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Introduction Motivation

Photonic imaging |

We consider applications from photonic imaging:

Fluorescence microscopy (in collaboration
with the Lab of Stefan Hell, Nobel price for
chemistry 2014)

X-ray diffraction imaging (SFB 755
'nanoscale photonic imaging' in collaboration
with the Lab of Tim Salditt)

Positron Emission Tomography

Astronomical imaging
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Introduction Motivation

Photonic imaging Il

e In all the aforementioned examples, the imaging process can be
described (approximately) by an operator F relating the desired
quantity of interest & and the ideal data g:

Unknown @ Ideal data g
e F is typically not continuously invertible due to its smoothing

properties (e.g. compactness)

o |deal data is not available, observables typically arise from measuring
an energy

e At low energies the quantization of energy is the main source of noise

e Given an ideal photon detector, the observables obey a Poisson
distribution
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Introduction Mathematical modeling

Discrete model

Suppose the imaging procedure is modeled by a mapping
F:R" — R™

Let & € R"” denote the exact solution we seek for and g := F (&),
require g > 0

For the data Y € R the value Y; is the number of photon counts in
detector region i € {1,..., m}

In the ideal case Y € R™ is a random variable such that
Y,' ~ Poi (g,'), e.g.

_\k
PlY;=k]= (i',) exp (—&i) -
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A continuous model for Inverse Problems with Poisson data
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A continuous model for Inverse Problems with Poisson data Poisson point processes

Continuous model

e Now F : X — Y with Banach spaces X and Y C L! (M)

e Consequently o € X and g := F (&) € L* (M), require g > 0

e Say the total number of observed photons is n and their positions are
x; € M

e n can be influenced by the 'exposure time’, mathematically described
by a scaling factor t > 0

Data model

The observed data is a scaled Poisson process G; = @t/t, Gy = > Gy
with intensity g, i.e. the measure G; satisfies the following axioms:

@ For each choice of disjoint, measurable sets Aj, ..., A, C M the
random variables G; (A;) are stochastically independent.

®E [ét (A)} — [, t& dx for all A C M measurable.
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A continuous model for Inverse Problems with Poisson data Poisson point processes

Noise level |

e Poisson distribution incorporated, in fact it holds

Gt (A) ~ Poi t/gdx
A
for all measurable A ¢ M, but ...

e ... no clear definition of the noise level so far!

Note: Similar statistical model is used by

@ L. Cavalier and J.-Y. Koo.
Poisson intensity estimation for tomographic data using a wavelet shrinkage approach
IEEE Transactions on Information Theory, 48(10):2794-2802, 2002.

@ A. Antoniadis and J. Bigot.
Poisson inverse problems.
The Annals of Statistics, 34(5):2132-2158, 2006.
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A continuous model for Inverse Problems with Poisson data Poisson point processes

Noise level I
e Recall: G; = S0 O
e For a function g let
/ gdG; = Zg(x,-)
M i=1
e Then
| [ gac| = [ ezax
M M
1 9 4 1 9_
Var gdG:| = E g dG | == | ggdx.

M t M tJm

e Thus the value of any bounded linear functional at the unknown

quantity g can be estimated unbiasedly with a variance proportional
to 1.
~ For our analysis, such a property is needed uniformly!
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A continuous model for Inverse Problems with Poisson data Concentration inequalities

A uniform concentration inequality for Poisson processes |

Uniform concentration inequality (Reynaud-Bouret 2003)

e {f},ca countable family of functions with values in [—b, b]
* Z:=supsen|fiy fa (x) (dG; — gdx)|
o Vo 1= 5sup,ea Jug 12 (x) g dx

Then for all p,e > 0 it holds

PlZ>(1+e)E[Z]+ Vl%%(%%) ?] < exp(—p).

@ P. Reynaud-Bouret.
Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration
inequalities.
Probability Theory and Related Fields, 126(1):103-153, 2003.

~~ analogue to Talagrand's concentration inequalities for empirical processes!
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A continuous model for Inverse Problems with Poisson data Concentration inequalities

A uniform concentration inequality for Poisson processes ||

Uniform concentration inequality (W., Hohage 2012)
Suppose M C R? is bounded & Lipschitz, s > d/2 and set

&(R) :={g € H*(M) : |lgllns < R}

Then 3 ¢ = ¢ (M, s, ||g]| 1) > 0 such that

e

P| sup /g(th—gdx)
gEB(R) [/ M
forall R>1,t>1and p> cR.

@ F. Werner and T. Hohage.
Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems
with Poisson data.
Inverse Problems 28, 104004, 2012
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Projection estimators

Regularization by projection

e Suppose F = T is bounded, linear and positive definite (but not
necessarily continuously invertible!), for simplicity X = Y = L? (M).

e Regularization by projection: V,, C X with dim (V,) < oo and

prOJ = argmin || Tu — gHy (1)
ueV,

e If {v1,...,vn} is an orthonormal basis of V,, then
agroj c Vn . <Tl/.\lgr0j, Vj> :/ ngdX, 1 g_/ < n.
M

o Define 22" also in the noisy case by replacing g by G;.
e In principle the norm in (1) can be replaced by any other loss, but ...

e ... for the natural Poissonian choice (Kullback-Leibler divergence) this
Ieads to problems proving existence of o1, ) and stability.
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Projection estimators

Some (simplified) results - Cavalier & Koo 2002
2ol €V, <TMP£w>—/PwdQ, 1<j<n.
M

e V,, = suitable wavelet space, T = Radon transform
e The projection estimator exists and depends 'continuously’ on the
data

e Fort —oo: Ifuc B;q, then

E [||ogi - 33| = 0 (+5%)

with an a priori choice of n = n(t,s, p,q)
e This convergence rate is optimal among all estimators (linear and
nonlinear)
e For an adaptive choice of n, a log (t)-factor is lost!
Note: The results of Cavalier & Koo 2002 are not based on the uniform
concentration inequality, but on estimates for the Gaussian approximation.
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Projection estimators

Some (simplified) results - Antoniadis & Bigot 2006

2ol €V, <Ta5r°j,vj>_/ ydG, 1<j<n.
M

V,, = exp (U,) with a suitable Wavelet space U,, T = v-smoothing
operator

Corresponding estimator (if existent) is always non-negative and
depends continuously on the data

As t — 00, the estimator exists with probability 1.

For t — oco: If u=exp(v), v € B;,, then

E|llag ~ally| = 0 (¢ =)

with an a priori choice of n
e This convergence rate is optimal among all estimators
e For an adaptive choice of n, a log (t)-factor is lost!
Note: Antoniadis & Bigot 2006 do use Reynaud-Bouret's concentration
inequality.
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Penalized likelihood estimators
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Penalized likelihood estimators Motivation

Variational estimation |

e Disadvantage of the aforementioned methods: design does not rely on
Poisson distribution!

o Different approach: likelihood methods!
Minimize

u 8(Gg; F (u)) := —In (P [G; | the exact density is F (u)])

over all admissible wu.

o Still ill-posed due to ill-posedness of the original problem ~~
penalization!

b € ar;gergin [S(Gt; F (u)) + aR (u)]

where R is a convex penalty term and a > 0 a regularization
parameter.
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Penalized likelihood estimators Motivation

Variational estimation ||

o € aruger%in [S(Gy; F (u)) + aR (u)]

e Main issue in the analysis: data fidelity term lacks of a triangle-type
inequality!

e These methods (Tikhonov regularization) have been extensively
studied in the (deterministic) Inverse Problems community:
Eggermont & LaRiccia 1996, Resmerita & Anderssen 2007, Poschl
2007, Bardsley & Laobeul 2008, Bardsley & Luttman 2009, Bardsley
2010, Flemming 2010 & 2011, Benning & Burger 2011, Lorenz &
Worliczek 2013 ...

e Here: exploit deterministic results + concentration inequality to
handle statistic case.
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Penalized likelihood estimators Consistency

Data fidelity terms

o Negative log-likelihood for a scaled Poisson process:

So(Gt;g):/gdx—/ In(g) dG;, g>0ae
M M

o ideal data misfit functional for exact data g given by

€15 (Gi )] ~ Efso(Gid] = | e -z -2 (£)] ax

which is the Kullback-Leibler divergence KL (g; g).

e we introduce a shift o > 0 and consider

So (Gt g) ::/Mgdx—/Mln(g—i-a) (dGt + odx)
T(&:g) =KL(g+0g+0)
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Penalized likelihood estimators Consistency
Assumptions

Assumptions on the problem

e (X, Tx) top. vector space, Tx weaker than norm topology, and
B C X closed and convex.
e F:%B — L' (M) with M C R? bounded & Lipschitz and

@ F:B — LY (M) is Ty — 7,-sequentially continuous.
@ F(u)>0a.e. forall uec®B.
© There exists s > d/2 such that F (B) is a bounded subset of H* (M).

Assumptions on the method

e R:%B — (—o0,00] is convex, proper and Ty-sequentially lower
semicontinuous.

o R-sublevelsets {u € X | R (u) < M} are Tx-sequentially
pre-compact.
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Penalized likelihood estimators Consistency

Consistency

S aruger%in [So (G; F (u)) + aR (u)]

Under the assumptions, for all t > 0 a minimizer &, exists with prob. 1.
Consistency (Hohage, W. 2015)

If o is chosen according to a rule & fulfilling

In(t)

lim a(t, G;) =0, im ————— =0,
t%ooa( ) t—oo \/ta (t, Gt)
then

Ve>0: fim P|DE (8 @) > =0,

@ T. Hohage and F. Werner.
Inverse Problems with Poisson Data: statistical regularization theory, applications and
algorithms.
Topical review for Inverse Problems, in preparation, 2015
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Penalized likelihood estimators Convergence rates

Source condition

e As the problem is ill-posed, convergence rates can only be obtained
for U in a strict subset M C X

e Here the set M is described by a variational inequality as source

condition:
BDE (u,1) < R (u) = R(T) + ¢ (T (&; F (u))) (2)
for all u € B with 8 > 0. ¢ is assumed to fulfill
* »(0)=0,
* v/,

® (Y concave.

 Now the source set M = MY, (3) consists of all T € B satisfying (2).
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Penalized likelihood estimators Convergence rates

Convergence rates

A priori convergence rates (W., Hohage 2012)
Then for v = o (t) chosen appropriately we obtain for & € M7 (3) that

E [D;’{ (aa,u)} —0 ((p <%>> .t oo

@ F. Werner and T. Hohage.
Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems

with Poisson data.
Inverse Problems 28, 104004, 2012
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Penalized likelihood estimators Convergence rates

Convergence rates for unknown ¢

Suppose moreover X’ Hilbert space, R (u) = ||u — Uo||3(, 8> % ite
concave (e > 0). Set

e r>1, 7 > 0 sufficiently large

° = L\/(tt)rzf'*2 for j=2,...,msuch that am—1 <1 < ap

o o= max{j < m | o, — o], < 4v2r for all i < j}

A posteriori convergence rates (W., Hohage 2012)
For & € MZ () we obtain

[fon ] -o( () = oo
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Iterative penalized likelihood estimators
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Iterative penalized likelihood estimators Motivation

Iterative variational estimation |

e So far:

o € aruger‘%in [So (Gt; F (u)) + aR (u)]

Disadvantage: If F is nonlinear, then the functional lacks of convexity!

i, might be difficult to determine due to many local minima.

Remedy: Combine with a Newton method! Choose 1y € 95 and set

iyt € argmin [Sy (Gg; F () + F' [0n] (u — 0n)) + nR (u)]
ueB

Choose the regularization parameters such that

an\,0, 1< <¢

Qpi1
as n — oQ.

e Only free parameter: Stopping index n € N.
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Iterative penalized likelihood estimators Motivation

Iterative variational estimation |l

i € argmin [Sy (Gy; F (u)) + aR (u)]

ueB
VS
lnt1 € argmin [Sy (Ge; F (n) + F' [0n) (u — 1)) + @nR (u)]
ueB

e Due to linearization: in each iteration a convex subproblem has to be

solved.
e As we employ a Newton-method, we expect only a few iterations to

be required.
e But still higher computational effort.
e Theory: Restriction on the nonlinearity required!
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Iterative penalized likelihood estimators Assumptions

Nonlinearity condition

Generalized tangential cone condition
There exist constants 7 (later assumed to be sufficiently small) and C > 1
such that

2T (@ F () T (& F () <T (& F () + F (v — )

<CT (& F(v))+nT (& F (v))

for all u,v € B.

e condition is fulfilled with n = 0 if F is linear

e generalization of the tangential cone condition which is standard in
inverse problems analysis

e can be weakened if the solution @ is smooth enough (¢ (t) = V/t).
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Iterative penalized likelihood estimators Results
Convergence rates
A priori convergence rates (W., Hohage 2013)

Then for n = n(t) chosen appropriately we obtain for & € M7 (3) that

E [97“{ (an,u)} —0 (so (\2)) .t oo.

A posteriori convergence rates (W., Hohage 2013)

For n chosen by a Lepskii-type rule we obtain for u € I\/I;é (B) that

E[lna-013] =0 (¢ (22)). 1o

@ T. Hohage and F. Werner.

Iteratively regularized Newton-type methods with general data misfit functionals and
applications to Poisson data.
Numerische Mathematik 123(4), 745-779, 2013.

Frank Werner, Géttingen, Germany

Inverse Problems with Poisson data January 22nd, Poitiers 30/ 39



Iterative penalized likelihood estimators Results

Consistency

Ont1 € argmin [Sy (Gg; F (0n) + F' [8n] (v — 0n)) + anR (u)]
ueB

e General consistency is unclear. But:

e it can be shown that for any & a variational source condition is
fulfilled.

e So if the nonlinearity condition holds true we have
E {D;’{(E/,,,D)} — 0, t — 00

for a specific a priori choice n = n(t) and
e under additional conditions on 3, X and R also

E [Hﬁnbal — L_IHE(} — 0, t — o0

for the adaptive Lepskii-type stopping rule.
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Simulations for a phase retrieval problem
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Simulations for a phase retrieval problem Problem setting

Phase retrieval in coherent X-ray imaging

!

O L {1 Pr_,

% | >
ROu@0)=enle@) T (@ D) ~ (B (exp (ig) (')

0
()~ §7f (n?(2',23) — 1) dzs

mb

—

u(z’

F: HS(B,) — L([—#, K]%),

Fp) (&) = = [F2 (exp (i) ()1

/B exp (—i€ - x") exp (ip(x")) dx’

o

Frank Werner, Géttingen, Germany Inverse Problems with Poisson data January 22nd, Poitiers

33 /39



Simulations for a phase retrieval problem Poisson observations

Influence of t

Logarithmic plots of simulated Poisson and exact data for the phase
retrieval problem:

10* 10*
102 102
10° 10°
1072 1072

(a) simulated Poisson data; we expect (b) exact data; total number of counts
10* photons per time step 108
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Simulations for a phase retrieval problem Reconstructions

Results for t = 10*

(c) exact solution (d) reconstruction

@ K. GIEWEKEMEYER ET AL, Phys. Rev. A, 83:023804, 2011.
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Simulations for a phase retrieval problem Reconstructions

Results for t = 10°

(a) exact data (b) Poisson data

(c) exact solution (d) reconstruction
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Simulations for a phase retrieval problem Reconstructions

Results for t = 10°

(a) exact data

(c) exact solution (d) reconstruction
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Conclusion
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@ Conclusion
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Conclusion

Presented results

e sound mathematical model joining statistics and inverse problems
e review of some results for projection-type estimators
o (iterative) penalized likelihood estimators:

~» motivated by Poisson distribution
~> consistency
~~ convergence rates

~> show a good performance in simulations

Thank you for your attention!
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