

Announcement

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Seminar on Deformation Quantization

16.6.2023 at 2pm CEST

Seminarroom SE 30

KARANDEEP SINGH (KU LEUVEN)

Differential graded Lie algebras and stability problems in geometry

Given a Poisson structure π on a manifold M, and a symplectic leaf L, the leaf L is stable if every Poisson structure close enough to π also has a leaf diffeomorphic to L. A sufficient condition for general compact leaves being stable was given by M. Crainic and R. Fernandes. We show that for zero-dimensional leaves, the question of stability is an instance of the following question about differential graded Lie algebras: Given a differential graded Lie algebra \mathfrak{g} , a differential graded Lie subalgebra \mathfrak{h} , and a Maurer-Cartan element $Q \in \mathfrak{h}$, when is every Maurer-Cartan element of \mathfrak{g} near Q equivalent to an element in \mathfrak{h} ? In the case that \mathfrak{h} has degreewise finite codimension in \mathfrak{g} , we give a sufficient condition for a positive answer to the latter question. We then give some applications of this result to stability of zero-dimensional leaves of other geometric structures.

Invited by Stefan Waldmann