined by the effective illumination pattern

• Denote by f the (unknown) fluorophore intensity

• Observed data Y (s) ∼ Bin (t, (k ∗ f ) (s)) for any scanning position s,

(k ∗ f ) (x) =

∫
k (x − y) f (y) dy

(with proper renormalization of k)

• Typically Fk > 0, so f is uniquely determined by k ∗ f
• But k is also smooth and hence the problem is ill-posed
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Methodology

What means Where? mathematically?

H1 and H2 be Hilbert-Spaces of functions, T : H1 → H2 a bounded linear
operator and let f ∈ H1.

Given:

Observations
Yj = Tf (sj) + ξj, j ∈ {1, . . . , n}d .

• sj ∈ Rd , j ∈ {1, . . . , n}d , are the sampling points.

• ξj, j ∈ {1, . . . , n}d , are independent, centered random variables.

Aim:

Identify regions B with positive intensity, i.e. f|B 6≡ 0, at controlled family-
wise error rate (FWER).

Frank Werner, MPIbpC Göttingen Statistical inference for molecules April 19, 2018 10 / 29



Methodology

Scanning

• A priori we do not know where markers are, if they cluster, and if so
which size the clusters have.

• Therefore we want to scan the image with all possible translations of
boxes of different sizes (scales):
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Methodology

Scanning

• A priori we do not know where markers are, if they cluster, and if so
which size the clusters have.

• Therefore we want to scan the image with all possible translations of
boxes of different sizes (scales):

etc.

But: We do not observe f directly, only data related to Tf available.
How to get rid of T?
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Methodology

Scanning in Inverse Problems

• For each box B, choose a suitable function ϕB with supp (ϕB) ⊂ B,
ϕB ≥ 0. Then it still holds

〈ϕB , f 〉 > 0 ⇒ f|B 6≡ 0

• If ϕB = T ∗ΦB , then:

〈ΦB ,Tf 〉 = 〈T ∗ΦB , f 〉 = 〈ϕB , f 〉

• The left-hand side can be estimated by 〈ΦB ,Y 〉 ( local test
statistic)

• Consequently, we scan over f by means of {ϕB}B by scanning over
Tf by means of {ΦB}B
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Methodology

Multiscale Scanning in Inverse Problems

• Let U = {ϕi ,n}1≤i≤N ⊂ H1 be a dictionary of scanning functions,
ϕi ,n = T ∗Φi ,n for all i and n.

• Theoretical analysis depends on the ”structure” of {Φi ,n}i ,n.

In this talk...

... supp(Φi ,n) ⊆ [0, 1]d for all i and n, and each index i belongs to position
ti ,n = (ti ,n,1, . . . , ti ,n,d)T and scale hi ,n = (hi ,n,1, . . . , hi ,n,d)T :

Φi ,n(z) = Φhi,n

(
ti ,n − z

hi ,n

)
.

... and we consider the multiscale scan statistic

Tn(Y ) = max
i

wi ,n

 〈Φi ,n,Y 〉H2,n√
Var〈Φi ,n,Y 〉H2,n

− wi ,n

 .
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Asymptotic theory

Outline

1 Introduction to scanning fluorescence microscopy

2 Methodology

3 Asymptotic theory

4 MISCAT - Multiscale Inverse SCAnning Test

5 Statistical Inference for molecules: Where?

6 Conclusion

Frank Werner, MPIbpC Göttingen Statistical inference for molecules April 19, 2018 14 / 29



Asymptotic theory

Assumptions

• Polynomial growth of the dictionary: For some κ > 0∣∣{ϕi ,n}1≤i≤N
∣∣ = N = O(nκ) as n→∞.

• Scale restrictions:

hmin & n−1 log(n)p and hmax = o
(
log(n)−2

)
.

• Moment condition: Suppose that Bennett’s Moment condition holds
and assume further that

max
j

Eξ4
j = O(1).

Frank Werner, MPIbpC Göttingen Statistical inference for molecules April 19, 2018 15 / 29



Asymptotic theory

Gaussian Approximation

Gaussian Approximation (Proksch, W., Munk 2018)

If Φi,n/‖Φi,n‖2 is uniformly bounded, the moment condition, the polynomial
growth of the dictionary and under the scale restrictions, then the ξj can be
replaced by an i.i.d. field of standard Gaussian rvs ζ = (ζj)j∈{1,...,n}d .

More precisely, for

Mn(ζ) = max
i

wi,n

 〈Φi,n, ζ〉H2,n√
Var〈Φi,n, ζ〉H2,n

− wi,n


it holds

lim
n→∞

Pf =0(Tn(Y ) > q
Mn(ζ)
1−α ) ≤ α.

Victor Chernozhukov, Denis Chetverikov and Kengo Kato.

Gaussian approximation of suprema of empirical processes.

Ann. Statist., 2014.
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Asymptotic theory

Limiting distribution (log log-terms are important!)

Under further assumptions on the smoothness γ of Φhi ,n, the choice

wi,n =
√

2 log(C/h1
i,n) + Cd

log(
√

2 log(C/(h1
i,n)))√

2 log(C/h1
i,n))

,

with an explicit constant Cd depending on d , γ, and the number of scales leads
to a Gumbel extreme value limit:

Limiting distribution (Proksch, W., Munk 2018)

For each suitable C there exists D > 0 such that for any x it holds

lim
n→∞

Pf =0(Mn(ζ) ≤ x) = e−De−x

.

Katharina Proksch, Frank Werner and Axel Munk.

Multiscale Scanning in Inverse Problems.

Ann. Statist., to appear.
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Asymptotic theory

Asymptotic power

Asymptotic power (Proksch, W., Munk 2018)

Under the above assumptions, the power Pf (Tn(Y ) > q
Mn(ζ)
1−α ) is given by

α + (1− α) Ψ

min
i


√√√√2 log

(
1

h1
i,n

)
−

〈ϕi,n, f 〉H1√
Var

[
〈Φi,n,Y 〉H2,n

]

+ o(1)

where Ψ is the tail function of the standard normal distribution.

Immediate consequences:

• Detection properties depend only on ’local’ features 〈ϕi,n, f 〉H1
of f

• When trying to detect a hypercube in a direct problem with i.i.d. Gaussian
noise, the detection boundary is resembled
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MISCAT - Multiscale Inverse SCAnning Test

How to apply the method in practice

• Choose dictionary functions ϕi ,n ∈ R (T ∗), compute Φi ,n

• Approximate the distribution of

Mn(ζ) = max
i

wi ,n

 〈Φi ,n, ζ〉H2,n√
Var〈Φi ,n, ζ〉H2,n

− wi ,n


by Monte Carlo simulations to obtain the quantile q

Mn(ζ)
1−α

• For each i compute Ti (Y ) := 〈Φi ,n,Y 〉H2,n

• Mark each i with

Ti (Y ) >

(
q
Mn(ζ)
1−α
wi ,n

+ wi ,n

)√
Var [Ti (Y )]

as active

 due to FWER control, all active i are ’correct’ with prob. ≥ 1− α.
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MISCAT - Multiscale Inverse SCAnning Test

Computational issues

• As long as T and {Φi ,n}i ,n are fixed, q
Mn(ζ)
1−α can be precomputed.

 Applying MISCAT requires only a single evaluation of all Ti (Y )

• For fixed scale hi = h, all corresponding translations can be computed
using the convolution theorem:

(Ti (Y ))hi=h = F−1 (F (Y ) · F (Φh)) .

• Consequently, MISCAT can be applied in

O (#scales ·#pixels log (#pixels))

• In the following examples we apply MISCAT for a dictionary with
28.100.601 elements within less than 20 seconds on a standard laptop

(with precomputed q
Mn(ζ)
1−α ).
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Statistical Inference for molecules: Where?

Real data example - Setup

• we analyze fluorescent dyes
on single DNA Origami

• STED measurements

• each of the two strands can
at most hold 12 markers

Observations (photon counts)
500nm

0

50

100

Data kindly provided by Haisen Ta, Hell Lab, Max Planck Institute for
Biophysical Chemistry
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Statistical Inference for molecules: Where?

Modeling (recap)

The observations can be modeled by

Yj
independent∼ Bin (t, (f ∗ k) (sj)) , j ∈ {1, ..., n}2 .

• f (s) fluorophore intensity at s

• if c ≤ k ∗ f ≤ C for some constants C , c > 0, all assumptions on the
noise are satisfied

• if the Fourier coefficients of k decay polynomially, then desired
functions ϕB exist

• we approximate k in the family

(Fka,b) (ξ) = (1 + b2 ‖ξ‖2
2)−a, ξ ∈ R2.
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Statistical Inference for molecules: Where?

Modeling (cont’)

100nm

0

2 · 10−3

4 · 10−3

6 · 10−3
100nm

0

2 · 10−3

4 · 10−3

6 · 10−3

experimental kernel (top view) k2,0.016 (top view)

0

2 · 10−3

4 · 10−3

6 · 10−3

100nm

0

2 · 10−3

4 · 10−3

6 · 10−3

100nm

experimental kernel (slices) k2,0.016 (slices)
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Statistical Inference for molecules: Where?

Result

500nm

8000

4000

2667

2000

1600

200nm

?
?
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Statistical Inference for molecules: Where?

Comparison of the result with the data

(1)

(2)

0

50

100

8000

4000

2667

2000

1600

data excerpt result excerpt

0

50

100

0

50

100

zommed data (1) zommed data (2)
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Conclusion

Conclusion and outlook

• Methodology
• inference on the support w.r.t. a dictionary via testing at controlled

family-wise error rate
• general limit theory, asymptotic expansion of the power

• Statistical inference for molecules: Where?
• application to a deconvolution problem in super-resolution microscopy
• good performance in real data examples

• Not shown here: How many?
• estimation of molecule numbers inside a segment by additional

measurements
• asymptotic confidence intervals by central limit theorem
 construction of molecular map with controlled uncertainty

Thank you for your attention!
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