

Announcement

Seminar on Deformation Quantization

13. 5. 2022 at 2pm CEST

Hybrid Seminar in SE 30 and

https://uni-wuerzburg.zoom.us/j/92529190594?pwd=WkJvR1o1QUdldUNSSjFJbHB4c0Z0dz09

MATTHIAS SCHÖTZ (JMU WÜRZBURG)

Symmetry reduction of States and a non-commutative Positivs tellensatz for \mathbb{CP}^n

On \mathbb{CP}^n one can construct a (non-formal) star product e.g. by symmetry reduction out of the Wick star product on \mathbb{C}^{1+n} . This results in an $\hbar \in \mathbb{C} \setminus \Omega$ -dependent associative product \star_{\hbar} on the space of polynomials (in the sense of real algebraic geometry) on \mathbb{CP}^n which deforms the pointwise product (Ω is discrete with sole accumulation point 0). For $\hbar \in \mathbb{R} \setminus \Omega$, the pointwise complex conjugation describes a *-involution on this algebra so that one obtains an \hbar -dependent family of *-algebras $\mathcal{P}_{\hbar}(\mathbb{CP}^n)$. One can then try to determine whether or not, or for which values of \hbar , these *-algebras $\mathcal{P}_{\hbar}(\mathbb{CP}^n)$ have non-trivial representations. An essentially equivalent problem is to classify all the algebraic states on $\mathcal{P}_{\hbar}(\mathbb{CP}^n)$, i.e. all linear functionals $\omega \colon \mathcal{P}_{\hbar}(\mathbb{CP}^n) \to \mathbb{C}$ that fulfil $\omega(a^*\star_{\hbar}a) \geq 0$ for all $a \in \mathcal{P}_{\hbar}(\mathbb{CP}^n)$ and $\omega(1) = 1$. But with the *-algebras $\mathcal{P}_{\hbar}(\mathbb{CP}^n)$ arising by symmetry reduction out of the well-understood Wick star product, one should rather ask: Under which conditions do algebraic states for the Wick star product on \mathbb{C}^{1+n} descend to algebraic states on $\mathcal{P}_{\hbar}(\mathbb{CP}^n)$? Can all algebraic states on $\mathcal{P}_{\hbar}(\mathbb{CP}^n)$ be obtained this way? The latter question leads to a non-commutative Positivstellensatz for \mathbb{CP}^n , which, in contrast to its commutative analog, is non-strict.