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1 Introduction and Motivation

Quantum theory celebrates its 100th birthday and we should still think about
quantization? Indeed, there are many good reasons to do so and many unsolved
questions some of them I want to discuss in this article.

The quantum physics of finitely many non-relativistic particles moving in
Euclidean space is well understood. Nevertheless, physical reality forces us to
gain a deeper understanding of more general situations.

Taking into account the theory of special relativity one is led to quantum
field theories where in most cases only perturbative formulations are known for
the interacting case. Beside the difficulties of infinitely many degrees of freedom
the problem arising in this context is the presence of gauge degrees of freedom.
For the classical description one uses additional degrees of freedom which do
not have an immediate physical relevance. As example I would like to mention
Maxwell’s theory of electrodynamics: the potentials (¢, ff) are only needed for
simplification but are physically unobservable. The observable content of the
theory are the electric and magnetic fields E= —ﬁqﬁ — %/T and B=V x A. If
one wants to describe the true, physical degrees of freedom one has to consider
gauge equivalence classes of the potentials, i.e. (¢, ff) ~ (¢, A") if they yield the
same E and B. This passage to a gauge invariant description on the classical side
is known as phase space reduction, since typically the dimension of the classical
phase space descreases. However, the geometry of the classical phase space
usually becomes more complicated: one may obtain ‘holes’, the reduced phase
space is curved and there are no global canonically conjugate coordinates (g, p).
Therefor a naive ‘canonical quantization’ of the reduced phase space becomes
impossible.

As toy models for this situation in field theories with gauge degrees of freedom
one considers finite-dimensional phase spaces with non-trivial geometry to study
the phenomena which are also expected in the (certainly not easier) infinite-
dimensional cases.

Beside the questions on the relations between gauge degrees of freedom, phase
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space reduction and quantization there are more reasons to investigate the quan-
tization of finite-dimensional phase spaces with non-trivial geometry. One can
try to understand the quantum theory of a particle moving in a curved back-
ground as this is to be expected from general relativity. Also the quantization
in presence of background fields, like the magnetic field of a Dirac monopole,
can be considered. Furthermore, it turns out that the question of quantization
of phase spaces is, from a technical point of view, deeply related to the question
of quantization of geometry itself leading to the notion of non-commutative ge-
ometry. Applications of such a quantized geometry may arise from a theory of
quantum gravity.

In the following, such more speculative aspects may be taken as motivation.
However, I will take a more conservative point of view and consider mainly the
quantization of non-relativistic classical mechanics with finitely many degrees of
freedom. Here I will mainly focus on a conceptually clear and mathematically
rigorous treatment.

In order to approach the question of quantization appropriately, I shall first
recall the fundamental structures in classical and quantum mechanics. Here one
needs a formulation which is most suited to the problem. In particular, the
notions of ‘observables’, ‘states’, ‘time development’, etc. are to be clarified.
Starting from the so-called canonical quantization, as it can be found in text
books, I will motivated the notion of a star product. This basic notion of defor-
mation quantization shall be discussed in detail in order to compare the results
of deformation quantization with the original aims of the quantization program
in a critical manner. In a concluding section I shall discuss two examples where
the techniques of deformation quantization can be applied beyond the original
quantization problem.

2 Classical and Quantum Mechanics
2.1 Formulation of classical and quantum mechanics

In this section I shall briefly recall the usual notions in Hamiltonian mechanics
and quantum mechanics as it can be found in text books.

2.1.1 Hamiltonian mechanics: First Version

The playing ground of classical mechanics is the phase space M which in the
simplest case is just M = R?™ where n is the number of degrees of freedom.

The pure states are the points £ € M. They can be denoted by use of the
canonical coordinates * = (q,p) € R?". Mixed states will be described later.
The observables are the real-valued functions f : M — R which in addition are
subject to further analytical conditions: of particular interest are the continuous
functions C(M), the smooth functions C'°° (M), the real-analytical functions
C¥(M) and the polynomials Pol(R?"). Note that the notion z = (g, p) has two
interpretations: on one hand it denotes a point (state) in phase space, on the
other hand it denotes the coordinate functions (observable).

The ezpectation value E,(f) of an observable f in a state z is the value f(z)
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at x. The possible values of a measurement of the observable f are the values
f(M) of f. The variation Var,(f) of an observable f in a pure state z under
repeated measurement is

Var, (f) = Eo(f2) — (E.(f))* = 0. (2.1)

The time evolution is governed by a particular observable, the Hamiltonian
H : M — R. The time evolution of a state z is the unique curve ¢t — z(t) =
(q(t),p(t)) € M through z(0) = = satisfying Hamilton’s equations of motion

= O wp(t) and i) = 2L (gt),p(t) for i=1,....n.

oqt
(2.2)

2.1.2  Quantum mechanics: First Version

The analog of the phase space in quantum mechanics is a complex Hilbert space
9. For reasonable physical systems the Hilbert space $ has a countable infinite
Hilbert basis, for certain simplified models also finite-dimensional Hilbert spaces
play a role.

The pure states are complex rays in $), i.e. equivalence classes of vectors
P € )\ {0} where ¢ ~ o' if ¢p = z¢)" with some z € C\ {0}. The observables
are described by operators on $. On one hand the bounded (continuous) opera-
tors B(9), on the other hand the densely defined, self-adjoint operators are of
interest. Strictly speaking, only the Hermitian operators in 8B($)) correspond to
observables.

The ezpectation value E,;(A) of an observable A in a state ¢ is given by

(v, AY)
CRON

Note that Ey(A) depends on the equivalence class of ¢ only. The possible values
of a measurement of the observable A are the spectral values spec(A). In order
to have a reasonable spectrum the observable A has to be a self-adjoint operator.
The spectrum may consist of eigenvalues as for the harmonic oscillator. There
are also observables, like the momentum operator which only have spectral values
which are no eigenvalues. After repeated measurement of the observable A in
the state v the variation

Ey(A) = (2.3)

Vary (A) = By (A2) - By(4)° 2 0 (2.4)

is in general different from zero: For any state ¢ one can find an observable
A with Vary(A) > 0. The reason is the non-commutativity of the observables.
Physically measurable bounds for Vary(A4) can be obtained from Heisenberg’s
uncertainty relations. Hence the non-commutativity of the quantum observables
is crucial in order to implement the uncertainty relations.

The ‘size’ of the uncertainty, as predicted by Heisenberg’s uncertainty rela-
tions, is controlled by the ‘size’ of Planck’s constant £ as it can be seen from
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the canonical commutation relations [Q, 15] = ih. Note however, that A is not
dimensionless, so it has no intrinsic ‘size’. In particular, one can always find a
unit system where A = 1. In order to obtain small quantum effects one has to
compare /i with other quantities (expectation values) of the system which also
have the physical dimension of an action.

The time evolution (t) of a state ¢» = ¥(0) is again induced by a certain
observable, the Hamilton operator H , as the unique solution of the Schridinger
equation

i Lu(t) = Ao 6(0) = v. (2.5)

2.2 Generalizations

In the following I shall generalize the above formulations of classical and quan-
tum mechanics in an algebraic way. This will allow a more direct comparison.
The formulation will not depend much on the number of degrees of freedom
whence many of the following will still be valid for field theories or systems in
the thermodynamical limit.

For the quantum mechanical description the functional-analytical questions
and subtleties shall be postponed in order to focus on the algebraic point of
view. On the classical side the geometric properties of the phase space M shall
be replaced and encoded in algebraic properties of the function space C°(M).
Thus I will be able to avoid to speak too much about differential geometry and
analysis in Hilbert spaces but focus on the algebraic properties of both theories
instead. This way one finds a language to treat classical and quantum mechanics
on the same footing.

2.2.1  Quantum mechanics: Second Version

In this second formulation of quantum mechanics I shall start with the properties
of the observable algebra. Then the states and the time evolution will be derived
concepts. See e.g. [22] for further reading.

The central object of a quantum mechanical system is its algebra of observ-
ables. As the ‘example’ B($)) indicates one asks for an associative algebra Aqy
over the complex numbers C. Because of the uncertainty relations Agq, will be
non-commutative. To specify the observable elements in Aqg, we have to make
sense out of the notion of Hermitian elements, whence we require Aq, to have
a *-involution. This is a C-antilinear map A — A* such that

(AB)* = B*A* and (A*)" =4 (2.6)

for all A, B € Aqu. In the case of Aqy = B($) the algebra element A* is just
the adjoint operator of A. Such a *-algebra structure allows to tranfer the usual
notions of Hermitian, isometric, and unitary elements from the known case of
B($) to the abstract case of Aqy.

Thus the quantum mechanical observable algebra Aq,, shall be a *-algebra
over C. Further topological requirements as e.g. a C*-norm, completeness etc.
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shall not be considered at the present stage in order to incorporate also ‘un-
bounded’ observables.

The states of Ay are now identified with the ezpectation value functionals.
An expectation value functional of a *-algebra Aqy is defined to be a linear
functional w : Aqu — C satisfying

w(A*4) >0, (2.7)

for all A € Agu. Hence w is a positive linear functional. If Agy has a unit
element 1 then one requires in addition the normalization condition w(1) = 1.
It is an easy exercise to check that the expectation values A — Ey,(A) as in (2.3)
are indeed positive linear functionals of B($)).

This notion of states allows for a simple characterisation of pure and mixed
states. If wi and wy are two states of Aqy then their conver combination

w=Aw; + (1 = ANws (2.8)

is again a state for A € (0,1). Now w is called a mized state if it can be
decomposed as in (2.8) in a non-trivial way, i.e. wy # ws. A state is called pure
if such a decomposition is not possible. As an example for a mixed state I shall
mention the thermodynamical state A — tr(pA) of B(H) where p = £e P is
the density operator for a Hamiltonian H and inverse temperatur 5. Here H has
to satisfy certain technical conditions in order to make p a trace class operator.

Finally, let me mention the following properties of positive linear functionals:
A state w : Agu — C is real

w(A*B) = w(B*A) (2.9)

and satisfies the Cauchy Schwarz inequality

w(A*B)w(A*B) < w(A*A)w(B*B). (2.10)

Exercise 2.1 Prove (2.9) and (2.10) by considering the quadratic form p(z) =
w((zA+ B)*(zA+ B)) >0 for all z € C.

The possible values of a measurement of an observable A are again given by
the spectrum spec(A4). Here one is faced with a technical problem: in order to
have a physically reasonable notion of a spectrum one needs more than just a
*-algebra. The spectrum should be defined intrinically, i.e. as a property of
algebraic relations in Aq,, alone. Moreover, taking 9($)) as example, one would
like to have

e spec(A) C R for A = A*,
e spec(A*A) CRT for all A4,
e spec(p(A)) = p(spec(A)) for all polynomials p and all A.
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Finally, for a given Hermitian element A and a given state w one would like to
have a spectral measure dw on spec(A) in such a way that

w(A) = /aEspec(A) a dw(a). (2.11)

Then fa Clar,as] dw(a) is interpreted as the probability to obtain a spectral value
in the interval [a1, a2] when measuring the observable A in the state w.

For B($) (or any other C*-algebra) one defines A € spec(4) if A — A1 does
not have an inverse in B($)). Then the above properties are guaranteed by
the (non-trivial!) spectral theorem. It turns out that a reasonable notion of
spectrum is very hard to get without a C*-norm. For a discussion of the spectral
theorem in C*-algebras see e.g. [8,19].

However, this analytical aspect shall not be considered in the following. In-
stead we shall assume that Aqy can be embedded (in some reasonable way) into
a C*-algebra where a good notion of spectrum is available. Typically, it will
depend strongly on the example how this can be done. Nevertheless, I shall em-
phasize that for the interpretation of Agy as quantum mechanical observables
such a notion of spectrum is crucial.

The time evolution can be formulated in the following way. First we consider
the Heisenberg picture of the time evolution of A in the case of B($), i.e. the
Heisenberg equation .

i
D=7
where ¢t — A(t) is the unique solution with A(0) = A. The solution is of the
form

[H, A(t)], (2.12)

A(t) = U AO)U, (2.13)

with a one-parameter group U of unitary operators U; € B($) obying the
Schrédinger equation

d
ih—U; = HU;. 2.14
i dtUt U ( )

Here once again one needs to specify some more functional-analytical details in
order to give life to (2.12) and (2.14) such as strong continuity of ¢ — Uy, see
e.g. [26, Sect. VIIL.4]. However, I shall again focus on the algebraic properties.
The notion of a unitary one-parameter group means

Up=id, UUs=Up, =UU; and U =U_, =U". (2.15)

Then the algebraic content of (2.13) can be reformulated in the following way.
The linear map ®; : Aqy — Aqu defined by A — ®,(A) = U AU, defines a one-
parameter group of *-automorphisms of the observable algebra Aq,: Indeed, one
has the property of a one-parameter group

(I)O =id and (I)t¢s = ¢t+s = (I)s¢t7 (216)
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and each ®; is a *-automorphism of Aqy, i.e.
@t(AB) = ¢t(A)q)t (B) and q)t(A*) = ¢t(A)* (217)

for A,B € Agu. Thus the quantum mechanical time evolution will be a one-
parameter group of *-automorphisms of the observable algebra Aq,. Note that
in general ®; may have a more complicated form as above.

2.2.2 C(Classical mechanics: Second Version

As already mentioned in the introduction there are physical situations where the
classical phase space has a much more complicated geometry than just IR?™. The
principal structure is then a differentiable manifold M together with a Poisson
structure. Roughly speaking, a differentiable manifold is a geometric object
which allows for local coordinates in such a way, that passing from one to another
coordinate system is a smooth map. As example one may think of the 2-sphere
S? or the torus T2. For a differentiable manifold one has a notion of smooth
functions f: M — C.

As observables we take again the smooth functions C°°(M) where we now
allow for complex-valued functions. Thus we obtain a commutative associative
*-algebra where the product is the pointwise product and the *-involution is the
pointwise complex-conjugation of functions. On the first sight it seems unneces-
sary to consider complex-valued functions in classical mechanics, but one obtains
a higher structural similarity to the quantum mechanical observable algbera.

However, there is an additional structure, namely the Poisson bracket {f, g}
for functions on the phase space. This is a bilinear bracket for the smooth
functions obying the following properties:

e Antisymmetry: {f,g} = —{g, f}.
o Leibniz rule: {f,gh} = {f,g}h + g{f, h}.
e Jacobi identity: {f,{g,h}} = {{f,9},h} + {9, {f, h}}.
A differentiable manifold with such a Poisson structure for the functions is called

a Poisson manifold. One can show that in local coordinates (z!,...,z™) the
Poisson bracket takes the form

of 0g

(9)) = 2 0%(0) 5a0) 550 (219
where o/ = —a/? are locally defined functions satisfying the quadratic partial
differential equation

., 0ad® . Oak? oat
ot ke =0 2.19
; (a Ox! to Ox! ta Ox! > (2.19)

fori,j,k =1,...,m. The last property of the Poisson bracket is its compatibility
with the *-involution, i.e. the complex conjugation. We require it to be real in
the sense that

{f,9} ={f.7}, (2.20)
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which is equivalent to i = a/d.

The Poisson bracket is called symplectic if in any coordinate system and at
any point z € M the matrix (o' (z)) of local functions is invertible. In this case
the Poisson manifold is called a symplectic manifold.

Exercise 2.2 Verify that the Jacobi identity is equivalent to (2.19). Moreover,
verify that the canonical Poisson bracket (2.21) on R*" defined by

" /df dg Of O
{f,g}zz:(a—q{,a—i——f—g) (2.21)

r=1
indeed is a symplectic Poisson bracket.

A commutative associative algebra A with a Poisson bracket is called a Pois-
son algebra. If A in addition has a *-involution compatible with the Poisson
bracket as in (2.20) the A is called a Poisson *-algebra. Thus we arrive at the
following picture: the observables in classical mechanics have the structure of a
Poisson *-algebra A.,,.,. Indeed, this characterization is much more general and
is valid beyond classical mechanics. It can be seen as the general structure for
any classical theory.

For the description of the states we have two possibilities: on one hand the
pure states are again the points in phase space, on the other hand states can be
viewed as positive linear functionals, since we have a *-algebra. It turns out that
both approaches are consistent in the following sense: the points € M can be
identified with the d-functionals 0, : C*°(M) — C which are positive functionals
since

8.(Ff) = f(2)f(z) > 0. (2.22)

Thus the second characterization is indeed a generalization of the previous one.
Moreover, there are other positive linear functionals which can be described by
integrations with respect to other positive measures pu

f= /M fdp. (2.23)

In particular we obtain the thermodynamical states with a integration density
given by Le AH.

The Riesz representation theorem then shows that indeed all positive linear
functionals of C°° (M) are of this form: they can be obtained by integration with
respect to a positive Borel measure (with compact support). Moreover, the pure
states are precisely the d-functionals as desired.

The time evolution can be described algebraically as follows. Again a Hamil-
ton function determines the Hamilton equation of motion whose solutions are
curves t — z(t) through a given initial condition = = 2(0). Thus one can define
the flow ¢ : M — M by mapping = € M to the point z(t) if z(¢) is the unique
solution with z(0) = z. Since we have an autonomous differential equation for
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z(t) the flow gives a one-parameter group

¢o =id and ;o ds = Prys (2-24)

of maps M — M. It turns out that each ¢; is even a smooth map whence we

have a one-parameter group of diffeomorphisms of M. Given an observable f
one defines its pull-back ¢ f € C*°(M) to be the observable

¢if=fod (2.25)

and obtains again an observable for all ¢. Clearly the pull-backs give a one-
parameter group of linear maps ¢} : C°(M) — C°° (M) satisfying in addition

¢; (fg) = ¢ forg and ¢} (f) = 6; (f). (2.26)

Thus the time evolution of the observables is a one-parameter group of *-automorphisms
as in the quantum case. Since the time evolution is induced by Hamilton’s equa-
tion of motion one can show in addition that

d
S = ~{H, i f) (227)

and
o ({f.9}) ={oi f, b1 g}- (2.28)

Then (2.27) can be interpreted as infinitesimal time evolution and it is the im-
mediate analog of Heisenberg’s equation of motion (2.12). As (2.28) shows the
time evolution is compatible with the Poisson brackets.

Summarizing, the time evolution in classical mechanics is a one-parameter
group of Poisson *-automorphisms of the observable algebra A.,...

2.2.3 The algebraic structures

To summarize to above analysis we find the relevant structural difference between
classical and quantum physics: The quantum observable algebra Agqy is non-
commutative while the classical observable algebra A.... is commutative but
has an additional structure, the Poisson bracket. It also became clear that the
fundamental object in both cases is given by the observable algebra while the
states can be understood as a derived concept. Knowing the *-algebra one also
knows its positive linear functionals. Finally, in both cases the time evolution is
a one-parameter group of automorphisms the observable algebra.

2.3 What is quantization?

What do we want to achive with ‘quantization’? First of all, we have large
domains where the classical description of our world is an extraordinarily good
approximation, so classical physics is not just ‘wrong’. To explain this phenomen
of classical limit starting with quantum physics is still a delicate and conceptually
difficult question.
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Nevertheless, to our best present knowledge quantum physics is the more
fundamental description of nature. Hence quanization, understood as the pas-
sage from classical physics to quantum physics, is not a physical phenomen: the
world is already quantum and quantization is only our poor attempt to find the
quantum theoretical description starting with the classical description which we
understand better. Apparently we are not able to find the quantum description
a priori and intrinsically, say for the standard model or gravity. Instead we
always have to start with the classical analog though we very well know that
there should be an a priori quantum description as this is the more fundamental
theory.

In the following, I do not want to speculate too much on the question whether
or why it seems always to be the case that we have to start with the classical
theory. Instead I intend to handle this more pragmatically and take the classical
theory in order to find and construct a corresponding quantum theory.

More concrete, quantization shall stand for a construction of a quantum
theoretical description of a given physical system starting only with the classical
data. According to the discussion in Sect. 2.2 the key role is played by the
observable algebra: quantization is a proceedure of constructing Aqgy out of
Anss- A priori it is not clear whether such a construction is successful and if so,
how unique it will be.

The following requirements for such a construction shall not be understood
as strict axioms but as ideas and motivations. In concrete examples one typically
finds more appropriate and more specific formulations.

(1) The quantum mechanical observable algebra Ay should be as big as the

classical observable algebra. Classical observables are the classical limit of
quantum observables, so Aqy can not be smaller than A.,.... On the other
hand, if there are quantum observables which do not have a classical coun-
terpart then a quantization is either hopeless or the classical description
has to be refined to include more observables.
The spin of an electron provides a (non-)example: there is no classical
analog of spin in the usual mechanical description of an electron unless
one uses a super-mechanical description. This is indeed possible and a
quantization of this super-mechanics yields the correct spin for the electron.
Moreover, the correspondence between classical and quantum mechanical
observables should be sufficiently explicit. One needs a physical interpre-
tation of the elements of Aqy in order to compare them with the ones
in A..... As the latter are realized as functions on some phase space the
interpretation of A.,.., usually is obvious.

(2) The quantum observable algebra Aqy should lead in the classical limit to
the classical observable algebra A.,.,. In order to make such a statement
meaningful the notion of classical limit has to be clarified. In particular,
one expects that for corresponding classical and quantum observables one



An Introduction to Deformation Quantization 11

has corresponding algebraic relations
A A A 1 ~ 4
A*~ Ax, AB~ AB, and %[A, B]~ {A, B} (2.29)
i

in the classical limit ~». Here the Poisson bracket of A.... is seen as
‘shadow’ of the quantum mechanical non-commutativity. Note that the
Poisson bracket in classical mechanics indeed has the dimension of an in-
verse action while the commutator is dimensionless. Also the i is neces-
sary because of the reality properties of the commutator and the Poisson
bracket. Thus (2.29) is consistent from this point of view.

(3) Having constructed Aqy all the states of A.... should arise as classical
limit of the states of Aqu. Since the quantum description is the more
fundamental one this has to be imposed by consistency. Of course the
nature of the classical limit of states is delicate and has to be specified in
an appropriate way before such a statement can be shown.

(4) The non-commutativity of Aqy, is the manifestation of the uncertainty rela-
tions whence their size is controlled by Planck’s constant A. The classical
limit ~ in (2.29) should be understood in such a way, that the typical
actions of the system are large compared to the action A. Intuitively, one
writes i — 0 for the classical limit. However, % is not dimensionless whence
a statement about the ‘size’ can only be relative to other quantities of the
same physical dimension.

(5) The occurence of a classical limit shows that the corrections which bring
us from classical to quantum are not too big, probably even small: One
needs quite precise measurements to observe the quantum nature of our
world. This aspect will be made more precise in the notion of deformation
of algebraic structures later.

(6) The quantum observable algebra Aqy should allow for a reasonable notion
of spectra. This can be achieved e.g. by embedding Aqy into some C*-
algebra.

(7) The construction of Agqy should be as ezplicit as possible. Moreover, the
construction should be conceptually clear: it should be possible to dis-
tingiush properties of the construction which are generic from those which
use specific features of the example. If there are ad-hoc decisions and
choices to be made one should be able to investigate the resulting ambigu-
ities.

3 From canonical quantization to star products

3.1 Canonical quantization and orderings

As first example one investigates the flat phase space R?™ with the canonical
Poisson bracket (2.21). For simplicity let » = 1 whence we have canonically
conjugate coordinates ¢ and p with Poisson bracket

{g,p} =1. (3.1)
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Canonical quantization, as it can be found in textbooks on quantum mechanics,
is the replacement of ¢ and p by the quantum mechanical observables Q and
P which are usually realized by differential operators acting on wave functions.
More specifically, consider the smooth functions with compact support C§°(R)
on the real line and define the linear operators Q, P : C5°(R) — C5°(IR) by

(0¥)(@) = q(q) and <ﬁ¢><>_—1hg—§<> (3.2)

for v € C§°(R). Then Q and P are indeed defined on the pre Hilbert space
C§°(R) and obey the commutation relation

[Q, P] = ihl. (3.3)

According to our general concept we have to quantize the whole observable
algebra and not only the two observables ¢ and p. The smallest Poisson *-
algebra of functions on the phase space containing ¢ and p are the polynomials
Pol(IR?). Using this as classical observable algebra we have to give a correspond-
ing operator for all the monomials ¢*p¢, k,¢ € N. In order to accomplish the
correspondence principle (2.29) it is reasonable to use the corresponding mono-
mial in Q and P. Doing so we encounter the following ordermg problem: while
the classical ¢ and p commute we have e.g. qkpl =p* q’c but the quantum Q
and P do not commute any longer. Thus in Qka # PFQIc the ordering plays
a crucial role. In order to proceed one has to make a choice how the variables
should be ordered. The resulting ambiguities have to be discussed carefully later.
To illustrate this by an example, I will discuss two ordering prescriptions which
are commonly used.

3.1.1 The standard ordering

The simplest ordering prescription I shall discuss is the standard ordering. Here
one writes all momenta to the right before one replaces ¢ by @ and p by P. Thus
the standard representation og is the map

0s : Pol(R?) — DiffOp(Cg° (R)) (3.4)

from the polynomials into the differential operators defined by

~ A~ l l
os(¢"p") = QP = G) ’“aaq (3.5)

and linear extension to all polynomials. A simple computation shows that one
has the following explicit formula

1 "ar
=25 (‘) o

r=0

87”
p=0 6qr

(3.6)
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for any polynomial f(q,p). From this explicit formula we see that gq(f) is still
well-defined if f is only a polynomial function of p and has arbitrary smooth
dependence on ¢ since the infinite series terminates after finitely many terms.
The smooth functions of ¢ and p depending polynomially on p are denoted by
Pol(T*IR). Note that Pol(T*R) indeed is a Poisson *-algebra. Thus we obtain a
linear map

o0s : Pol(T*R) — DiffOp(Cj°(R)) (3.7)

into the differential operators acting on C§°(R) with smooth coefficients. The
following statement is an obvious consequence of the explicit formula (3.6).

Lemma 3.1 The standard representation os is bijective.

Using this lemma we obtain the desired correspondence between classical and
quantum mechanical observables. This is also known as symbol calculus for
differential operators and the inverse of og is also called the symbol map.

However, from a physical point of view the standard representation is still
unsatisfactory. The reasons comes from the following incompatibility with the
*-involutions. The algebra of differential operators has a natural *-involution
which is induced by the operator adjoint with respect to the usual L?-inner
product

(1, ) = /IR @D b(g) dq (3.8)

of functions ¢, ¢ € C§°(R). Clearly this way the smooth functions with compact
support become a pre Hilbert space whose completion is the space of square
integrable functions L?(RR,dq). As long as we are working with C§°(R) the
definition of the adjoint operator of a differential operator is trivial: we obtain
the ajoint by naive partial integrations. The adjoint of gs(f) can be computed
explicitly for a function f(q,p) = f-(¢)p" with f. € C>*(R) and r € N. We have

weatnor = [ 5@ (1) 105t @

R
- [(3) & (vF@) st o
RO =
- /]R (Qs sio (Z) G) %sjzp”> 111) (9) ¢(q) dg.

Thus the adjoint of gs(f,-p") is given by

ol @) = 0. (Z () (%) %ﬁ) . (3.10)

s=0
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In order to simplify this expression we need the following operators

62 AA = 1 h ° s
A_[‘)qap and N =e3 —Z;<5> A, (3.11)

which we view as operators acting on Pol(T*R). Note that N is well-defined, i.e.
for f € Pol(T*IR) the series N f only contains finitely many terms as A*f =0if s
is larger than the polynomial degree in p of f. So consider again f(q,p) = fr(¢)p"
as before then

_ o= R\° _

NQf:Z()%(?) Ay

1 (h\* 0°F, 0°p"
=Z§ﬁ(‘)

i dq® 0Op*
[ee]

-y 1 B\* & ot
_SZOS! i) 0¢° (r—s)!p ’

whence we obtain the important equation

0s(/)T = 0s(N?). (3.13)

Since (3.13) is linear we conclude that (3.13) is valid for all f € Pol(T*R). In
particular, for a real-valued function f = f the corresponding operator gs(f)
needs not to be symmetric as in general N2f # f. Thus the classical and
the quantum *-involution are not compatible and classical observables are not
mapped to quantum observables.

3.1.2 The Weyl ordering

The above unphysical property of the standard ordering can be cured very easily
using the operator N. We define the Weyl representation by

owent(f) = 0s(N f) (3.14)
for f € Pol(T*R). More explicitly we have

owen (f) = i ! (’—i>r ar(Nf)‘ ﬁ, (3.15)

Or! i op" |, 0¢"

8

(3.12)

—_

r=

viewed as differential operator acting on Cg°(R). Since N = ez is invertible

on Pol(T*R) it follows that gw., is again a bijection between Pol(T*RR) and the
differential operators DiffOp(C§°(IR)). After some combinatorical considerations
one can show that for a polynomial f(q,p) = ¢*p’ the Weyl representation
Owen (f) is the corresponding totally symmetrized polynomial in the operators Q

and P, e.g.

(O2P + OPO + PO?) = —ihg® 2 — ing. (3.16)

2 —
QWeyl(q p) = g

Wl =
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This ordering is also called the Weyl ordering. Using (3.13) and the definition
(3.14) one has

!stfeyl(f)Jr = QS(Nf)T = QS(NQN—f) = Qs(NQN_l?) = QS(N?) = QWeyl(?(), )
3.17
-involution are compatible

*

whence the classical *-involution and the quantum
for the Weyl ordering.

In order to investigate the other requirements of a quantization one has to
discuss in particular the correspondence principle (2.29). I will not do this at
the present stage but invite the reader to perform some simple computations:

Exercise 3.2 Let f,g € Pol(T*R). Compare os(fg) and os(f)os(g). Also
compare os({f,g}) and %[gs(f), 0s(9)]. How can one interprete the result? Do
the same computations for the Weyl ordered case.

3.2 The first star products
3.2.1 The standard ordered and Weyl ordered star product

The following idea is very simply but enables us to formulate the notion of
quantization in greater detail. Since both ordering prescriptions g5 and gwey
are linear bijections between A.... = Pol(T*R) and Aqy, = DiffOp(C§°(R))
we see that for these choices of A.,.. and Aqy the underlying vector spaces of
observables are isomorphic. Thus we can pull-back the non-commutative product
of Agu to A.... in order to obtain a new product for A.,... One defines

frsg= Q;l (Qs(f)@s(g)) (3.18)

and

[ *wepr g = Q;Viyl(gW9yl(f)gweyl (g)) (3.19)

for f,g € Pol(T*R). These new products are called standard ordered star product
and Weyl ordered star product or Weyl product for short, respectively. Though
we already expect the Weyl product to have physically more reasonable proper-
ties I will first discuss the more simple standard ordered product. First I shall
derive a more explicit formula for xs. To this end one considers functions with
a fixed polynomial degree in the momentum variables f(q,p) = fi(q)p* and
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9(q,p) = ge(q)p’ with k,¢ € N and fi, ge € C*°(RR). Then one computes

R\ o o
Do) = () fepzons

1

B EkJrff i k @ ttk—s
- i k s aqs 6q€+kfs

s=0

k s s
= o, (Z <I:> ?) fep® %—;fﬂ) (3.20)

whence one concludes that in general

1 [\ 0°f 0%
*g § = — | = 3.21
frsg ;,s!(l) Ops 0q¢° ( )

for f,g € Pol(T*R). Again note that the infinite series actually contains only a
finite number of non-zero terms as long as the function f is only a polynomial
in p. Moreover, the result is again a function which is only polynomial in p.

Before I discuss the properties of x5 let me mention the corresponding for-
mulas for xw.,;. By definition (3.19) and by (3.14) one has

Frwen 9 = 051 (0west (F) owen (9)) = N 7107 (05 (N f)os(Ng)) = N~ (N f#s Ny),

(3.22)
whence the operator IV intertwines between the products g and *w.,;. Explicitly,
one obtains after some simple computation

3 ee} 1 h r r r s arf 87”9
rems =30 (5) L) a0

r=0 s=0

Again, the infinite series terminates after finitely many terms if f,g € Pol(T*R).
Using these explicit expressions one finds the following theorem:

Theorem 3.3 The star products xs and *w., have the following properties:
(1) For f,g € Pol(T*RR) one has [ *s g, [ *wen g € Pol(T*R).

(2) *s and %y, are associative multiplications

fx(g*h)=(f*g)*h. (3.24)
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(3) *s and *u., can be written as a series of bidifferential operators C,

frg= ioﬁ’c'r(f, 9)- (3.25)
(4) For both products one has
frxg=fg+--- whence Co(f,g9)=fyg (3.26)
and
frg—gxf =ih{f,g}+--- whence Ci(f,9)—Ci(g,f) =i{f,g}, (3.27)
as well as
Ixf=f=fx1, (3.28)

where {f, g} is the canonical Poisson bracket (2.21).
(5) For the Weyl product one has in addition

f *weyl § = E KWeyl ? (329)

Exercise 3.4 Prove the explicit formula (3.23) for the Weyl product and use it
to show the theorem. Prove the associativity only using (3.23) and (3.21). Give
an alternative proof of associativity using 0s and Qwe.,, respectively.

Rephrasing the statement of the above theorem we have the following result:
The new products x5 and *w., are associative products for A.,... They deform
the classical, original products in direction of the Poisson bracket. Thus the
correspondence principle is manifested in the equations (3.26) and (3.27). For
the Weyl product *w.,: the classical *-involution is still a *-involution for the
new product *y.,. This is not true for *g.

The maps o5 and gw.y:, respectively, show that A.... with the new products
*g and kwe,1, respectively, are isomorphic to Aqy as algebras. In case of xy., it
is even a *-isomorphism.

This motivates the following deformation problem as a more concrete formu-
lation of the quantization problem: Instead of constructing a completely new
algebra Aqy out of A,,.. one keeps A.,... as a vector space and changes only the
product structure from the commutative product into a non-commutative star
product by deforming the original one.

3.2.2 A first generalization: cotangent bundles

The most important generalization of IR?" as phase space for classical mechanics
is the class of cotangent bundles. I do not want to go into much details on
the differential geometry here but just motivate why cotangent bundles are so
interesting.

Let us consider a physical system of N particles moving in IR?. Then the
configuration space is R®N, probably with removed coincidence points. The
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phase space is R* x R*N where the second R*" corresponds to the canonically
conjugate momenta. It is clear that the star products %5 and *y., have an
immediate generalization to this situation.

Now consider the sitation where the positions of the particles have to fulfill
some constraints. If there are f independent constraints then the configuration
space will be a n = 3N — f dimensional submanifold @ of the original configu-
ration space R3*N. To guarantee that the particles do not leave the constraint
surface @ their possible velocities have to be tangent to the submanifold ). Thus
for the description of the allowed positions and velocities one uses the tangent
bundle TQ of Q. The differential geometric definition of T'Q) can be understood
heuristically as follows: for any point ¢ € ) one attaches the tangent space 7,0
at ¢. Then the dijoint union of all these T,(Q) gives T'Q). This velocity phase space
turns out to be a manifold of dimension 2n and is the basis for the Lagrangean
formulation of mechanics.

In order to formulate mechanics on @ in the Hamiltonian way one has to pass
to the (momentum) phase space by a Legendre transform. Geometrically this
corresponds to the passage to the cotangent bundle T*@Q of (). This cotangent
bundle is constructed analogously to T'Q) where now the dual space T;/Q to the
tangent space is attached at any point ¢. It turns out that on 7*() one has a
canonical Poisson structure whence C*(T*(@Q) becomes a Poisson *-algebra.

Different from R™ on a general manifold M we do not have a global and
preferred coordinate system. Hence a meaningful definition of polynomial func-
tions is no longer available. In case of a cotangent bundle the situation is slightly
nicer: Since the momentum directions are along the vector spaces T,() it is still
meaningful to speak of functions which are polynomial in the momenta. In spa-
cial directions however, this is no longer possible in a coordinate independent
way. The smooth functions on 7*@ which are polynomial in momentum direc-
tions are denoted by Pol(T*@Q). They are a Poisson subalgebra of all smooth
functions C*(T*(Q) for the canonical Poisson bracket. Moreover, for a typical
physical system the kinetic energy is a quadratic function in the momenta while
the potential is even constant in momentum directions. Thus A.,... = Pol(T*Q)
is a good candidate for the classical observables.

For such a classical system with A.,.. = Pol(T*@) one can show now the
following: It is possible to repeat all important steps in the construction of g,
N, Oweyn *s, and ., almost literally. The only modification comes from the
fact that one has to use a covariant derivative V. A function depending linearly
on the momenta is quantized using V by p — —ihV}, instead of —ihd,. This
way one obtains a coordinate independent formulation. Moreover, for a concrete
physical system there is usually a preferred choice of a covariant derivative: the
kinetic energy determines a Riemannian metric on () which has a unique com-
patible covariant derivative: the Levi Civita connection. The technical details of
this very explicit construction can be found in [5-7].
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4 Deformation quantization
4.1 Star products
4.1.1 General definitions

Having seen that the deformation of the classical observable algebra promisses
to give a successful concept of quantization we shall now try to put things on a
solid mathematical ground. I will discuss on one hand a geometric version based
on Poisson manifolds and, on the other hand, a more algebraic version.

For the geometric situation one observes that on a general Poisson manifold
M there are no ‘polynomial functions’ within C*°(M). As classical observable
algebra we can only use C*°(M) at least as long as we do not have any addi-
tional specific information. In concrete examples there may be some physically
interesting subalgebras, as e.g. in the case of cotangent bundles.

Using C°° (M) the formulas (3.21) and (3.23) have to be reconsidered: If f, g
are arbitrary smooth functions then the series do not converge in general. Even
worse, one can always find functions f, g such that the power series in / do have
radius of convergence equal to 0.

One way out is to look for star products for A.... = C*(M) which are
only formal power series in h, but share all other properties of x5 and *y.,;. In a
second step one tries to find suitable subalgebras where convergence of the formal
series is guaranteed. The examples of R?™ and T*Q show that this might be
successful, as here one has the subalgebras of polynomial functions. The point
is that an a priori choice of a subalgebra may be very difficult without further
knowledge of M but a posteriori the star product itself may single out ‘nice’
functions where the series converge. Thus one should view the formal power
series as consequence of some missing additional information on the classical
situation which typically depends strongly on the example.

After this considerations the following general definition of a star product
according to Bayen, Flato, Frgnsdal, Lichnerowicz and Sternheimer should be
well motivated [2], see also [13] for a recent review.

Definition 4.1 A star product for a Poisson manifold M is an associative
product x for the formal power series C*°(M)[[\]] of the form

f*g = Z/\rcr(fag)a (41)
r=0

such that:
(1) fxg=fg+---, ie Colf,g9) = fg.
( ) f*g g*f IA{fag}'i_’ i.e. Cl(fag)_cl(gaf)zl{fag}
3) frxl=f=1xf,ie C.(1,f) =0=C.(f,1) forr > 1.
(4) C, is a bidifferential operator.

The star product is called Hermitian if in addition

~|

—
an
o

N

*

Q|

frxg=
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The formal parameter A plays the role of & and can be substituted by 7 as soon
as one has established convergence.

The associativity f x (g x h) = (f * g) *x h is checked order by order in .
This yields the following equivalent conditions on the C).’s: for all £ € N and all
functions f,g,h € C°° (M) one has

k k
> Colf,Crr(9,£) =D Cr(Crr(f,9), D). (4.3)
r=0 r=0

The Hermiticity of % is equivalent to the condition C,.(f, g) = C,.(g, f).

The algebraic content of deformation quantization is Gerstenhaber’s defor-
mation theory of associative algebras [17]. Sometimes we do not want to make
reference to the underlying geometric situation but start with the classical ob-
servable algebra A.,... as a Poisson *-algebra directly. Then one uses the following
notion of a formal deformation:

Definition 4.2

(1) A formal deformation of an associative algebra A is an associative product
for A[[\]] of the form

AxB=Y XC.(AB) (4.4)
r=0

with Co(A, B) = AB.
(2) A formal deformation quantization of a Poisson algebra A.... is an asso-
ciative deformation x of A... with C1(f,g) — Ci(g, f) =i{f, g}
(3) A Hermitian deformation of a *-algebra is a deformation with (A B)* =
B* x A*.
This way we have defined the notion of a Hermitian deformation quantization
of a Poisson *-algebra in a purely algebraic way. This definition is useful if the
geometry of the classical phase space is difficult to describe but an observable

algebra is still available. As example one can consider simple field theories [14,
15].

4.1.2 FExistence and classification

Having the general definition of a star product one is faced with the question
whether such deformations exist for general Poisson manifolds. Moreover, one
should clarify how many possibilities are there in the construction of star prod-

ucts. This is non-trivial as we have already seen in the case of IR? that there are
at least two, x5 and *w.,.. The existence is guaranteed by the following theorem:

Theorem 4.3 On any Poisson manifold there are star products.

The proof of this theorem is far beyond this introduction. I only shall mention
that first the existence for symplectic manifolds was shown by DeWilde and
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Lecomte [12], Fedosov [16] and Omori, Maeda and Yoshioka [25]. The general
Poisson case was unclear for long time untill Kontsevich succeeded with a proof
in his fundamental work [21].

The question about uniqueness is slightly more difficult to formulate as we
have already seen that there are at least two star products s and xy.,; on R>".
However, there is a relation between them using the operator IV, namely

[ Hwenr 9 = Nﬁl(Nf *xs Ng), (4.5)

where N = exp(2:A) is now viewed as formal series of differential operators.
Thus N is an algebra isomorphism between the standard and Weyl ordered star
product algebras. This is of course to be expected as both are isomorphic to the
algebra of differential operators, by their very construction. The important ob-
servation is that IV starts with the identity in zeroth order of A: the isomorphism
is simply the identity in the classical limit.

Definition 4.4 Tuwo star products x and x' for C* (M) are called equivalent if
there is a formal series

S=id+> XS, (4.6)
r=1

of differential operators S, such that
fxg=8""SfxSg) and S1=1. (4.7)

In this case S is called an equivalence transformation. In the case of Hermitian
star products one requires in addition Sf = Sf.

Exercise 4.5 Prove that the above notion indeed is an equivalence relation.
Moreover, given such an S, show that ' defined by (4.7) is again a (Hermitian)
star product provided % is one.

Thus having one star product one gets a whole bunch of them by apply-
ing some equivalence transformation. The example of x5 and xw.,, shows that
passing to an equivalent star product is related to another choice of an ordering
prescription. In fact, the notion of equivalence can be seen as an axiomatic and
generalized notion of passing from one to another ordering prescription. This
raises the following two questions:

(1) Is there a classification of star products up to equivalence, i.e. up to the
choice of an ordering prescription?

(2) Is there a physically motivated choice of a star product * within a given
equivalence class [x]?

It turns out that the first question can be answered in full generality. I shall not
give the detail which are technical and can be found in the literature [3,21,24].

Theorem 4.6 The equivalence classes [x| of star products * are classified by
certain geometric properties of the underlying Poisson manifold M. In particu-
lar, there is only one class of symplectic star products on R2".
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The choice of an equivalence class is not sufficient from the physical point of
view. In order to construct the quantum mechanical observables Aq\ one has to
answer also the above second question. In general, this is much more involved as
the choice of a particular star product usually depends strongly on the example.
Guidelines can be the classical symmetries and the wish for convergence.

4.2 Time evolution in deformation quantization

Let me now discuss the time evolution in the formalism of deformation quanti-
zation. Consider a classical Hamiltonian H € C°°(M). Then the classical time
evolution is given by Hamilton’s equations (2.27). As the vector spaces of A.,...
and Aqy coincide in deformation quantization it is clear what the star product
analog of Heisenberg’s equation (2.12) should be, namely

4y i

1) = S (Hx f(t) — f(t)  H). (4.8)

Here we encounter a little mathematical subtlety: in the framework of formal
power series we can not simply divide by A. This would require formal Laurent
series. However, since

Hxf(t)—ft)~H=1\MH, f(t)}+--- (4.9)
this is not necessary. Heisenberg’s equation of motion reads

d i

SHW) = S (H % f(0) = (O« H) = ~{H,f(O)} +--.  (410)
Thus the equation of motion in deformation quantization is a deformation of
Hamilton’s equation of motion where the quantum corrections in (4.10) result
from higher order contributions of the star product commutator. Also here the
classical limit is evidently build into the construction.

4.3 Star products and symmetries
4.3.1 Classical symmetries

Let me first recall the concept of infinitesimal symmetries in classical mechanics,
see e.g. [23]. Take the angular momentum L(§,5) = ¢ x 7 as example. The
functions Ly, Lo, L3 generate the rotations around the corresponding axis in the
sense that their Hamilton equations of motion yield flow maps which are exactly
the rotations. The Poisson brackets of the three generators can be summarized
by

{Li,L;} = eijiLu. (4.11)
k

Thus the L; build a subalgebra for the Poisson bracket. This can be seen as the
infinitesimal version of the statement that the composition of two rotations is
again a rotation.
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More general symmetries are described by N generators Jy, ..., J, € C*°(M),
which form a subalgebra with respect to the Poisson bracket. Hence there are
constants, the so-called structure constants cfj € R of the symmetry such that

{Ji, Ji} =Y kT (4.12)
k

Note that the J; only form a subalgebra for the Poisson bracket, not for the
pointwise product. Since the Poisson bracket satisfies the Jacobi identity the
constants cfj can not be completely arbitrary but have to satisfy the two condi-
tions

k k ¢ ¢ ¢
ci; = —cj; and Z(cgjcrk + cgicrj + Cipcr) = 0. (4.13)
r
One obtains a finite dimensional vector space g spanned by the Ji, ..., JJy which
has the structure of a Lie algebra with Lie bracket

[T, i1 =l Ji. (4.14)
k

Thus, abstractly speaking, an infinitesimal symmetry in classical mechanics is
given by a Lie algebra g which is realised by functions on the phase space,
meaning that (4.12) is fullfilled. In the case of rotations the L; give the Lie
algebra so(3).

4.3.2  Quantum mechanical symmetries

Quantum mechanically symmetries are described in a similar way. Infinitesimal
symmetries are also encoded in a Lie algebra g which is now realised by operators
on the Hilbert space §. As this should be done by linear operators one calls this
a representation of g on . More concrete this means that we have self-adjoint
operators jl, ey J v on §) such that the commutation relations

(i, Jj] = iﬁz ek Ji (4.15)
k

hold. Note however that usually there are some technical subtleties since typi-
cally the operators J; are only densely defined.

4.3.3 Symmetries in deformation quantization

If one has a classical symmetry described by a Lie algebra g and corresponding
functions .Jq,...,.J, on M then one is interested in the question whether in the
quantum mechanical description the same symmetry is realised or if anomalies
occure. I only shalldiscuss some of the basic definitions, for a more detailed
discussion see e.g. [1,4].

Definition 4.7 A star product is called g-covariant if

Tiw Ty = Ty Ty =N ki g (4.16)
k
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Note that from the definition of a star product, we always have fxg —g* f =
iX{f,g} + ---. So the crucial point in the above definition is that there are no
higher order corrections to the commutators of the .J;. Typically this is a strong
requirement and limits the number of g-covariant star products quite drastically.

Exercise 4.8 Prove that the Weyl star product xwe,: is 50(3)-covariant.

The general question whether such covariant star products always exist is still
unsolved and very difficult. However, there is an important case where existence
is guaranteed:

Theorem 4.9 Let M be a symplectic manifold and g the Lie algebra of a com-
pact Lie group G acting on M in o Hamiltonian way. Then there exists a g-
covariant star product.

4.4 States in deformation quantization
4.4.1 Positive functionals and positive deformations

In the following I shall assume to have a Hermitian star product x. Then the
concept of states as discussed in Sect. 2.2.1 shall be applied to deformation quan-
tization as well. Here one encounters the following problem: C-linear functionals
w : C*°(M)[[A]] = C are not of much use and not general enough to yield an
interesting notion of states. Either they cut off higher orders in A or one is faced
with convergence problems immediately. It turns out that it is better to take
the formal power series serious. Thus we consider C[[A]]-linear functionals

w: C®(M)[[A]] — C[[A]]- (4.17)

The values are also formal power series. This seems to be justified as A should
correspond to i and expecation values may depend on £ as well. However, how
shall the positivity condition (2.7) be interpreted?

Definition 4.10 A real formal power series a = >° - X'a, € R[] is called
positive if the lowest order a,, is positive.

Hence a formal series in R[[A]] is either negative, 0, or positive. Furthermore,
the sum and the product of two positive series is again positive. This shows that
the usual rules hold. In more mathematical terms the ring IR[[A]] becomes an
ordered ring. Note however that this ordering is no longer Archimedean as e.g.
nA < 1 for all n € N. Physically interpreted this corresponds to the fact that
a formal deformation has the right ‘direction’ but not yet the right ‘size’, as we
have not yet imposed convergence conditions. Thus it is an asymptotic notion
of positivity. Nevertheless this notion can be used to give a definition of a state:

Definition 4.11 Let (M, *) be a Poisson manifold with a Hermitian star prod-
uct. A state of Aqy = C(M)[[N]] is a C[[A]]-linear functionalw : C°(M)[[N]] =
C[[A]] such that for all f

W fxf)>0 and w(l)=1. (4.18)
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Having a classically positive linear functional wg : C*°(M) — C one can
extend it C[[A]]-linearily to all of C°°(M)[[A]] by setting

wo: C(M[N]ID F =) _Nfr = Y Nuwo(fi) € T[N (4.19)

r=0 r=0

Thus the question is whether wy is not only positive for the pointwise product,
i.e. wo(ff) > 0 but also for x. The condition for positivity is in the lowest orders
given by

0 < wo(Fx f) = wolFF) + Ao (Cr(F, £)) + - (4.20)

Now it may happen that wo(ff) = 0. Then the positivity requires that in the
next order we have something non-negativ. But the next term wy(Ci(f, f))
(and similarly all higher order terms) usually contains derivatives of f whence a
definiteness can not be guaranteed so easily. This can be seen in the following
example.

Let H = 1p” + 1¢* be the Hamiltonian of the harmonic oscillator and let
wo = dp be the §-functional at 0. Then we consider the Weyl product *y.,, and
compute

2 2
60(F*Weyl H) = 50 <H2 — %) = —)\Z < 0. (421)

Thus the d-functional is no longer positive for xw.,. Physically this can be
interpreted as the well-known fact that points in phase space are no longer states
in quantum theory because of the uncertainty relations.

How can we obtain now every classical state as a classical limit of a quantum
state as we have demanded this in Sect. 2.37 The solution to the above problem
is that we can also allow for higher order terms in the positive functional. One
considers functionals of the form

w=Y Nuw, (4.22)
r=0

where each w, : C°(M) — C. Then such a functional clearly extends to a
C[[A]]-linear functional w : C°(M)[[A]] = C][A]]. Now the positivity condition
reads

0 <w(fxf)=wo(ff) +A(wo(Cr(f, ) +wi(Ff)) +--- . (4.23)

For a given classically positive functional wg we have to chose wy in such a way
that the term wo(C1 (f, f)) is compensated whenever wo(ff) = 0. Similarly the
higher orders w, are used to compensate possibly negative terms occuring in
the star product. A priori it is not clear whether one can find such quantum
corrections whence I state the following definition:

Definition 4.12 Let x be a Hermitian star product.
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(1) A C[[N]]-linear functional w =Y .° A w, : C°(M)[[A]] = C[[N]] is called
a deformation of wg if w is positive with respect to x.

(2) A star product * is called a positive deformation if any classically positive
functional can be deformed.

The following theorem ensures that we indeed can deform always the classically
positive functionals as this was expected from the discussion in Sect. 2.3, see [10].

Theorem 4.13 On a symplectic manifold all Hermitian star products are pos-
itive deformations.

In this sense any classical state arises as classical limit of a quantum state.
Note that the above formulation is only meaningful because we have identified
the underlying vector spaces of A.... and Agy.

4.4.2 The GNS construction

Let me now explain the GNS construction of a representation out of a given
state. The construction was developed for C*-algebras, see e.g. [8], but it works
in much more general situations.

In the following I shall assume that a quantum observable algebra Aqy has
been constructed, e.g. by means of a Hermitian star product (C°°(M)[[A]], *).
The only important point is that Aqy is a *-algebra over C = € or = CJ[[}]] in
order to have a notion of positive functionals. In fact, it will be sufficient to have
an ordered ring R and C = R@iR.

A pre Hilbert space over C is then defined to be a C-module $ with a positive
definite inner product. To make this definition meaningful, one needs the notion
of positive elements in R. Then a linear map A : § — § is called adjointable if
there exists a A* : § — § such that

(A%, ¢) = (6, AY) (4.24)

for all ¢,1 € 9. The set of all adjointable operators no §) is denoted by B($). If
$ is actually a Hilbert space over € then the above definition of 9B($)) coincides
with the usual definition of bounded operators: this is the Hellinger-Toeplitz
theorem, see e.g. [26, S. 84]. In general, the reader may easily show that B(9)
is a *-algebra.

A *-representation is a notion which should make precise the idea of realizing
the observables in Aqy by operators on $).

Definition 4.14 A *-representation ™ of Aqu on $ is a *-homomorphism
7 Agu = B(9). (4.25)
With other words, 7 is linear and satisfies the identities
7(AB) = n(A)n(B) and w(A*)=n(A)* (4.26)

for all A, B € Aqu. Thus one can realise the abstractly given observable algebra
Ao by a particular *-representation on a pre Hilbert space. In fact, the various
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‘representations’ in quantum mechanics as the spacial, the momentum, and the
energy representation, respectively, are indeed *-representation of the observable
algebra. They are not really different as they turn out to be unitarily equivalent.
In general two *-representations 7 and p of Aqy on $ and R are called unitarily
equivalent if there is a unitary operator U : $ — R such that

Un(A) = p(A)U (4.27)

for all A € Aqy. In this case U is called a unitary intertwiner.

For a given Aqy one wants to understand how many *-representations Aqy,
has, up to unitary equivalence. The GNS construction (after Gel’fand, Naimark
and Segal) allows to construct a *-representation out of a state w of Aqu-

Hence let w : Aqy — C be a state. Since w fulfilles the Cauchy Schwarz
inequality (2.10) one shows that

Jo = {A€A|w(AA) =0} (4.28)

is a left ideal of A, the so-called Gel’fand ideal of w. One defines the quotient
space

S = A/ (4.20)
The equivalence class of B in §),, is denoted by 5. On this quotient space one
has two additional structures: a representation of A and an inner product. The
representation m,, of A is defined by

7, (A)YB = Yas, (4.30)

i.e. the usual left representation of an algebra on itself modulo a left ideal. The
inner product is defined by

(a,9B), = w(A"B). (4.31)

Since J,, is quotiened out it follows that (-,-)  is indeed positive definite. Finally,
one shows that m, is a *-representation since

(Yo, 1o (A)Yp) = W(C*AB) = w((A*C)*B) = (mu(A)yc, ¥B)- (4.32)

Thus one has constructed a *-representation m, of Agy on the pre Hilbert space
Hw out of a state w : Aqu — C. The representation is called the GNS represen-
tation for w.

A remarkable and also characterizing property is that all vectors ¢4 can be
obtained by applying the ‘creation’ operator m,(A) to the vacuum vector vy,
since

Ya=va1 =7,(A)Y1. (4.33)

A representation with this property is called cyclic with cyclic vector 1. Finally,
the functional w can be reconstructed as the vacuum expectation value

w(A) = (Y1, (A)hr), (4.34)
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whence the general notion of a state becomes again related to the naive notion
of a state as an expectation value (2.3). The terminology comes from quantum
field theory where also the GNS construction first was applied, see e.g. [18].

Exercise 4.15 Prove the above properties of the GNS construction. Show that
all operations are indeed well-defined, i.e. independent of the particular repre-
sentatives of the equivalence classes.

As a remark I would like to mention that in the case where Aqy is a C*-
algebra the GNS representation 7, always extends to the Hilbert space comple-
tion .. Thus in this case one obtains a *-representation by bounded operators
on a Hilbert space.

The importance of the GNS construction is that it works also for deformation
quantization. To illustrate this consider the following example: The Schrédinger
functional w : C§°(R*)[[\]] — C[[)\]] is defined by the integration over the
configuration space coordinates for momentum p = 0, i.e.

w(f)=[ flqg,0)d"q. (4.35)
Rn
With some elementary partial integrations one shows that w is indeed a positive
linear functional with respect to the Weyl product

T ran = [ TDGOND@0) da> 0. (4.36)
Thus w defines a corresponding GNS representation. It turns out that this GNS
representation is unitarily equivalent to the Weyl representation gw.,;, on the
pre Hilbert space C§°(R™)[[A]] with its usual L?-inner product. A completely
analogous construction is possible for cotangent bundles [5-7].

5 Star products beyond quantization

In this section I shall briefly discuss two applications of the methods of defor-
mation quantization. This is meant to be an outlook not directly related the to
quantization problem.

5.1 The quantum plane
Consider the plane R? with the following bracket

of o 0g O
{f,9}(z,y) =2y <a—£a—z - a—Za—D -

A simple computation shows that this is indeed a Poisson bracket which vanishes
along the z- and y-axis. Thus it can not be symplectic. Nevertheless there is
a simple formula for a star product quantizing this Poisson bracket. First we
define the two differential operators

(5.1)

0 0
D, := T and D, := ya—y (5.2)
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acting on functions in C°°(IR?). A star product similar to the standard ordered
one is then defined by

o (10"
frg=3 ~-DifDjg. (53)
r=0
It is easy to see that the first order commutator with respect to x gives indeed
the Poisson bracket (5.1). It is also clear that 1x f = f = f x 1. So it remains
to show the associativity of x. This can be done by a lenghty but elementary
computation using the crucial commutation relation

[D,,D,] =0. (5.4)

Exercise 5.1 Prove that * is associative.

To see the relations to the quantum plane we compute the commutator of
the coordinate functions = and y. We have
o0 o0
(iA)" (iA)" i
THhY = Z TD;xD;y = Z Y= ey, (5.5)
r=0 r=0
since clearly Dyz = z and Dyy = y for all r € N. For the other direction we use
D3y =0 and Dyz =0 for r > 1 to obtain

= (iN)"
YyxT = Z ( r') DyyDyx = yx. (5.6)
r=0 !

Hence the coordinate functions z and y obey the commutation relation of the
quantum plane _
rxy=qyxz where ¢:=e?. (5.7)

For a detailed discussion of the quantum plane and its relations to quantum
groups see e.g. [20].

5.2 Noncommutative field theory

Another application of the methods of deformation quantization comes from
generalizations of field theories. Let M be a space-time manifold, say Minkowski
space for simplicity. Furthermore, let z1,...,x, be (global) coordinates for M.
The one considers a non-commutative analog M of M in the sense, that one
considers an algebra of operators 1, ..., Z, with commutation relations

[Zi, Z;] = 1Ny, (5.8)

where the 8;; are numerical constants and A has the physical dimension of an
area. Thus one enters the realm of Connes’ non-commutative geometry [11]. The
idea is that for very small distances the description of geometry as we are used to
is no longer valid: here quantum and general relativistic effects have to be con-
sidered in a unified way. One (probably very naive) way to think of this quantum
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gravity is to impose non-commutativity also for the coordinate functions. Then
the typical length scale where these effects are no longer negligible is the Planck
scale whence A should be of the size of the Planck area. Here A plays in some
sense the same role as / in quantization. In a limit A — 0 one should get back
the coordinates of the ‘commutative’ space-time.

Having the definition of a star product it is clear how one can model these
commutation relations directly on the classical space-time. One interprets the
constants 6 as the coefficients of a Poisson structure

{iEi,:Uj} = 0ij (59)

and looks for a star product * quantizing this Poisson bracket whose existence
is guaranteed by Kontsevich’s theorem. Here 6;; can even be arbitrary functions
such that the Jacobi identity (2.19) holds.

In a second step one is interested in field theories on such non-commutative
space-time manifolds. Here one proceeds analogously to the commutative case
and considers an action principle starting with a Lagrangean, say for a scalar
field ¢

Lcomm = u¢au¢ - m2¢2 +e, (510)

where - - - indicate some possible interaction terms. In the non-commutative field
theory all the pointwise products have to be replaced by the non-commutative
star product. This yields a Lagrangean of the form

Lnc =0upx0 ¢ —m>pxp+---. (5.11)

In non-commutative field theories one is interested in the solutions of the cor-
respondig action principle. Note that one first treats this as a classical field
theory with some strange Lagrangean on a non-commutative space-time. Only
in a second step one tries to quantize this into a quantum field theory on the
non-commutative space-time. We shall refer to [27] for a review on these topics
with many additional references and finish this discussion with the remark that
there is also a geometric interpretation of the non-commutative fields in terms
of deformation quantization of vector bundles [9].
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