Deformationsquantisierung

spricht am 9. 1. 2014 um 10 Uhr c.t.,

im Seminarraum 00.009 (Physik Ost)

MARTIN BORDEMANN

über das Thema:

An unabelian version of T.Voronov’s construction of L_∞ structures.

In 2005 T.Voronov gave a rather useful explicit construction of an L_∞ structure on a graded vector space V which is supposed to be an abelian subalgebra complementing a subalgebra H in a graded Lie algebra G which he extended to the ambient Lie algebra G. His technique gave rise to some L_∞ constructions attached to coisotropic submanifolds and the simultaneous deformation of associative or Lie algebras and their morphisms (work of Y.Fréguier et al.). We generalize his construction to an L_∞ structure on the quotient G/H (and the extension) without assuming that there is an abelian subalgebra complement to H in G. The construction simplifies a bit to some ‘graded dressing transformation’ if there is a (non)abelian subalgebra complement. The main idea is the observation that the quotient $U(G)/(U(G)H)$ of the universal envelopping algebra $U(G)$ of G is a cofree coalgebra on which G acts from the left by coderivations. This quotient had recently been studied in the trivially graded case by Calaque, Caldararu and Tu: using their result we can show that the generalized Voronov L_∞ structure is isomorphic just to a differential (no higher brackets) iff the (graded) Atiyah (or Nguyen-van Hai) class of the Lie algebra pair (G,H) vanishes. We shall indicate how the generalization may help to the quantization problem of coisotropic submanifolds as modules.

gez. Stefan Waldmann