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Introduction Motivation

Photonic imaging I

We consider applications from photonic imaging:

• Fluorescence microscopy (in collaboration
with the Lab of Stefan Hell, Nobel price for
chemistry 2014)

• X-ray diffraction imaging (SFB 755
’nanoscale photonic imaging’ in collaboration
with the Lab of Tim Salditt)

• Positron Emission Tomography

• Astronomical imaging

• ...
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Introduction Motivation

Photonic imaging II

• In all the aforementioned examples, the imaging process can be
described (approximately) by an operator F relating the desired
quantity of interest ū and the ideal data ḡ :

Unknown ū

F−→
Ideal data ḡ

• F is typically not continuously invertible due to its smoothing
properties (e.g. compactness)

• Ideal data is not available, observables typically arise from measuring
an energy

• At low energies the quantization of energy is the main source of noise

• Given an ideal photon detector, the observables obey a Poisson
distribution
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Introduction Mathematical modeling

Discrete model

• Suppose the imaging procedure is modeled by a mapping
F : Rn → Rm

• Let ū ∈ Rn denote the exact solution we seek for and ḡ := F (ū),
require ḡ ≥ 0

• For the data Y ∈ Rm the value Yi is the number of photon counts in
detector region i ∈ {1, ...,m}

• In the ideal case Y ∈ Rm is a random variable such that
Yi ∼ Poi (ḡi ), e.g.

P [Yi = k] =
(ḡi )

k

k!
exp (−ḡi ) .
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A continuous model for Inverse Problems with Poisson data Poisson point processes

Continuous model

• Now F : X → Y with Banach spaces X and Y ⊂ L1 (M)

• Consequently ū ∈ X and ḡ := F (ū) ∈ L1 (M), require ḡ ≥ 0

• Say the total number of observed photons is n and their positions are
xi ∈M

• n can be influenced by the ’exposure time’, mathematically described
by a scaling factor t > 0

Data model

The observed data is a scaled Poisson process Gt = G̃t/t, G̃t =
∑n

i=1 δxi
with intensity ḡ , i.e. the measure G̃t satisfies the following axioms:

1 For each choice of disjoint, measurable sets A1, ...,An ⊂M the
random variables G̃t (Aj) are stochastically independent.

2 E
[
G̃t (A)

]
=
∫
A tḡ dx for all A ⊂M measurable.
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A continuous model for Inverse Problems with Poisson data Poisson point processes

Noise level I

• Poisson distribution incorporated, in fact it holds

G̃t (A) ∼ Poi

t

∫
A

ḡ dx


for all measurable A ⊂M, but ...

• ... no clear definition of the noise level so far!

Note: Similar statistical model is used by

L. Cavalier and J.-Y. Koo.
Poisson intensity estimation for tomographic data using a wavelet shrinkage approach
IEEE Transactions on Information Theory, 48(10):2794–2802, 2002.

A. Antoniadis and J. Bigot.
Poisson inverse problems.
The Annals of Statistics, 34(5):2132–2158, 2006.
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A continuous model for Inverse Problems with Poisson data Poisson point processes

Noise level II

• Recall: G̃t =
∑n

i=1 δxi .

• For a function g let ∫
M
g dG̃t :=

n∑
i=1

g (xi )

• Then

E

[ ∫
M
g dGt

]
=

∫
M
gḡ dx ,

Var

[ ∫
M
g dGt

]
=

1

t2
E

[ ∫
M
g2 dG̃t

]
=

1

t

∫
M
g2ḡ dx .

• Thus the value of any bounded linear functional at the unknown
quantity ḡ can be estimated unbiasedly with a variance proportional
to 1

t .

 For our analysis, such a property is needed uniformly!
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A continuous model for Inverse Problems with Poisson data Concentration inequalities

A uniform concentration inequality for Poisson processes I

Uniform concentration inequality (Reynaud-Bouret 2003)

• {fa}a∈A countable family of functions with values in [−b, b]

• Z := supa∈A
∣∣∫

M fa (x) (dGt − ḡdx)
∣∣

• v0 := supa∈A
∫
M f 2

a (x) ḡ dx

Then for all ρ, ε > 0 it holds

P

[
Z ≥ (1 + ε)E [Z ] +

√
12v0ρ√
t

+

(
5

4
+

32

ε

)
bρ

t

]
≤ exp (−ρ) .

P. Reynaud-Bouret.
Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration
inequalities.
Probability Theory and Related Fields, 126(1):103–153, 2003.

 analogue to Talagrand’s concentration inequalities for empirical processes!
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A continuous model for Inverse Problems with Poisson data Concentration inequalities

A uniform concentration inequality for Poisson processes II

Uniform concentration inequality (W., Hohage 2012)

Suppose M ⊂ Rd is bounded & Lipschitz, s > d/2 and set

G(R) := {g ∈ Hs(M) : ‖g‖Hs ≤ R}.

Then ∃ c = c (M, s, ‖ḡ‖L1) > 0 such that

P

[
sup

g∈G(R)

∣∣∣∣∫
M
g ( dGt − ḡ dx)

∣∣∣∣ ≥ ρ√
t

]
≤ exp

(
− ρ

cR

)
for all R ≥ 1, t ≥ 1 and ρ ≥ cR.

F. Werner and T. Hohage.
Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems
with Poisson data.
Inverse Problems 28, 104004, 2012
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Projection estimators

Regularization by projection

• Suppose F = T is bounded, linear and positive definite (but not
necessarily continuously invertible!), for simplicity X = Y = L2 (M).

• Regularization by projection: Vn ⊂ X with dim (Vn) <∞ and

ûprojn := argmin
u∈Vn

‖Tu − ḡ‖2
Y (1)

• If {v1, ..., vn} is an orthonormal basis of Vn, then

ûprojn ∈ Vn :
〈
Tûprojn , vj

〉
=

∫
M
vj ḡ dx , 1 ≤ j ≤ n.

• Define ûprojn also in the noisy case by replacing ḡ by Gt .

• In principle the norm in (1) can be replaced by any other loss, but ...

• ... for the natural Poissonian choice (Kullback-Leibler divergence) this
leads to problems proving existence of ûprojn and stability.
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Projection estimators

Some (simplified) results - Cavalier & Koo 2002

ûprojn ∈ Vn :
〈
Tûprojn , vj

〉
=

∫
M
vj dGt , 1 ≤ j ≤ n.

• Vn = suitable wavelet space, T = Radon transform

• The projection estimator exists and depends ’continuously’ on the
data

• For t →∞: If u ∈ Bs
p,q, then

E
[∥∥ûprojn − ū

∥∥2

X

]
= O

(
t−

s
2s+3

)
with an a priori choice of n = n (t, s, p, q)

• This convergence rate is optimal among all estimators (linear and
nonlinear)

• For an adaptive choice of n, a log (t)-factor is lost!

Note: The results of Cavalier & Koo 2002 are not based on the uniform
concentration inequality, but on estimates for the Gaussian approximation.
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Projection estimators

Some (simplified) results - Antoniadis & Bigot 2006

ûprojn ∈ Vn :
〈
Tûprojn , vj

〉
=

∫
M
vj dGt , 1 ≤ j ≤ n.

• Vn = exp (Un) with a suitable Wavelet space Un, T = ν-smoothing
operator

• Corresponding estimator (if existent) is always non-negative and
depends continuously on the data

• As t →∞, the estimator exists with probability 1.
• For t →∞: If u = exp (v), v ∈ Bs

p,q, then

E
[∥∥ûprojn − ū

∥∥2

X

]
= O

(
t−

s
2s+2ν+d

)
with an a priori choice of n

• This convergence rate is optimal among all estimators
• For an adaptive choice of n, a log (t)-factor is lost!

Note: Antoniadis & Bigot 2006 do use Reynaud-Bouret’s concentration
inequality.
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Penalized likelihood estimators Motivation

Variational estimation I

• Disadvantage of the aforementioned methods: design does not rely on
Poisson distribution!

• Different approach: likelihood methods!
Minimize

u 7→ S (Gt ;F (u)) := − ln
(
P
[
Gt

∣∣ the exact density is F (u)
])

over all admissible u.

• Still ill-posed due to ill-posedness of the original problem  
penalization!

ûα ∈ argmin
u∈B

[S (Gt ;F (u)) + αR (u)]

where R is a convex penalty term and α > 0 a regularization
parameter.
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Penalized likelihood estimators Motivation

Variational estimation II

ûα ∈ argmin
u∈B

[S (Gt ;F (u)) + αR (u)]

• Main issue in the analysis: data fidelity term lacks of a triangle-type
inequality!

• These methods (Tikhonov regularization) have been extensively
studied in the (deterministic) Inverse Problems community:
Eggermont & LaRiccia 1996, Resmerita & Anderssen 2007, Pöschl
2007, Bardsley & Laobeul 2008, Bardsley & Luttman 2009, Bardsley
2010, Flemming 2010 & 2011, Benning & Burger 2011, Lorenz &
Worliczek 2013 ...

• Here: exploit deterministic results + concentration inequality to
handle statistic case.
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Penalized likelihood estimators Consistency

Data fidelity terms

• Negative log-likelihood for a scaled Poisson process:

S0 (Gt ; g) =

∫
M
g dx −

∫
M

ln (g) dGt , g ≥ 0 a.e.

• ideal data misfit functional for exact data ḡ given by

E [S0 (Gt ; g)]− E [S0 (Gt ; ḡ)] =

∫
M

[
g − ḡ − ḡ ln

(
g

ḡ

)]
dx

which is the Kullback-Leibler divergence KL (ḡ ; g).

• we introduce a shift σ > 0 and consider

Sσ (Gt ; g) :=

∫
M
g dx −

∫
M

ln (g + σ) (dGt + σdx)

T (ḡ ; g) := KL (ḡ + σ; g + σ)
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Penalized likelihood estimators Consistency

Assumptions

Assumptions on the problem

• (X , τX ) top. vector space, τX weaker than norm topology, and
B ⊂ X closed and convex.

• F : B→ L1 (M) with M ⊂ Rd bounded & Lipschitz and

1 F : B→ L1 (M) is τX − τω-sequentially continuous.
2 F (u) ≥ 0 a.e. for all u ∈ B.
3 There exists s > d/2 such that F (B) is a bounded subset of Hs (M).

Assumptions on the method

• R : B→ (−∞,∞] is convex, proper and τX -sequentially lower
semicontinuous.

• R-sublevelsets
{
u ∈ X

∣∣ R (u) ≤ M
}

are τX -sequentially
pre-compact.
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Penalized likelihood estimators Consistency

Consistency

ûα ∈ argmin
u∈B

[Sσ (Gt ;F (u)) + αR (u)]

Under the assumptions, for all t > 0 a minimizer ûα exists with prob. 1.

Consistency (Hohage, W. 2015)

If α is chosen according to a rule ᾱ fulfilling

lim
t→∞

ᾱ (t,Gt) = 0, lim
t→∞

ln (t)√
tᾱ (t,Gt)

= 0,

then
∀ ε > 0 : lim

t→∞
P
[
Du∗
R
(
ûᾱ(t,Gt), ū

)
> ε
]

= 0,

T. Hohage and F. Werner.
Inverse Problems with Poisson Data: statistical regularization theory, applications and
algorithms.
Topical review for Inverse Problems, in preparation, 2015
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Penalized likelihood estimators Convergence rates

Source condition

• As the problem is ill-posed, convergence rates can only be obtained
for ū in a strict subset M ⊂ X

• Here the set M is described by a variational inequality as source
condition:

βDu∗
R (u, ū) ≤ R (u)−R (ū) + ϕ (T (ḡ ;F (u))) (2)

for all u ∈ B with β > 0. ϕ is assumed to fulfill
• ϕ (0) = 0,
• ϕ↗,
• ϕ concave.

• Now the source set M = Mϕ
R (β) consists of all ū ∈ B satisfying (2).
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Penalized likelihood estimators Convergence rates

Convergence rates

A priori convergence rates (W., Hohage 2012)

Then for α = α (t) chosen appropriately we obtain for ū ∈ Mϕ
R (β) that

E
[
Du∗
R (ûα, ū)

]
= O

(
ϕ

(
1√
t

))
, t →∞.

F. Werner and T. Hohage.
Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems
with Poisson data.
Inverse Problems 28, 104004, 2012
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Penalized likelihood estimators Convergence rates

Convergence rates for unknown ϕ

Suppose moreover X Hilbert space, R (u) = ‖u − u0‖2
X , β ≥ 1

2 , ϕ1+ε

concave (ε > 0). Set

• r > 1, τ > 0 sufficiently large

• αj := τ ln(t)√
t
r2j−2 for j = 2, ...,m such that αm−1 < 1 ≤ αm

• jbal := max
{
j ≤ m

∣∣ ∥∥ûαi − ûαj

∥∥
X ≤ 4

√
2r1−i for all i < j

}
A posteriori convergence rates (W., Hohage 2012)

For ū ∈ Mϕ
R (β) we obtain

E

[∥∥∥ûαjbal
− ū
∥∥∥2

X

]
= O

(
ϕ

(
ln (t)√

t

))
as t →∞.
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Iterative penalized likelihood estimators Motivation

Iterative variational estimation I

• So far:
ûα ∈ argmin

u∈B
[Sσ (Gt ;F (u)) + αR (u)]

• Disadvantage: If F is nonlinear, then the functional lacks of convexity!

• ûα might be difficult to determine due to many local minima.

• Remedy: Combine with a Newton method! Choose u0 ∈ B and set

ûn+1 ∈ argmin
u∈B

[
Sσ
(
Gt ;F (ûn) + F ′ [ûn] (u − ûn)

)
+ αnR (u)

]
• Choose the regularization parameters such that

αn ↘ 0, 1 ≤ αn

αn+1
≤ C

as n→∞.

• Only free parameter: Stopping index n ∈ N.
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Iterative penalized likelihood estimators Motivation

Iterative variational estimation II

ûα ∈ argmin
u∈B

[Sσ (Gt ;F (u)) + αR (u)]

vs

ûn+1 ∈ argmin
u∈B

[
Sσ
(
Gt ;F (ûn) + F ′ [ûn] (u − ûn)

)
+ αnR (u)

]
• Due to linearization: in each iteration a convex subproblem has to be

solved.

• As we employ a Newton-method, we expect only a few iterations to
be required.

• But still higher computational effort.

• Theory: Restriction on the nonlinearity required!
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Iterative penalized likelihood estimators Assumptions

Nonlinearity condition

Generalized tangential cone condition

There exist constants η (later assumed to be sufficiently small) and C ≥ 1
such that

1

C
T (ḡ ;F (v))− ηT (ḡ ;F (u)) ≤T

(
ḡ ;F (u) + F ′ (u; v − u)

)
≤CT (ḡ ;F (v)) + ηT (ḡ ;F (u))

for all u, v ∈ B.

• condition is fulfilled with η = 0 if F is linear

• generalization of the tangential cone condition which is standard in
inverse problems analysis

• can be weakened if the solution ū is smooth enough (ϕ (t) =
√
t).
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Iterative penalized likelihood estimators Results

Convergence rates

A priori convergence rates (W., Hohage 2013)

Then for n = n (t) chosen appropriately we obtain for ū ∈ Mϕ
R (β) that

E
[
Du∗
R (ûn, ū)

]
= O

(
ϕ

(
1√
t

))
, t →∞.

A posteriori convergence rates (W., Hohage 2013)

For n chosen by a Lepskĭı-type rule we obtain for ū ∈ Mϕ
R (β) that

E
[
‖ûnbal − ū‖2

X

]
= O

(
ϕ

(
ln (t)√

t

))
, t →∞.

T. Hohage and F. Werner.
Iteratively regularized Newton-type methods with general data misfit functionals and
applications to Poisson data.
Numerische Mathematik 123(4), 745-779, 2013.

Frank Werner, Göttingen, Germany Inverse Problems with Poisson data January 22nd, Poitiers 30 / 39



Iterative penalized likelihood estimators Results

Consistency

ûn+1 ∈ argmin
u∈B

[
Sσ
(
Gt ;F (ûn) + F ′ [ûn] (u − ûn)

)
+ αnR (u)

]
• General consistency is unclear. But:

• it can be shown that for any ū a variational source condition is
fulfilled.

• So if the nonlinearity condition holds true we have

E
[
Du∗
R (ûn, ū)

]
→ 0, t →∞

for a specific a priori choice n = n (t) and

• under additional conditions on β, X and R also

E
[
‖ûnbal − ū‖2

X

]
→ 0, t →∞

for the adaptive Lepskĭı-type stopping rule.
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Simulations for a phase retrieval problem
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Simulations for a phase retrieval problem Problem setting

Phase retrieval in coherent X-ray imaging

F : Hs(Bρ) −→ L∞([−κ, κ]2),

F (ϕ) (ξ) =

∣∣∣∣∣
∫
Bρ

exp (−iξ · x ′) exp (iϕ(x ′)) dx ′

∣∣∣∣∣
2

= |F2 (exp (iϕ)) (ξ)|2 .
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Simulations for a phase retrieval problem Poisson observations

Influence of t

Logarithmic plots of simulated Poisson and exact data for the phase
retrieval problem:

(a) simulated Poisson data; we expect
104 photons per time step

10−2

100

102

104

(b) exact data; total number of counts
106
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Simulations for a phase retrieval problem Reconstructions

Results for t = 104

10−2

100

102

(a) exact data

10−2

100

102

(b) Poisson data

0.5

1

1.5

2

(c) exact solution

0.5

1

1.5

2

(d) reconstruction

K. Giewekemeyer et al, Phys. Rev. A, 83:023804, 2011.
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Simulations for a phase retrieval problem Reconstructions

Results for t = 105
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Simulations for a phase retrieval problem Reconstructions

Results for t = 106
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(a) exact data

10−2
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(b) Poisson data

0.5

1

1.5

2

(c) exact solution

0.5

1

1.5

2

(d) reconstruction

Frank Werner, Göttingen, Germany Inverse Problems with Poisson data January 22nd, Poitiers 37 / 39



Conclusion

Outline

1 Introduction

2 A continuous model for Inverse Problems with Poisson data

3 Projection estimators

4 Penalized likelihood estimators

5 Iterative penalized likelihood estimators

6 Simulations for a phase retrieval problem

7 Conclusion

Frank Werner, Göttingen, Germany Inverse Problems with Poisson data January 22nd, Poitiers 38 / 39



Conclusion

Presented results

• sound mathematical model joining statistics and inverse problems

• review of some results for projection-type estimators

• (iterative) penalized likelihood estimators:

 motivated by Poisson distribution

 consistency

 convergence rates

 show a good performance in simulations

Thank you for your attention!
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