

Announcement

Seminar on Deformation Quantization

9. 7. 2021 at 4PM CEST (Special time!)

<https://uni-wuerzburg.zoom.us/j/92529190594?pwd=WkJvR1o1QUd1dUNSSjFJbHB4c0Z0dz09>

ALEXANDER KARABEGOV (ABILENE CHRISTIAN UNIVERSITY)

Lagrangian fields, Calabi functions, and local symplectic groupoids

A Lagrangian field on a symplectic manifold M is a family $\Lambda = \{\Lambda_x | x \in M\}$ of pointed Lagrangian submanifolds of M . This notion is a generalization of a real Lagrangian polarization for which each Λ_x is the leaf containing x . Two Lagrangian fields Λ^s and Λ^t are called transversal if Λ_x^s intersects Λ_x^t transversally at x for every x . Two transversal Lagrangian fields determine the structure of an almost para-Kähler manifold on M . We construct a local symplectic groupoid on a neighborhood of the zero section of T^*M from two transversal Lagrangian fields on M . The Lagrangian manifold of n -cycles of this groupoid in $(T^*M)^n$ has a generating function which is the n -point cyclic Calabi function of a closed (1,1)-form on a neighborhood of the diagonal of $M \times M$ obtained from the symplectic form on M .

Invited by Stefan Waldmann