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tion and MotivationQuantum theory 
elebrates its 100th birthday and we should still think aboutquantization? Indeed, there are many good reasons to do so and many unsolvedquestions some of them I want to dis
uss in this arti
le.The quantum physi
s of �nitely many non-relativisti
 parti
les moving inEu
lidean spa
e is well understood. Nevertheless, physi
al reality for
es us togain a deeper understanding of more general situations.Taking into a

ount the theory of spe
ial relativity one is led to quantum�eld theories where in most 
ases only perturbative formulations are known forthe intera
ting 
ase. Beside the diÆ
ulties of in�nitely many degrees of freedomthe problem arising in this 
ontext is the presen
e of gauge degrees of freedom.For the 
lassi
al des
ription one uses additional degrees of freedom whi
h donot have an immediate physi
al relevan
e. As example I would like to mentionMaxwell's theory of ele
trodynami
s: the potentials (�; ~A) are only needed forsimpli�
ation but are physi
ally unobservable. The observable 
ontent of thetheory are the ele
tri
 and magneti
 �elds ~E = �~r�� ��t ~A and ~B = ~r� ~A. Ifone wants to des
ribe the true, physi
al degrees of freedom one has to 
onsidergauge equivalen
e 
lasses of the potentials, i.e. (�; ~A) � (�0; ~A0) if they yield thesame ~E and ~B. This passage to a gauge invariant des
ription on the 
lassi
al sideis known as phase spa
e redu
tion, sin
e typi
ally the dimension of the 
lassi
alphase spa
e des
reases. However, the geometry of the 
lassi
al phase spa
eusually be
omes more 
ompli
ated: one may obtain `holes', the redu
ed phasespa
e is 
urved and there are no global 
anoni
ally 
onjugate 
oordinates (q; p).Therefor a naive `
anoni
al quantization' of the redu
ed phase spa
e be
omesimpossible.As toy models for this situation in �eld theories with gauge degrees of freedomone 
onsiders �nite-dimensional phase spa
es with non-trivial geometry to studythe phenomena whi
h are also expe
ted in the (
ertainly not easier) in�nite-dimensional 
ases.Beside the questions on the relations between gauge degrees of freedom, phase
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e redu
tion and quantization there are more reasons to investigate the quan-tization of �nite-dimensional phase spa
es with non-trivial geometry. One 
antry to understand the quantum theory of a parti
le moving in a 
urved ba
k-ground as this is to be expe
ted from general relativity. Also the quantizationin presen
e of ba
kground �elds, like the magneti
 �eld of a Dira
 monopole,
an be 
onsidered. Furthermore, it turns out that the question of quantizationof phase spa
es is, from a te
hni
al point of view, deeply related to the questionof quantization of geometry itself leading to the notion of non-
ommutative ge-ometry. Appli
ations of su
h a quantized geometry may arise from a theory ofquantum gravity.In the following, su
h more spe
ulative aspe
ts may be taken as motivation.However, I will take a more 
onservative point of view and 
onsider mainly thequantization of non-relativisti
 
lassi
al me
hani
s with �nitely many degrees offreedom. Here I will mainly fo
us on a 
on
eptually 
lear and mathemati
allyrigorous treatment.In order to approa
h the question of quantization appropriately, I shall �rstre
all the fundamental stru
tures in 
lassi
al and quantum me
hani
s. Here oneneeds a formulation whi
h is most suited to the problem. In parti
ular, thenotions of `observables', `states', `time development', et
. are to be 
lari�ed.Starting from the so-
alled 
anoni
al quantization, as it 
an be found in textbooks, I will motivated the notion of a star produ
t. This basi
 notion of defor-mation quantization shall be dis
ussed in detail in order to 
ompare the resultsof deformation quantization with the original aims of the quantization programin a 
riti
al manner. In a 
on
luding se
tion I shall dis
uss two examples wherethe te
hniques of deformation quantization 
an be applied beyond the originalquantization problem.2 Classi
al and Quantum Me
hani
s2.1 Formulation of 
lassi
al and quantum me
hani
sIn this se
tion I shall brie
y re
all the usual notions in Hamiltonian me
hani
sand quantum me
hani
s as it 
an be found in text books.2.1.1 Hamiltonian me
hani
s: First VersionThe playing ground of 
lassi
al me
hani
s is the phase spa
e M whi
h in thesimplest 
ase is just M = R2n where n is the number of degrees of freedom.The pure states are the points x 2 M . They 
an be denoted by use of the
anoni
al 
oordinates x = (q; p) 2 R2n. Mixed states will be des
ribed later.The observables are the real-valued fun
tions f : M ! R whi
h in addition aresubje
t to further analyti
al 
onditions: of parti
ular interest are the 
ontinuousfun
tions C(M), the smooth fun
tions C1(M), the real-analyti
al fun
tionsC!(M) and the polynomials Pol(R2n). Note that the notion x = (q; p) has twointerpretations: on one hand it denotes a point (state) in phase spa
e, on theother hand it denotes the 
oordinate fun
tions (observable).The expe
tation value Ex(f) of an observable f in a state x is the value f(x)



An Introdu
tion to Deformation Quantization 3at x. The possible values of a measurement of the observable f are the valuesf(M) of f . The variation Varx(f) of an observable f in a pure state x underrepeated measurement isVarx(f) = Ex(f2)� (Ex(f))2 = 0: (2.1)The time evolution is governed by a parti
ular observable, the HamiltonianH : M ! R. The time evolution of a state x is the unique 
urve t 7! x(t) =(q(t); p(t)) 2M through x(0) = x satisfying Hamilton's equations of motion_qi(t) = �H�pi (q(t); p(t)) and _pi(t) = ��H�qi (q(t); p(t)) for i = 1; : : : ; n:(2.2)2.1.2 Quantum me
hani
s: First VersionThe analog of the phase spa
e in quantum me
hani
s is a 
omplex Hilbert spa
eH. For reasonable physi
al systems the Hilbert spa
e H has a 
ountable in�niteHilbert basis, for 
ertain simpli�ed models also �nite-dimensional Hilbert spa
esplay a role.The pure states are 
omplex rays in H, i.e. equivalen
e 
lasses of ve
tors 2 H n f0g where  �  0 if  = z 0 with some z 2 C n f0g. The observablesare des
ribed by operators on H. On one hand the bounded (
ontinuous) opera-tors B(H), on the other hand the densely de�ned, self-adjoint operators are ofinterest. Stri
tly speaking, only the Hermitian operators in B(H) 
orrespond toobservables.The expe
tation value E (A) of an observable A in a state  is given byE (A) = h ;A ih ;  i : (2.3)Note that E (A) depends on the equivalen
e 
lass of  only. The possible valuesof a measurement of the observable A are the spe
tral values spe
(A). In orderto have a reasonable spe
trum the observable A has to be a self-adjoint operator.The spe
trum may 
onsist of eigenvalues as for the harmoni
 os
illator. Thereare also observables, like the momentum operator whi
h only have spe
tral valueswhi
h are no eigenvalues. After repeated measurement of the observable A inthe state  the variationVar (A) = E (A2)�E (A)2 � 0 (2.4)is in general di�erent from zero: For any state  one 
an �nd an observableA with Var (A) > 0. The reason is the non-
ommutativity of the observables.Physi
ally measurable bounds for Var (A) 
an be obtained from Heisenberg'sun
ertainty relations. Hen
e the non-
ommutativity of the quantum observablesis 
ru
ial in order to implement the un
ertainty relations.The `size' of the un
ertainty, as predi
ted by Heisenberg's un
ertainty rela-tions, is 
ontrolled by the `size' of Plan
k's 
onstant ~ as it 
an be seen from
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anoni
al 
ommutation relations [Q̂; P̂ ℄ = i~. Note however, that ~ is notdimensionless, so it has no intrinsi
 `size'. In parti
ular, one 
an always �nd aunit system where ~ = 1. In order to obtain small quantum e�e
ts one has to
ompare ~ with other quantities (expe
tation values) of the system whi
h alsohave the physi
al dimension of an a
tion.The time evolution  (t) of a state  =  (0) is again indu
ed by a 
ertainobservable, the Hamilton operator Ĥ , as the unique solution of the S
hr�odingerequation i~ ddt (t) = Ĥ (t)  (0) =  : (2.5)2.2 GeneralizationsIn the following I shall generalize the above formulations of 
lassi
al and quan-tum me
hani
s in an algebrai
 way. This will allow a more dire
t 
omparison.The formulation will not depend mu
h on the number of degrees of freedomwhen
e many of the following will still be valid for �eld theories or systems inthe thermodynami
al limit.For the quantum me
hani
al des
ription the fun
tional-analyti
al questionsand subtleties shall be postponed in order to fo
us on the algebrai
 point ofview. On the 
lassi
al side the geometri
 properties of the phase spa
e M shallbe repla
ed and en
oded in algebrai
 properties of the fun
tion spa
e C1(M).Thus I will be able to avoid to speak too mu
h about di�erential geometry andanalysis in Hilbert spa
es but fo
us on the algebrai
 properties of both theoriesinstead. This way one �nds a language to treat 
lassi
al and quantum me
hani
son the same footing.2.2.1 Quantum me
hani
s: Se
ond VersionIn this se
ond formulation of quantum me
hani
s I shall start with the propertiesof the observable algebra. Then the states and the time evolution will be derived
on
epts. See e.g. [22℄ for further reading.The 
entral obje
t of a quantum me
hani
al system is its algebra of observ-ables. As the `example' B(H) indi
ates one asks for an asso
iative algebra AQMover the 
omplex numbers C. Be
ause of the un
ertainty relations AQM will benon-
ommutative. To spe
ify the observable elements in AQM we have to makesense out of the notion of Hermitian elements, when
e we require AQM to havea �-involution. This is a C-antilinear map A 7! A� su
h that(AB)� = B�A� and (A�)� = A (2.6)for all A;B 2 AQM. In the 
ase of AQM = B(H) the algebra element A� is justthe adjoint operator of A. Su
h a �-algebra stru
ture allows to tranfer the usualnotions of Hermitian, isometri
, and unitary elements from the known 
ase ofB(H) to the abstra
t 
ase of AQM.Thus the quantum me
hani
al observable algebra AQM shall be a �-algebraover C. Further topologi
al requirements as e.g. a C�-norm, 
ompleteness et
.



An Introdu
tion to Deformation Quantization 5shall not be 
onsidered at the present stage in order to in
orporate also `un-bounded' observables.The states of AQM are now identi�ed with the expe
tation value fun
tionals.An expe
tation value fun
tional of a �-algebra AQM is de�ned to be a linearfun
tional ! : AQM ! C satisfying!(A�A) � 0; (2.7)for all A 2 AQM. Hen
e ! is a positive linear fun
tional. If AQM has a unitelement 1 then one requires in addition the normalization 
ondition !(1) = 1.It is an easy exer
ise to 
he
k that the expe
tation values A 7! E (A) as in (2.3)are indeed positive linear fun
tionals of B(H).This notion of states allows for a simple 
hara
terisation of pure and mixedstates. If !1 and !2 are two states of AQM then their 
onvex 
ombination! = �!1 + (1� �)!2 (2.8)is again a state for � 2 (0; 1). Now ! is 
alled a mixed state if it 
an bede
omposed as in (2.8) in a non-trivial way, i.e. !1 6= !2. A state is 
alled pureif su
h a de
omposition is not possible. As an example for a mixed state I shallmention the thermodynami
al state A 7! tr(%A) of B(H) where % = 1Z e��H isthe density operator for a Hamiltonian H and inverse temperatur �. Here H hasto satisfy 
ertain te
hni
al 
onditions in order to make % a tra
e 
lass operator.Finally, let me mention the following properties of positive linear fun
tionals:A state ! : AQM ! C is real !(A�B) = !(B�A) (2.9)and satis�es the Cau
hy S
hwarz inequality!(A�B)!(A�B) � !(A�A)!(B�B): (2.10)Exer
ise 2.1 Prove (2.9) and (2.10) by 
onsidering the quadrati
 form p(z) =!((zA+B)�(zA+B)) � 0 for all z 2 C.The possible values of a measurement of an observable A are again given bythe spe
trum spe
(A). Here one is fa
ed with a te
hni
al problem: in order tohave a physi
ally reasonable notion of a spe
trum one needs more than just a�-algebra. The spe
trum should be de�ned intrini
ally, i.e. as a property ofalgebrai
 relations in AQM alone. Moreover, taking B(H) as example, one wouldlike to have� spe
(A) � R for A = A�,� spe
(A�A) � R+ for all A,� spe
(p(A)) = p(spe
(A)) for all polynomials p and all A.



6 Stefan WaldmannFinally, for a given Hermitian element A and a given state ! one would like tohave a spe
tral measure d! on spe
(A) in su
h a way that!(A) = Za2spe
(A) a d!(a): (2.11)Then Ra2[a1;a2℄ a d!(a) is interpreted as the probability to obtain a spe
tral valuein the interval [a1; a2℄ when measuring the observable A in the state !.For B(H) (or any other C�-algebra) one de�nes � 2 spe
(A) if A� �1 doesnot have an inverse in B(H). Then the above properties are guaranteed bythe (non-trivial!) spe
tral theorem. It turns out that a reasonable notion ofspe
trum is very hard to get without a C�-norm. For a dis
ussion of the spe
traltheorem in C�-algebras see e.g. [8, 19℄.However, this analyti
al aspe
t shall not be 
onsidered in the following. In-stead we shall assume that AQM 
an be embedded (in some reasonable way) intoa C�-algebra where a good notion of spe
trum is available. Typi
ally, it willdepend strongly on the example how this 
an be done. Nevertheless, I shall em-phasize that for the interpretation of AQM as quantum me
hani
al observablessu
h a notion of spe
trum is 
ru
ial.The time evolution 
an be formulated in the following way. First we 
onsiderthe Heisenberg pi
ture of the time evolution of A in the 
ase of B(H), i.e. theHeisenberg equation ddtA(t) = i~ [H;A(t)℄; (2.12)where t 7! A(t) is the unique solution with A(0) = A. The solution is of theform A(t) = U�t A(0)Ut (2.13)with a one-parameter group Ut of unitary operators Ut 2 B(H) obying theS
hr�odinger equation i~ ddtUt = HUt: (2.14)Here on
e again one needs to spe
ify some more fun
tional-analyti
al details inorder to give life to (2.12) and (2.14) su
h as strong 
ontinuity of t 7! Ut, seee.g. [26, Se
t. VIII.4℄. However, I shall again fo
us on the algebrai
 properties.The notion of a unitary one-parameter group meansU0 = id; UtUs = Ut+s = UsUt and U�t = U�t = U�1t : (2.15)Then the algebrai
 
ontent of (2.13) 
an be reformulated in the following way.The linear map �t : AQM ! AQM de�ned by A 7! �t(A) = U�t AUt de�nes a one-parameter group of �-automorphisms of the observable algebra AQM: Indeed, onehas the property of a one-parameter group�0 = id and �t�s = �t+s = �s�t; (2.16)
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tion to Deformation Quantization 7and ea
h �t is a �-automorphism of AQM, i.e.�t(AB) = �t(A)�t(B) and �t(A�) = �t(A)� (2.17)for A;B 2 AQM. Thus the quantum me
hani
al time evolution will be a one-parameter group of �-automorphisms of the observable algebra AQM. Note thatin general �t may have a more 
ompli
ated form as above.2.2.2 Classi
al me
hani
s: Se
ond VersionAs already mentioned in the introdu
tion there are physi
al situations where the
lassi
al phase spa
e has a mu
h more 
ompli
ated geometry than just R2n. Theprin
ipal stru
ture is then a di�erentiable manifold M together with a Poissonstru
ture. Roughly speaking, a di�erentiable manifold is a geometri
 obje
twhi
h allows for lo
al 
oordinates in su
h a way, that passing from one to another
oordinate system is a smooth map. As example one may think of the 2-sphereS2 or the torus T 2. For a di�erentiable manifold one has a notion of smoothfun
tions f :M ! C.As observables we take again the smooth fun
tions C1(M) where we nowallow for 
omplex-valued fun
tions. Thus we obtain a 
ommutative asso
iative�-algebra where the produ
t is the pointwise produ
t and the �-involution is thepointwise 
omplex-
onjugation of fun
tions. On the �rst sight it seems unne
es-sary to 
onsider 
omplex-valued fun
tions in 
lassi
al me
hani
s, but one obtainsa higher stru
tural similarity to the quantum me
hani
al observable algbera.However, there is an additional stru
ture, namely the Poisson bra
ket ff; ggfor fun
tions on the phase spa
e. This is a bilinear bra
ket for the smoothfun
tions obying the following properties:� Antisymmetry: ff; gg = �fg; fg.� Leibniz rule: ff; ghg = ff; ggh+ gff; hg.� Ja
obi identity: ff; fg; hgg = fff; gg; hg+ fg; ff; hgg.A di�erentiable manifold with su
h a Poisson stru
ture for the fun
tions is 
alleda Poisson manifold. One 
an show that in lo
al 
oordinates (x1; : : : ; xm) thePoisson bra
ket takes the formff; gg(x) =Xi;j �ij(x) �f�xi (x) �g�xj (x); (2.18)where �ij = ��ji are lo
ally de�ned fun
tions satisfying the quadrati
 partialdi�erential equationmX̀=1��i` ��jk�x` + �j` ��ki�x` + �k` ��ij�x` � = 0 (2.19)for i; j; k = 1; : : : ;m. The last property of the Poisson bra
ket is its 
ompatibilitywith the �-involution, i.e. the 
omplex 
onjugation. We require it to be real inthe sense that ff; gg = ff; gg; (2.20)
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h is equivalent to �ij = �ij .The Poisson bra
ket is 
alled symple
ti
 if in any 
oordinate system and atany point x 2M the matrix (�ij(x)) of lo
al fun
tions is invertible. In this 
asethe Poisson manifold is 
alled a symple
ti
 manifold.Exer
ise 2.2 Verify that the Ja
obi identity is equivalent to (2.19). Moreover,verify that the 
anoni
al Poisson bra
ket (2.21) on R2n de�ned byff; gg = nXr=1� �f�qr �g�pr � �f�pr �g�qr� (2.21)indeed is a symple
ti
 Poisson bra
ket.A 
ommutative asso
iative algebra A with a Poisson bra
ket is 
alled a Pois-son algebra. If A in addition has a �-involution 
ompatible with the Poissonbra
ket as in (2.20) the A is 
alled a Poisson �-algebra. Thus we arrive at thefollowing pi
ture: the observables in 
lassi
al me
hani
s have the stru
ture of aPoisson �-algebra A
lass. Indeed, this 
hara
terization is mu
h more general andis valid beyond 
lassi
al me
hani
s. It 
an be seen as the general stru
ture forany 
lassi
al theory.For the des
ription of the states we have two possibilities: on one hand thepure states are again the points in phase spa
e, on the other hand states 
an beviewed as positive linear fun
tionals, sin
e we have a �-algebra. It turns out thatboth approa
hes are 
onsistent in the following sense: the points x 2M 
an beidenti�ed with the Æ-fun
tionals Æx : C1(M)! C whi
h are positive fun
tionalssin
e Æx(ff) = f(x)f(x) � 0: (2.22)Thus the se
ond 
hara
terization is indeed a generalization of the previous one.Moreover, there are other positive linear fun
tionals whi
h 
an be des
ribed byintegrations with respe
t to other positive measures �f 7! ZM fd�: (2.23)In parti
ular we obtain the thermodynami
al states with a integration densitygiven by 1Z e��H .The Riesz representation theorem then shows that indeed all positive linearfun
tionals of C1(M) are of this form: they 
an be obtained by integration withrespe
t to a positive Borel measure (with 
ompa
t support). Moreover, the purestates are pre
isely the Æ-fun
tionals as desired.The time evolution 
an be des
ribed algebrai
ally as follows. Again a Hamil-ton fun
tion determines the Hamilton equation of motion whose solutions are
urves t 7! x(t) through a given initial 
ondition x = x(0). Thus one 
an de�nethe 
ow �t :M !M by mapping x 2M to the point x(t) if x(t) is the uniquesolution with x(0) = x. Sin
e we have an autonomous di�erential equation for
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ow gives a one-parameter group�0 = id and �t Æ �s = �t+s (2.24)of maps M ! M . It turns out that ea
h �t is even a smooth map when
e wehave a one-parameter group of di�eomorphisms of M . Given an observable fone de�nes its pull-ba
k ��t f 2 C1(M) to be the observable��t f = f Æ �t (2.25)and obtains again an observable for all t. Clearly the pull-ba
ks give a one-parameter group of linear maps ��t : C1(M)! C1(M) satisfying in addition��t (fg) = ��t f ��t g and ��t (f) = ��t (f): (2.26)Thus the time evolution of the observables is a one-parameter group of �-automorphismsas in the quantum 
ase. Sin
e the time evolution is indu
ed by Hamilton's equa-tion of motion one 
an show in addition thatddt��t f = �fH;��t fg (2.27)and ��t (ff; gg) = f��t f; ��t gg: (2.28)Then (2.27) 
an be interpreted as in�nitesimal time evolution and it is the im-mediate analog of Heisenberg's equation of motion (2.12). As (2.28) shows thetime evolution is 
ompatible with the Poisson bra
kets.Summarizing, the time evolution in 
lassi
al me
hani
s is a one-parametergroup of Poisson �-automorphisms of the observable algebra A
lass.2.2.3 The algebrai
 stru
turesTo summarize to above analysis we �nd the relevant stru
tural di�eren
e between
lassi
al and quantum physi
s: The quantum observable algebra AQM is non-
ommutative while the 
lassi
al observable algebra A
lass is 
ommutative buthas an additional stru
ture, the Poisson bra
ket. It also be
ame 
lear that thefundamental obje
t in both 
ases is given by the observable algebra while thestates 
an be understood as a derived 
on
ept. Knowing the �-algebra one alsoknows its positive linear fun
tionals. Finally, in both 
ases the time evolution isa one-parameter group of automorphisms the observable algebra.2.3 What is quantization?What do we want to a
hive with `quantization'? First of all, we have largedomains where the 
lassi
al des
ription of our world is an extraordinarily goodapproximation, so 
lassi
al physi
s is not just `wrong'. To explain this phenomenof 
lassi
al limit starting with quantum physi
s is still a deli
ate and 
on
eptuallydiÆ
ult question.



10 Stefan WaldmannNevertheless, to our best present knowledge quantum physi
s is the morefundamental des
ription of nature. Hen
e quanization, understood as the pas-sage from 
lassi
al physi
s to quantum physi
s, is not a physi
al phenomen: theworld is already quantum and quantization is only our poor attempt to �nd thequantum theoreti
al des
ription starting with the 
lassi
al des
ription whi
h weunderstand better. Apparently we are not able to �nd the quantum des
riptiona priori and intrinsi
ally, say for the standard model or gravity. Instead wealways have to start with the 
lassi
al analog though we very well know thatthere should be an a priori quantum des
ription as this is the more fundamentaltheory.In the following, I do not want to spe
ulate too mu
h on the question whetheror why it seems always to be the 
ase that we have to start with the 
lassi
altheory. Instead I intend to handle this more pragmati
ally and take the 
lassi
altheory in order to �nd and 
onstru
t a 
orresponding quantum theory.More 
on
rete, quantization shall stand for a 
onstru
tion of a quantumtheoreti
al des
ription of a given physi
al system starting only with the 
lassi
aldata. A

ording to the dis
ussion in Se
t. 2.2 the key role is played by theobservable algebra: quantization is a pro
eedure of 
onstru
ting AQM out ofA
lass. A priori it is not 
lear whether su
h a 
onstru
tion is su

essful and if so,how unique it will be.The following requirements for su
h a 
onstru
tion shall not be understoodas stri
t axioms but as ideas and motivations. In 
on
rete examples one typi
ally�nds more appropriate and more spe
i�
 formulations.(1) The quantum me
hani
al observable algebra AQM should be as big as the
lassi
al observable algebra. Classi
al observables are the 
lassi
al limit ofquantum observables, so AQM 
an not be smaller than A
lass. On the otherhand, if there are quantum observables whi
h do not have a 
lassi
al 
oun-terpart then a quantization is either hopeless or the 
lassi
al des
riptionhas to be re�ned to in
lude more observables.The spin of an ele
tron provides a (non-)example: there is no 
lassi
alanalog of spin in the usual me
hani
al des
ription of an ele
tron unlessone uses a super-me
hani
al des
ription. This is indeed possible and aquantization of this super-me
hani
s yields the 
orre
t spin for the ele
tron.Moreover, the 
orresponden
e between 
lassi
al and quantum me
hani
alobservables should be suÆ
iently expli
it. One needs a physi
al interpre-tation of the elements of AQM in order to 
ompare them with the onesin A
lass. As the latter are realized as fun
tions on some phase spa
e theinterpretation of A
lass usually is obvious.(2) The quantum observable algebra AQM should lead in the 
lassi
al limit tothe 
lassi
al observable algebra A
lass. In order to make su
h a statementmeaningful the notion of 
lassi
al limit has to be 
lari�ed. In parti
ular,one expe
ts that for 
orresponding 
lassi
al and quantum observables one
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orresponding algebrai
 relationsÂ� ; A�; ÂB̂ ; AB; and 1i~ [Â; B̂℄; fA;Bg (2.29)in the 
lassi
al limit ;. Here the Poisson bra
ket of A
lass is seen as`shadow' of the quantum me
hani
al non-
ommutativity. Note that thePoisson bra
ket in 
lassi
al me
hani
s indeed has the dimension of an in-verse a
tion while the 
ommutator is dimensionless. Also the i is ne
es-sary be
ause of the reality properties of the 
ommutator and the Poissonbra
ket. Thus (2.29) is 
onsistent from this point of view.(3) Having 
onstru
ted AQM all the states of A
lass should arise as 
lassi
allimit of the states of AQM. Sin
e the quantum des
ription is the morefundamental one this has to be imposed by 
onsisten
y. Of 
ourse thenature of the 
lassi
al limit of states is deli
ate and has to be spe
i�ed inan appropriate way before su
h a statement 
an be shown.(4) The non-
ommutativity of AQM is the manifestation of the un
ertainty rela-tions when
e their size is 
ontrolled by Plan
k's 
onstant ~. The 
lassi
allimit ; in (2.29) should be understood in su
h a way, that the typi
ala
tions of the system are large 
ompared to the a
tion ~. Intuitively, onewrites ~! 0 for the 
lassi
al limit. However, ~ is not dimensionless when
ea statement about the `size' 
an only be relative to other quantities of thesame physi
al dimension.(5) The o

uren
e of a 
lassi
al limit shows that the 
orre
tions whi
h bringus from 
lassi
al to quantum are not too big, probably even small: Oneneeds quite pre
ise measurements to observe the quantum nature of ourworld. This aspe
t will be made more pre
ise in the notion of deformationof algebrai
 stru
tures later.(6) The quantum observable algebra AQM should allow for a reasonable notionof spe
tra. This 
an be a
hieved e.g. by embedding AQM into some C�-algebra.(7) The 
onstru
tion of AQM should be as expli
it as possible. Moreover, the
onstru
tion should be 
on
eptually 
lear: it should be possible to dis-tingiush properties of the 
onstru
tion whi
h are generi
 from those whi
huse spe
i�
 features of the example. If there are ad-ho
 de
isions and
hoi
es to be made one should be able to investigate the resulting ambigu-ities.3 From 
anoni
al quantization to star produ
ts3.1 Canoni
al quantization and orderingsAs �rst example one investigates the 
at phase spa
e R2n with the 
anoni
alPoisson bra
ket (2.21). For simpli
ity let n = 1 when
e we have 
anoni
ally
onjugate 
oordinates q and p with Poisson bra
ketfq; pg = 1: (3.1)



12 Stefan WaldmannCanoni
al quantization, as it 
an be found in textbooks on quantum me
hani
s,is the repla
ement of q and p by the quantum me
hani
al observables Q̂ andP̂ whi
h are usually realized by di�erential operators a
ting on wave fun
tions.More spe
i�
ally, 
onsider the smooth fun
tions with 
ompa
t support C10 (R)on the real line and de�ne the linear operators Q̂; P̂ : C10 (R)! C10 (R) by(Q̂ )(q) = q (q) and (P̂ )(q) = �i~� �q (q) (3.2)for  2 C10 (R). Then Q̂ and P̂ are indeed de�ned on the pre Hilbert spa
eC10 (R) and obey the 
ommutation relation[Q̂; P̂ ℄ = i~1: (3.3)A

ording to our general 
on
ept we have to quantize the whole observablealgebra and not only the two observables q and p. The smallest Poisson �-algebra of fun
tions on the phase spa
e 
ontaining q and p are the polynomialsPol(R2). Using this as 
lassi
al observable algebra we have to give a 
orrespond-ing operator for all the monomials qkp`, k; ` 2 N. In order to a

omplish the
orresponden
e prin
iple (2.29) it is reasonable to use the 
orresponding mono-mial in Q̂ and P̂ . Doing so we en
ounter the following ordering problem: whilethe 
lassi
al q and p 
ommute we have e.g. qkp` = p`qk but the quantum Q̂and P̂ do not 
ommute any longer. Thus in Q̂kP̂ ` 6= P̂ `Q̂k the ordering playsa 
ru
ial role. In order to pro
eed one has to make a 
hoi
e how the variablesshould be ordered. The resulting ambiguities have to be dis
ussed 
arefully later.To illustrate this by an example, I will dis
uss two ordering pres
riptions whi
hare 
ommonly used.3.1.1 The standard orderingThe simplest ordering pres
ription I shall dis
uss is the standard ordering. Hereone writes all momenta to the right before one repla
es q by Q̂ and p by P̂ . Thusthe standard representation %S is the map%S : Pol(R2)! Di�Op(C10 (R)) (3.4)from the polynomials into the di�erential operators de�ned by%S(qkp`) = Q̂kP̂ ` = �~i �` qk �`�q` (3.5)and linear extension to all polynomials. A simple 
omputation shows that onehas the following expli
it formula%S(f) = 1Xr=0 1r! �~i �r �rf�pr ����p=0 �r�qr (3.6)
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tion to Deformation Quantization 13for any polynomial f(q; p). From this expli
it formula we see that %S(f) is stillwell-de�ned if f is only a polynomial fun
tion of p and has arbitrary smoothdependen
e on q sin
e the in�nite series terminates after �nitely many terms.The smooth fun
tions of q and p depending polynomially on p are denoted byPol(T �R). Note that Pol(T �R) indeed is a Poisson �-algebra. Thus we obtain alinear map %S : Pol(T �R)! Di�Op(C10 (R)) (3.7)into the di�erential operators a
ting on C10 (R) with smooth 
oeÆ
ients. Thefollowing statement is an obvious 
onsequen
e of the expli
it formula (3.6).Lemma 3.1 The standard representation %S is bije
tive.Using this lemma we obtain the desired 
orresponden
e between 
lassi
al andquantum me
hani
al observables. This is also known as symbol 
al
ulus fordi�erential operators and the inverse of %S is also 
alled the symbol map.However, from a physi
al point of view the standard representation is stillunsatisfa
tory. The reasons 
omes from the following in
ompatibility with the�-involutions. The algebra of di�erential operators has a natural �-involutionwhi
h is indu
ed by the operator adjoint with respe
t to the usual L2-innerprodu
t h ; �i = ZR  (q)�(q) dq (3.8)of fun
tions  ; � 2 C10 (R). Clearly this way the smooth fun
tions with 
ompa
tsupport be
ome a pre Hilbert spa
e whose 
ompletion is the spa
e of squareintegrable fun
tions L2(R; dq). As long as we are working with C10 (R) thede�nition of the adjoint operator of a di�erential operator is trivial: we obtainthe ajoint by naive partial integrations. The adjoint of %S(f) 
an be 
omputedexpli
itly for a fun
tion f(q; p) = fr(q)pr with fr 2 C1(R) and r 2 N. We haveh ; %S(f)�i = ZR  (q)�~i �r fr(q)�r��qr (q) dq= ZR�~i �r �r�qr � (q)fr(q)� �(q) dq= ZR�~i �r rXs=0�rs��sfr�qs (q) �r�s �qr�s (q) �(q) dq= ZR %S rXs=0�rs��~i �s �sfr�qs pr�s! ! (q) �(q) dq: (3.9)
Thus the adjoint of %S(frpr) is given by%S(fr(q)pr)y = %S rXs=0�rs��~i �s �sfr�qs pr�s! : (3.10)



14 Stefan WaldmannIn order to simplify this expression we need the following operators� = �2�q�p and N = e ~2i� = 1Xs=0 1s! � ~2i�s�s; (3.11)whi
h we view as operators a
ting on Pol(T �R). Note that N is well-de�ned, i.e.for f 2 Pol(T �R) the seriesNf only 
ontains �nitely many terms as �sf = 0 if sis larger than the polynomial degree in p of f . So 
onsider again f(q; p) = fr(q)pras before then N2f = 1Xs=0 1s! �~i �s�sf= 1Xs=0 1s! �~i �s �sfr�qs �spr�ps= 1Xs=0 1s! �~i �s �sfr�qs r!(r � s)! pr�s; (3.12)when
e we obtain the important equation%S(f)y = %S(N2f): (3.13)Sin
e (3.13) is linear we 
on
lude that (3.13) is valid for all f 2 Pol(T �R). Inparti
ular, for a real-valued fun
tion f = f the 
orresponding operator %S(f)needs not to be symmetri
 as in general N2f 6= f . Thus the 
lassi
al andthe quantum �-involution are not 
ompatible and 
lassi
al observables are notmapped to quantum observables.3.1.2 The Weyl orderingThe above unphysi
al property of the standard ordering 
an be 
ured very easilyusing the operator N . We de�ne the Weyl representation by%Weyl(f) = %S(Nf) (3.14)for f 2 Pol(T �R). More expli
itly we have%Weyl(f) = 1Xr=0 1r! �~i �r �r(Nf)�pr ����p=0 �r�qr ; (3.15)viewed as di�erential operator a
ting on C10 (R). Sin
e N = e ~2i� is invertibleon Pol(T �R) it follows that %Weyl is again a bije
tion between Pol(T �R) and thedi�erential operators Di�Op(C10 (R)). After some 
ombinatori
al 
onsiderationsone 
an show that for a polynomial f(q; p) = qkp` the Weyl representation%Weyl(f) is the 
orresponding totally symmetrized polynomial in the operators Q̂and P̂ , e.g. %Weyl(q2p) = 13(Q̂2P̂ + Q̂P̂ Q̂+ P̂ Q̂2) = �i~q2 ��q � i~q: (3.16)
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tion to Deformation Quantization 15This ordering is also 
alled the Weyl ordering. Using (3.13) and the de�nition(3.14) one has%Weyl(f)y = %S(Nf)y = %S(N2Nf) = %S(N2N�1f) = %S(Nf) = %Weyl(f);(3.17)when
e the 
lassi
al �-involution and the quantum �-involution are 
ompatiblefor the Weyl ordering.In order to investigate the other requirements of a quantization one has todis
uss in parti
ular the 
orresponden
e prin
iple (2.29). I will not do this atthe present stage but invite the reader to perform some simple 
omputations:Exer
ise 3.2 Let f; g 2 Pol(T �R). Compare %S(fg) and %S(f)%S(g). Also
ompare %S(ff; gg) and 1i~ [%S(f); %S(g)℄. How 
an one interprete the result? Dothe same 
omputations for the Weyl ordered 
ase.3.2 The �rst star produ
ts3.2.1 The standard ordered and Weyl ordered star produ
tThe following idea is very simply but enables us to formulate the notion ofquantization in greater detail. Sin
e both ordering pres
riptions %S and %Weylare linear bije
tions between A
lass = Pol(T �R) and AQM = Di�Op(C10 (R))we see that for these 
hoi
es of A
lass and AQM the underlying ve
tor spa
es ofobservables are isomorphi
. Thus we 
an pull-ba
k the non-
ommutative produ
tof AQM to A
lass in order to obtain a new produ
t for A
lass. One de�nesf ?S g = %�1S �%S(f)%S(g)� (3.18)and f ?Weyl g = %�1Weyl�%Weyl(f)%Weyl(g)� (3.19)for f; g 2 Pol(T �R). These new produ
ts are 
alled standard ordered star produ
tand Weyl ordered star produ
t or Weyl produ
t for short, respe
tively. Thoughwe already expe
t the Weyl produ
t to have physi
ally more reasonable proper-ties I will �rst dis
uss the more simple standard ordered produ
t. First I shallderive a more expli
it formula for ?S. To this end one 
onsiders fun
tions witha �xed polynomial degree in the momentum variables f(q; p) = fk(q)pk and



16 Stefan Waldmanng(q; p) = g`(q)p` with k; ` 2 N and fk; g` 2 C1(R). Then one 
omputes%S(f)%S(g) = �~i �k+` fk �k�qk g` �l�q`= �~i �k+` fk kXs=0�ks��sg`�qs �`+k�s�q`+k�s= %S kXs=0�ks��~i �s fkpk�s �sg`�qs p`!= %S kXs=0 1s! �~i �s �s�ps (fkpk) �s�qs (g`p`)!= %S kXs=0 1s! �~i �s �sf�ps �sg�qs! ;
(3.20)

when
e one 
on
ludes that in generalf ?S g = 1Xs=0 1s! �~i �s �sf�ps �sg�qs (3.21)for f; g 2 Pol(T �R). Again note that the in�nite series a
tually 
ontains only a�nite number of non-zero terms as long as the fun
tion f is only a polynomialin p. Moreover, the result is again a fun
tion whi
h is only polynomial in p.Before I dis
uss the properties of ?S let me mention the 
orresponding for-mulas for ?Weyl. By de�nition (3.19) and by (3.14) one hasf ?Weyl g = %�1Weyl(%Weyl(f)%Weyl(g)) = N�1%�1S (%S(Nf)%S(Ng)) = N�1(Nf ?SNg);(3.22)when
e the operatorN intertwines between the produ
ts ?S and ?Weyl. Expli
itly,one obtains after some simple 
omputationf ?Weyl g = 1Xr=0 1r! � ~2i�r rXs=0�rs�(�1)r�s �rf�qs�pr�s �rg�qr�s�ps : (3.23)Again, the in�nite series terminates after �nitely many terms if f; g 2 Pol(T �R).Using these expli
it expressions one �nds the following theorem:Theorem 3.3 The star produ
ts ?S and ?Weyl have the following properties:(1) For f; g 2 Pol(T �R) one has f ?S g, f ?Weyl g 2 Pol(T �R).(2) ?S and ?Weyl are asso
iative multipli
ationsf ? (g ? h) = (f ? g) ? h: (3.24)
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an be written as a series of bidi�erential operators Crf ? g = 1Xr=0 ~rCr(f; g): (3.25)(4) For both produ
ts one hasf ? g = fg + � � � when
e C0(f; g) = fg (3.26)andf ?g�g?f = i~ff; gg+� � � when
e C1(f; g)�C1(g; f) = iff; gg; (3.27)as well as 1 ? f = f = f ? 1; (3.28)where ff; gg is the 
anoni
al Poisson bra
ket (2.21).(5) For the Weyl produ
t one has in additionf ?Weyl g = g ?Weyl f: (3.29)Exer
ise 3.4 Prove the expli
it formula (3.23) for the Weyl produ
t and use itto show the theorem. Prove the asso
iativity only using (3.23) and (3.21). Givean alternative proof of asso
iativity using %S and %Weyl, respe
tively.Rephrasing the statement of the above theorem we have the following result:The new produ
ts ?S and ?Weyl are asso
iative produ
ts for A
lass. They deformthe 
lassi
al, original produ
ts in dire
tion of the Poisson bra
ket. Thus the
orresponden
e prin
iple is manifested in the equations (3.26) and (3.27). Forthe Weyl produ
t ?Weyl the 
lassi
al �-involution is still a �-involution for thenew produ
t ?Weyl. This is not true for ?S.The maps %S and %Weyl, respe
tively, show that A
lass with the new produ
ts?S and ?Weyl, respe
tively, are isomorphi
 to AQM as algebras. In 
ase of ?Weyl itis even a �-isomorphism.This motivates the following deformation problem as a more 
on
rete formu-lation of the quantization problem: Instead of 
onstru
ting a 
ompletely newalgebra AQM out of A
lass one keeps A
lass as a ve
tor spa
e and 
hanges only theprodu
t stru
ture from the 
ommutative produ
t into a non-
ommutative starprodu
t by deforming the original one.3.2.2 A �rst generalization: 
otangent bundlesThe most important generalization of R2n as phase spa
e for 
lassi
al me
hani
sis the 
lass of 
otangent bundles. I do not want to go into mu
h details onthe di�erential geometry here but just motivate why 
otangent bundles are sointeresting.Let us 
onsider a physi
al system of N parti
les moving in R3. Then the
on�guration spa
e is R3N , probably with removed 
oin
iden
e points. The
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e is R3N �R3N where the se
ond R3N 
orresponds to the 
anoni
ally
onjugate momenta. It is 
lear that the star produ
ts ?S and ?Weyl have animmediate generalization to this situation.Now 
onsider the sitation where the positions of the parti
les have to ful�llsome 
onstraints. If there are f independent 
onstraints then the 
on�gurationspa
e will be a n = 3N � f dimensional submanifold Q of the original 
on�gu-ration spa
e R3N . To guarantee that the parti
les do not leave the 
onstraintsurfa
e Q their possible velo
ities have to be tangent to the submanifold Q. Thusfor the des
ription of the allowed positions and velo
ities one uses the tangentbundle TQ of Q. The di�erential geometri
 de�nition of TQ 
an be understoodheuristi
ally as follows: for any point q 2 Q one atta
hes the tangent spa
e TqQat q. Then the dijoint union of all these TqQ gives TQ. This velo
ity phase spa
eturns out to be a manifold of dimension 2n and is the basis for the Lagrangeanformulation of me
hani
s.In order to formulate me
hani
s on Q in the Hamiltonian way one has to passto the (momentum) phase spa
e by a Legendre transform. Geometri
ally this
orresponds to the passage to the 
otangent bundle T �Q of Q. This 
otangentbundle is 
onstru
ted analogously to TQ where now the dual spa
e T �qQ to thetangent spa
e is atta
hed at any point q. It turns out that on T �Q one has a
anoni
al Poisson stru
ture when
e C1(T �Q) be
omes a Poisson �-algebra.Di�erent from Rm on a general manifold M we do not have a global andpreferred 
oordinate system. Hen
e a meaningful de�nition of polynomial fun
-tions is no longer available. In 
ase of a 
otangent bundle the situation is slightlyni
er: Sin
e the momentum dire
tions are along the ve
tor spa
es T �q Q it is stillmeaningful to speak of fun
tions whi
h are polynomial in the momenta. In spa-
ial dire
tions however, this is no longer possible in a 
oordinate independentway. The smooth fun
tions on T �Q whi
h are polynomial in momentum dire
-tions are denoted by Pol(T �Q). They are a Poisson subalgebra of all smoothfun
tions C1(T �Q) for the 
anoni
al Poisson bra
ket. Moreover, for a typi
alphysi
al system the kineti
 energy is a quadrati
 fun
tion in the momenta whilethe potential is even 
onstant in momentum dire
tions. Thus A
lass = Pol(T �Q)is a good 
andidate for the 
lassi
al observables.For su
h a 
lassi
al system with A
lass = Pol(T �Q) one 
an show now thefollowing: It is possible to repeat all important steps in the 
onstru
tion of %S,N , %Weyl ?S, and ?Weyl almost literally. The only modi�
ation 
omes from thefa
t that one has to use a 
ovariant derivative r. A fun
tion depending linearlyon the momenta is quantized using r by pk 7! �i~rk instead of �i~�k. Thisway one obtains a 
oordinate independent formulation. Moreover, for a 
on
retephysi
al system there is usually a preferred 
hoi
e of a 
ovariant derivative: thekineti
 energy determines a Riemannian metri
 on Q whi
h has a unique 
om-patible 
ovariant derivative: the Levi Civita 
onne
tion. The te
hni
al details ofthis very expli
it 
onstru
tion 
an be found in [5{7℄.
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tion to Deformation Quantization 194 Deformation quantization4.1 Star produ
ts4.1.1 General de�nitionsHaving seen that the deformation of the 
lassi
al observable algebra promissesto give a su

essful 
on
ept of quantization we shall now try to put things on asolid mathemati
al ground. I will dis
uss on one hand a geometri
 version basedon Poisson manifolds and, on the other hand, a more algebrai
 version.For the geometri
 situation one observes that on a general Poisson manifoldM there are no `polynomial fun
tions' within C1(M). As 
lassi
al observablealgebra we 
an only use C1(M) at least as long as we do not have any addi-tional spe
i�
 information. In 
on
rete examples there may be some physi
allyinteresting subalgebras, as e.g. in the 
ase of 
otangent bundles.Using C1(M) the formulas (3.21) and (3.23) have to be re
onsidered: If f , gare arbitrary smooth fun
tions then the series do not 
onverge in general. Evenworse, one 
an always �nd fun
tions f , g su
h that the power series in ~ do haveradius of 
onvergen
e equal to 0.One way out is to look for star produ
ts for A
lass = C1(M) whi
h areonly formal power series in ~, but share all other properties of ?S and ?Weyl. In ase
ond step one tries to �nd suitable subalgebras where 
onvergen
e of the formalseries is guaranteed. The examples of R2n and T �Q show that this might besu

essful, as here one has the subalgebras of polynomial fun
tions. The pointis that an a priori 
hoi
e of a subalgebra may be very diÆ
ult without furtherknowledge of M but a posteriori the star produ
t itself may single out `ni
e'fun
tions where the series 
onverge. Thus one should view the formal powerseries as 
onsequen
e of some missing additional information on the 
lassi
alsituation whi
h typi
ally depends strongly on the example.After this 
onsiderations the following general de�nition of a star produ
ta

ording to Bayen, Flato, Fr�nsdal, Li
hnerowi
z and Sternheimer should bewell motivated [2℄, see also [13℄ for a re
ent review.De�nition 4.1 A star produ
t for a Poisson manifold M is an asso
iativeprodu
t ? for the formal power series C1(M)[[�℄℄ of the formf ? g = 1Xr=0 �rCr(f; g); (4.1)su
h that:(1) f ? g = fg + � � � , i.e. C0(f; g) = fg.(2) f ? g � g ? f = i�ff; gg+ � � � , i.e. C1(f; g)� C1(g; f) = iff; gg.(3) f ? 1 = f = 1 ? f , i.e. Cr(1; f) = 0 = Cr(f; 1) for r � 1.(4) Cr is a bidi�erential operator.The star produ
t is 
alled Hermitian if in additionf ? g = g ? f: (4.2)



20 Stefan WaldmannThe formal parameter � plays the role of ~ and 
an be substituted by ~ as soonas one has established 
onvergen
e.The asso
iativity f ? (g ? h) = (f ? g) ? h is 
he
ked order by order in �.This yields the following equivalent 
onditions on the Cr's: for all k 2 N and allfun
tions f; g; h 2 C1(M) one haskXr=0Cr(f; Ck�r(g; f)) = kXr=0Cr(Ck�r(f; g); h): (4.3)The Hermiti
ity of ? is equivalent to the 
ondition Cr(f; g) = Cr(g; f).The algebrai
 
ontent of deformation quantization is Gerstenhaber's defor-mation theory of asso
iative algebras [17℄. Sometimes we do not want to makereferen
e to the underlying geometri
 situation but start with the 
lassi
al ob-servable algebraA
lass as a Poisson �-algebra dire
tly. Then one uses the followingnotion of a formal deformation:De�nition 4.2(1) A formal deformation of an asso
iative algebra A is an asso
iative produ
tfor A[[�℄℄ of the form A ? B = 1Xr=0 �rCr(A;B) (4.4)with C0(A;B) = AB.(2) A formal deformation quantization of a Poisson algebra A
lass is an asso-
iative deformation ? of A
lass with C1(f; g)� C1(g; f) = iff; gg.(3) A Hermitian deformation of a �-algebra is a deformation with (A ? B)� =B� ? A�.This way we have de�ned the notion of a Hermitian deformation quantizationof a Poisson �-algebra in a purely algebrai
 way. This de�nition is useful if thegeometry of the 
lassi
al phase spa
e is diÆ
ult to des
ribe but an observablealgebra is still available. As example one 
an 
onsider simple �eld theories [14,15℄.4.1.2 Existen
e and 
lassi�
ationHaving the general de�nition of a star produ
t one is fa
ed with the questionwhether su
h deformations exist for general Poisson manifolds. Moreover, oneshould 
larify how many possibilities are there in the 
onstru
tion of star prod-u
ts. This is non-trivial as we have already seen in the 
ase of R2 that there areat least two, ?S and ?Weyl. The existen
e is guaranteed by the following theorem:Theorem 4.3 On any Poisson manifold there are star produ
ts.The proof of this theorem is far beyond this introdu
tion. I only shall mentionthat �rst the existen
e for symple
ti
 manifolds was shown by DeWilde and
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omte [12℄, Fedosov [16℄ and Omori, Maeda and Yoshioka [25℄. The generalPoisson 
ase was un
lear for long time untill Kontsevi
h su

eeded with a proofin his fundamental work [21℄.The question about uniqueness is slightly more diÆ
ult to formulate as wehave already seen that there are at least two star produ
ts ?S and ?Weyl on R2n.However, there is a relation between them using the operator N , namelyf ?Weyl g = N�1(Nf ?S Ng); (4.5)where N = exp( �2i�) is now viewed as formal series of di�erential operators.Thus N is an algebra isomorphism between the standard and Weyl ordered starprodu
t algebras. This is of 
ourse to be expe
ted as both are isomorphi
 to thealgebra of di�erential operators, by their very 
onstru
tion. The important ob-servation is that N starts with the identity in zeroth order of �: the isomorphismis simply the identity in the 
lassi
al limit.De�nition 4.4 Two star produ
ts ? and ?0 for C1(M) are 
alled equivalent ifthere is a formal series S = id+ 1Xr=1 �rSr (4.6)of di�erential operators Sr su
h thatf ?0 g = S�1(Sf ? Sg) and S1 = 1: (4.7)In this 
ase S is 
alled an equivalen
e transformation. In the 
ase of Hermitianstar produ
ts one requires in addition Sf = Sf .Exer
ise 4.5 Prove that the above notion indeed is an equivalen
e relation.Moreover, given su
h an S, show that ?0 de�ned by (4.7) is again a (Hermitian)star produ
t provided ? is one.Thus having one star produ
t one gets a whole bun
h of them by apply-ing some equivalen
e transformation. The example of ?S and ?Weyl shows thatpassing to an equivalent star produ
t is related to another 
hoi
e of an orderingpres
ription. In fa
t, the notion of equivalen
e 
an be seen as an axiomati
 andgeneralized notion of passing from one to another ordering pres
ription. Thisraises the following two questions:(1) Is there a 
lassi�
ation of star produ
ts up to equivalen
e, i.e. up to the
hoi
e of an ordering pres
ription?(2) Is there a physi
ally motivated 
hoi
e of a star produ
t ? within a givenequivalen
e 
lass [?℄?It turns out that the �rst question 
an be answered in full generality. I shall notgive the detail whi
h are te
hni
al and 
an be found in the literature [3, 21, 24℄.Theorem 4.6 The equivalen
e 
lasses [?℄ of star produ
ts ? are 
lassi�ed by
ertain geometri
 properties of the underlying Poisson manifold M . In parti
u-lar, there is only one 
lass of symple
ti
 star produ
ts on R2n.
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hoi
e of an equivalen
e 
lass is not suÆ
ient from the physi
al point ofview. In order to 
onstru
t the quantum me
hani
al observables AQM one has toanswer also the above se
ond question. In general, this is mu
h more involved asthe 
hoi
e of a parti
ular star produ
t usually depends strongly on the example.Guidelines 
an be the 
lassi
al symmetries and the wish for 
onvergen
e.4.2 Time evolution in deformation quantizationLet me now dis
uss the time evolution in the formalism of deformation quanti-zation. Consider a 
lassi
al Hamiltonian H 2 C1(M). Then the 
lassi
al timeevolution is given by Hamilton's equations (2.27). As the ve
tor spa
es of A
lassand AQM 
oin
ide in deformation quantization it is 
lear what the star produ
tanalog of Heisenberg's equation (2.12) should be, namelyddtf(t) = i� (H ? f(t)� f(t) ? H): (4.8)Here we en
ounter a little mathemati
al subtlety: in the framework of formalpower series we 
an not simply divide by �. This would require formal Laurentseries. However, sin
eH ? f(t)� f(t) ? H = i�fH; f(t)g+ � � � (4.9)this is not ne
essary. Heisenberg's equation of motion readsddtf(t) = i� (H ? f(t)� f(t) ? H) = �fH; f(t)g+ � � � : (4.10)Thus the equation of motion in deformation quantization is a deformation ofHamilton's equation of motion where the quantum 
orre
tions in (4.10) resultfrom higher order 
ontributions of the star produ
t 
ommutator. Also here the
lassi
al limit is evidently build into the 
onstru
tion.4.3 Star produ
ts and symmetries4.3.1 Classi
al symmetriesLet me �rst re
all the 
on
ept of in�nitesimal symmetries in 
lassi
al me
hani
s,see e.g. [23℄. Take the angular momentum ~L(~q; ~p) = ~q � ~p as example. Thefun
tions L1; L2; L3 generate the rotations around the 
orresponding axis in thesense that their Hamilton equations of motion yield 
ow maps whi
h are exa
tlythe rotations. The Poisson bra
kets of the three generators 
an be summarizedby fLi; Ljg =Xk �ijkLk: (4.11)Thus the Li build a subalgebra for the Poisson bra
ket. This 
an be seen as thein�nitesimal version of the statement that the 
omposition of two rotations isagain a rotation.
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ribed byN generators J1; : : : ; Jn 2 C1(M),whi
h form a subalgebra with respe
t to the Poisson bra
ket. Hen
e there are
onstants, the so-
alled stru
ture 
onstants 
kij 2 R of the symmetry su
h thatfJi; Jjg =Xk 
kijJk: (4.12)Note that the Ji only form a subalgebra for the Poisson bra
ket, not for thepointwise produ
t. Sin
e the Poisson bra
ket satis�es the Ja
obi identity the
onstants 
kij 
an not be 
ompletely arbitrary but have to satisfy the two 
ondi-tions 
kij = �
kji and Xr (
rij
r̀k + 
rki
r̀j + 
rjk
r̀i) = 0: (4.13)One obtains a �nite dimensional ve
tor spa
e g spanned by the J1; : : : ; JN whi
hhas the stru
ture of a Lie algebra with Lie bra
ket[Ji; Jj ℄ =Xk 
kijJk: (4.14)Thus, abstra
tly speaking, an in�nitesimal symmetry in 
lassi
al me
hani
s isgiven by a Lie algebra g whi
h is realised by fun
tions on the phase spa
e,meaning that (4.12) is full�lled. In the 
ase of rotations the Li give the Liealgebra so(3).4.3.2 Quantum me
hani
al symmetriesQuantum me
hani
ally symmetries are des
ribed in a similar way. In�nitesimalsymmetries are also en
oded in a Lie algebra g whi
h is now realised by operatorson the Hilbert spa
e H. As this should be done by linear operators one 
alls thisa representation of g on H. More 
on
rete this means that we have self-adjointoperators Ĵ1; : : : ; ĴN on H su
h that the 
ommutation relations[Ĵi; Ĵj ℄ = i~Xk 
kij Ĵk (4.15)hold. Note however that usually there are some te
hni
al subtleties sin
e typi-
ally the operators Ĵi are only densely de�ned.4.3.3 Symmetries in deformation quantizationIf one has a 
lassi
al symmetry des
ribed by a Lie algebra g and 
orrespondingfun
tions J1; : : : ; Jn on M then one is interested in the question whether in thequantum me
hani
al des
ription the same symmetry is realised or if anomalieso

ure. I only shalldis
uss some of the basi
 de�nitions, for a more detaileddis
ussion see e.g. [1, 4℄.De�nition 4.7 A star produ
t is 
alled g-
ovariant ifJi ? Jj � Jj ? Ji = i�Xk 
kijJk: (4.16)



24 Stefan WaldmannNote that from the de�nition of a star produ
t, we always have f ? g � g ? f =i�ff; gg+ � � � . So the 
ru
ial point in the above de�nition is that there are nohigher order 
orre
tions to the 
ommutators of the Ji. Typi
ally this is a strongrequirement and limits the number of g-
ovariant star produ
ts quite drasti
ally.Exer
ise 4.8 Prove that the Weyl star produ
t ?Weyl is so(3)-
ovariant.The general question whether su
h 
ovariant star produ
ts always exist is stillunsolved and very diÆ
ult. However, there is an important 
ase where existen
eis guaranteed:Theorem 4.9 Let M be a symple
ti
 manifold and g the Lie algebra of a 
om-pa
t Lie group G a
ting on M in a Hamiltonian way. Then there exists a g-
ovariant star produ
t.4.4 States in deformation quantization4.4.1 Positive fun
tionals and positive deformationsIn the following I shall assume to have a Hermitian star produ
t ?. Then the
on
ept of states as dis
ussed in Se
t. 2.2.1 shall be applied to deformation quan-tization as well. Here one en
ounters the following problem: C-linear fun
tionals! : C1(M)[[�℄℄ ! C are not of mu
h use and not general enough to yield aninteresting notion of states. Either they 
ut o� higher orders in � or one is fa
edwith 
onvergen
e problems immediately. It turns out that it is better to takethe formal power series serious. Thus we 
onsider C[[�℄℄-linear fun
tionals! : C1(M)[[�℄℄! C[[�℄℄: (4.17)The values are also formal power series. This seems to be justi�ed as � should
orrespond to ~ and expe
ation values may depend on ~ as well. However, howshall the positivity 
ondition (2.7) be interpreted?De�nition 4.10 A real formal power series a =P1r=r0 �rar 2 R[[�℄℄ is 
alledpositive if the lowest order ar0 is positive.Hen
e a formal series in R[[�℄℄ is either negative, 0, or positive. Furthermore,the sum and the produ
t of two positive series is again positive. This shows thatthe usual rules hold. In more mathemati
al terms the ring R[[�℄℄ be
omes anordered ring. Note however that this ordering is no longer Ar
himedean as e.g.n� < 1 for all n 2 N. Physi
ally interpreted this 
orresponds to the fa
t thata formal deformation has the right `dire
tion' but not yet the right `size', as wehave not yet imposed 
onvergen
e 
onditions. Thus it is an asymptoti
 notionof positivity. Nevertheless this notion 
an be used to give a de�nition of a state:De�nition 4.11 Let (M;?) be a Poisson manifold with a Hermitian star prod-u
t. A state of AQM = C1(M)[[�℄℄ is a C[[�℄℄-linear fun
tional ! : C1(M)[[�℄℄!C[[�℄℄ su
h that for all f!(f ? f) � 0 and !(1) = 1: (4.18)
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lassi
ally positive linear fun
tional !0 : C1(M) ! C one 
anextend it C[[�℄℄-linearily to all of C1(M)[[�℄℄ by setting!0 : C1(M)[[�℄℄ 3 f = 1Xr=0 �rfr 7! 1Xr=0 �r!0(fr) 2 C[[�℄℄: (4.19)Thus the question is whether !0 is not only positive for the pointwise produ
t,i.e. !0(ff) � 0 but also for ?. The 
ondition for positivity is in the lowest ordersgiven by 0 � !0(f ? f) = !0(ff) + �!0(C1(f; f)) + � � � : (4.20)Now it may happen that !0(ff) = 0. Then the positivity requires that in thenext order we have something non-negativ. But the next term !0(C1(f; f))(and similarly all higher order terms) usually 
ontains derivatives of f when
e ade�niteness 
an not be guaranteed so easily. This 
an be seen in the followingexample.Let H = 12p2 + 12q2 be the Hamiltonian of the harmoni
 os
illator and let!0 = Æ0 be the Æ-fun
tional at 0. Then we 
onsider the Weyl produ
t ?Weyl and
ompute Æ0(H ?Weyl H) = Æ0�H2 � �24 � = ��24 < 0: (4.21)Thus the Æ-fun
tional is no longer positive for ?Weyl. Physi
ally this 
an beinterpreted as the well-known fa
t that points in phase spa
e are no longer statesin quantum theory be
ause of the un
ertainty relations.How 
an we obtain now every 
lassi
al state as a 
lassi
al limit of a quantumstate as we have demanded this in Se
t. 2.3? The solution to the above problemis that we 
an also allow for higher order terms in the positive fun
tional. One
onsiders fun
tionals of the form ! = 1Xr=0 �r!r (4.22)where ea
h !r : C1(M) ! C. Then su
h a fun
tional 
learly extends to aC[[�℄℄-linear fun
tional ! : C1(M)[[�℄℄ ! C[[�℄℄. Now the positivity 
onditionreads 0 � !(f ? f) = !0(ff) + � �!0(C1(f; f)) + !1(ff)�+ � � � : (4.23)For a given 
lassi
ally positive fun
tional !0 we have to 
hose !1 in su
h a waythat the term !0(C1(f; f)) is 
ompensated whenever !0(ff) = 0. Similarly thehigher orders !r are used to 
ompensate possibly negative terms o

uring inthe star produ
t. A priori it is not 
lear whether one 
an �nd su
h quantum
orre
tions when
e I state the following de�nition:De�nition 4.12 Let ? be a Hermitian star produ
t.



26 Stefan Waldmann(1) A C[[�℄℄-linear fun
tional ! =P1r=0 �r!r : C1(M)[[�℄℄ ! C[[�℄℄ is 
alleda deformation of !0 if ! is positive with respe
t to ?.(2) A star produ
t ? is 
alled a positive deformation if any 
lassi
ally positivefun
tional 
an be deformed.The following theorem ensures that we indeed 
an deform always the 
lassi
allypositive fun
tionals as this was expe
ted from the dis
ussion in Se
t. 2.3, see [10℄.Theorem 4.13 On a symple
ti
 manifold all Hermitian star produ
ts are pos-itive deformations.In this sense any 
lassi
al state arises as 
lassi
al limit of a quantum state.Note that the above formulation is only meaningful be
ause we have identi�edthe underlying ve
tor spa
es of A
lass and AQM.4.4.2 The GNS 
onstru
tionLet me now explain the GNS 
onstru
tion of a representation out of a givenstate. The 
onstru
tion was developed for C�-algebras, see e.g. [8℄, but it worksin mu
h more general situations.In the following I shall assume that a quantum observable algebra AQM hasbeen 
onstru
ted, e.g. by means of a Hermitian star produ
t (C1(M)[[�℄℄; ?).The only important point is that AQM is a �-algebra over C = C or = C[[�℄℄ inorder to have a notion of positive fun
tionals. In fa
t, it will be suÆ
ient to havean ordered ring R and C = R� iR.A pre Hilbert spa
e over C is then de�ned to be a C-module H with a positivede�nite inner produ
t. To make this de�nition meaningful, one needs the notionof positive elements in R. Then a linear map A : H ! H is 
alled adjointable ifthere exists a A� : H! H su
h thathA��;  i = h�;A i (4.24)for all �;  2 H. The set of all adjointable operators no H is denoted by B(H). IfH is a
tually a Hilbert spa
e over C then the above de�nition of B(H) 
oin
ideswith the usual de�nition of bounded operators: this is the Hellinger-Toeplitztheorem, see e.g. [26, S. 84℄. In general, the reader may easily show that B(H)is a �-algebra.A �-representation is a notion whi
h should make pre
ise the idea of realizingthe observables in AQM by operators on H.De�nition 4.14 A �-representation � of AQM on H is a �-homomorphism� : AQM ! B(H): (4.25)With other words, � is linear and satis�es the identities�(AB) = �(A)�(B) and �(A�) = �(A)� (4.26)for all A;B 2 AQM. Thus one 
an realise the abstra
tly given observable algebraAQM by a parti
ular �-representation on a pre Hilbert spa
e. In fa
t, the various
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hani
s as the spa
ial, the momentum, and theenergy representation, respe
tively, are indeed �-representation of the observablealgebra. They are not really di�erent as they turn out to be unitarily equivalent.In general two �-representations � and � of AQM on H and K are 
alled unitarilyequivalent if there is a unitary operator U : H! K su
h thatU�(A) = �(A)U (4.27)for all A 2 AQM. In this 
ase U is 
alled a unitary intertwiner.For a given AQM one wants to understand how many �-representations AQMhas, up to unitary equivalen
e. The GNS 
onstru
tion (after Gel'fand, Naimarkand Segal) allows to 
onstru
t a �-representation out of a state ! of AQM.Hen
e let ! : AQM ! C be a state. Sin
e ! ful�lles the Cau
hy S
hwarzinequality (2.10) one shows thatJ! = fA 2 A j !(A�A) = 0g (4.28)is a left ideal of A, the so-
alled Gel'fand ideal of !. One de�nes the quotientspa
e H! = AÆJ!: (4.29)The equivalen
e 
lass of B in H! is denoted by  B . On this quotient spa
e onehas two additional stru
tures: a representation of A and an inner produ
t. Therepresentation �! of A is de�ned by�!(A) B =  AB ; (4.30)i.e. the usual left representation of an algebra on itself modulo a left ideal. Theinner produ
t is de�ned by h A;  Bi! = !(A�B): (4.31)Sin
e J! is quotiened out it follows that h�; �i! is indeed positive de�nite. Finally,one shows that �! is a �-representation sin
eh C ; �!(A) Bi = !(C�AB) = !((A�C)�B) = h�!(A) C ;  Bi: (4.32)Thus one has 
onstru
ted a �-representation �! of AQM on the pre Hilbert spa
eH! out of a state ! : AQM ! C. The representation is 
alled the GNS represen-tation for !.A remarkable and also 
hara
terizing property is that all ve
tors  A 
an beobtained by applying the `
reation' operator �!(A) to the va
uum ve
tor  1,sin
e  A =  A1 = �!(A) 1: (4.33)A representation with this property is 
alled 
y
li
 with 
y
li
 ve
tor  1. Finally,the fun
tional ! 
an be re
onstru
ted as the va
uum expe
tation value!(A) = h 1; �!(A) 1i; (4.34)
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e the general notion of a state be
omes again related to the naive notionof a state as an expe
tation value (2.3). The terminology 
omes from quantum�eld theory where also the GNS 
onstru
tion �rst was applied, see e.g. [18℄.Exer
ise 4.15 Prove the above properties of the GNS 
onstru
tion. Show thatall operations are indeed well-de�ned, i.e. independent of the parti
ular repre-sentatives of the equivalen
e 
lasses.As a remark I would like to mention that in the 
ase where AQM is a C�-algebra the GNS representation �! always extends to the Hilbert spa
e 
omple-tion Ĥ!. Thus in this 
ase one obtains a �-representation by bounded operatorson a Hilbert spa
e.The importan
e of the GNS 
onstru
tion is that it works also for deformationquantization. To illustrate this 
onsider the following example: The S
hr�odingerfun
tional ! : C10 (R2n)[[�℄℄ ! C[[�℄℄ is de�ned by the integration over the
on�guration spa
e 
oordinates for momentum p = 0, i.e.!(f) = ZRn f(q; 0) dnq: (4.35)With some elementary partial integrations one shows that ! is indeed a positivelinear fun
tional with respe
t to the Weyl produ
t!(f ?Weyl f) = ZRn (Nf)(q; 0)(Nf)(q; 0) dnq � 0: (4.36)Thus ! de�nes a 
orresponding GNS representation. It turns out that this GNSrepresentation is unitarily equivalent to the Weyl representation %Weyl on thepre Hilbert spa
e C10 (Rn)[[�℄℄ with its usual L2-inner produ
t. A 
ompletelyanalogous 
onstru
tion is possible for 
otangent bundles [5{7℄.5 Star produ
ts beyond quantizationIn this se
tion I shall brie
y dis
uss two appli
ations of the methods of defor-mation quantization. This is meant to be an outlook not dire
tly related the toquantization problem.5.1 The quantum planeConsider the plane R2 with the following bra
ketff; gg(x; y) = xy��f�x �g�y � �g�x �f�y� : (5.1)A simple 
omputation shows that this is indeed a Poisson bra
ket whi
h vanishesalong the x- and y-axis. Thus it 
an not be symple
ti
. Nevertheless there isa simple formula for a star produ
t quantizing this Poisson bra
ket. First wede�ne the two di�erential operatorsDx := x ��x and Dy := y ��y (5.2)
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ting on fun
tions in C1(R2). A star produ
t similar to the standard orderedone is then de�ned by f ? g = 1Xr=0 (i�)rr! DrxfDryg: (5.3)It is easy to see that the �rst order 
ommutator with respe
t to ? gives indeedthe Poisson bra
ket (5.1). It is also 
lear that 1 ? f = f = f ? 1. So it remainsto show the asso
iativity of ?. This 
an be done by a lenghty but elementary
omputation using the 
ru
ial 
ommutation relation[Dx; Dy℄ = 0: (5.4)Exer
ise 5.1 Prove that ? is asso
iative.To see the relations to the quantum plane we 
ompute the 
ommutator ofthe 
oordinate fun
tions x and y. We havex ? y = 1Xr=0 (i�)rr! DrxxDryy = 1Xr=0 (i�)rr! xy = ei�xy; (5.5)sin
e 
learly Drxx = x and Dryy = y for all r 2 N. For the other dire
tion we useDrxy = 0 and Dryx = 0 for r � 1 to obtainy ? x = 1Xr=0 (i�)rr! DrxyDryx = yx: (5.6)Hen
e the 
oordinate fun
tions x and y obey the 
ommutation relation of thequantum plane x ? y = qy ? x where q := ei�: (5.7)For a detailed dis
ussion of the quantum plane and its relations to quantumgroups see e.g. [20℄.5.2 Non
ommutative �eld theoryAnother appli
ation of the methods of deformation quantization 
omes fromgeneralizations of �eld theories. LetM be a spa
e-time manifold, say Minkowskispa
e for simpli
ity. Furthermore, let x1; : : : ; xn be (global) 
oordinates for M .The one 
onsiders a non-
ommutative analog M̂ of M in the sense, that one
onsiders an algebra of operators x̂1; : : : ; x̂n with 
ommutation relations[x̂i; x̂j ℄ = i��ij ; (5.8)where the �ij are numeri
al 
onstants and � has the physi
al dimension of anarea. Thus one enters the realm of Connes' non-
ommutative geometry [11℄. Theidea is that for very small distan
es the des
ription of geometry as we are used tois no longer valid: here quantum and general relativisti
 e�e
ts have to be 
on-sidered in a uni�ed way. One (probably very naive) way to think of this quantum



30 Stefan Waldmanngravity is to impose non-
ommutativity also for the 
oordinate fun
tions. Thenthe typi
al length s
ale where these e�e
ts are no longer negligible is the Plan
ks
ale when
e � should be of the size of the Plan
k area. Here � plays in somesense the same role as ~ in quantization. In a limit � ! 0 one should get ba
kthe 
oordinates of the `
ommutative' spa
e-time.Having the de�nition of a star produ
t it is 
lear how one 
an model these
ommutation relations dire
tly on the 
lassi
al spa
e-time. One interprets the
onstants � as the 
oeÆ
ients of a Poisson stru
turefxi; xjg = �ij (5.9)and looks for a star produ
t ? quantizing this Poisson bra
ket whose existen
eis guaranteed by Kontsevi
h's theorem. Here �ij 
an even be arbitrary fun
tionssu
h that the Ja
obi identity (2.19) holds.In a se
ond step one is interested in �eld theories on su
h non-
ommutativespa
e-time manifolds. Here one pro
eeds analogously to the 
ommutative 
aseand 
onsiders an a
tion prin
iple starting with a Lagrangean, say for a s
alar�eld � L
omm = �������m2�2 + � � � ; (5.10)where � � � indi
ate some possible intera
tion terms. In the non-
ommutative �eldtheory all the pointwise produ
ts have to be repla
ed by the non-
ommutativestar produ
t. This yields a Lagrangean of the formLn.
. = ��� ? ����m2� ? �+ � � � : (5.11)In non-
ommutative �eld theories one is interested in the solutions of the 
or-respondig a
tion prin
iple. Note that one �rst treats this as a 
lassi
al �eldtheory with some strange Lagrangean on a non-
ommutative spa
e-time. Onlyin a se
ond step one tries to quantize this into a quantum �eld theory on thenon-
ommutative spa
e-time. We shall refer to [27℄ for a review on these topi
swith many additional referen
es and �nish this dis
ussion with the remark thatthere is also a geometri
 interpretation of the non-
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