14 February 2020

♥♥♥ Valentine Workshop 2020 ♥♥♥

Marvin Dippell (JMU)

A Categorical Framework for \(*\)-Algebras - Part I: Internal \(*\)-Monoids

At 9.30 in SE 31

Abstract

Algebraic structures with a binary associative operation are omnipresent in mathematics. In the first half of the talk I want to present a well-known categorical framework for these structures using monoids internal to a given monoidal category. The second part will then incorporate involutions on (monoidal) categories, allowing us to define internal \(*\)-monoids generalizing algebraic structures equipped with an order reversing involution, such as \(*\)-algebras.

Chiara Esposito (University of Salerno)

Equivariant formality, a wrong statement

At 11.00 in SE 31

Abstract

In a recent note we proved an equivariant version of the formality of multidifferential operators for a proper Lie group action. It turns out that the proof has a problem as the L-infinity quasi-isomorphism that we constructed does not preserves the Hamiltonian actions. This puts in discussion the original conjecture by Tsygan. In this talk I will try to clarify the problem and to discuss new strategies to approach the study of the reduction-quantization diagram.

Nicolò Drago (JMU)

Steinmann scaling degree and the extension of distributions

At 14.00 in SE 31

Abstract

Given a distribution \(T \in D'(\mathbb{R}^d) \), the scaling degree \(sd(T) \) measures the degree of singularity of \(T \) at the origin. In this talk, we will review the concept of scaling degree for distributions on \(\mathbb{R}^d \). We will then discuss the following problem: given a distribution \(T \in D'(\mathbb{R}^d \setminus \{0\}) \), find (if any) all extensions \(\hat{T} \in D'(\mathbb{R}^d) \) such that \(sd(T) = sd(\hat{T}) \).