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Introduction

One main motivation to consider such algebras comes from mathematical physics, in particular from
quantum theory: here the observables of a quantum system usually form a ∗-algebra which in optimal
situations is a C∗-algebra.

Since in real life such a nice analytic framework is hard to achieve, one is content with a more
algebraic treatment involving only the ∗-involution but no analytic features. In fact, in constructive
approaches to quantum mechanical models one usually starts with an abstract algebra generated
by some elements satisfying commutation relations which reflect the physical input for the model.
It is then a major task to implement these algebras as algebras of, typically unbounded operators,
on a Hilbert space. Only after a sometimes quite sophisticated spectral analysis of the situation is
performed, one can pass to the C∗-algebra or the von Neumann algebra generated by the spectral
projections of the unbounded operators. However, even if one has now reached a C∗-algebra, the
unbounded operators still may carry an important physical interpretation of those observables which
have a more direct interpretation.

Beyond these difficulties, in formal deformation quantization the situation is even worse: the
observable algebras constructed there are typically defined over the ring of formal power series in
~ without known convergence properties. Thus one obtains a ∗-algebra over CJ~K instead. From a
physical point of view, the convergence of course has to be understood and solved. However, this has
been achieved only in the simplest cases while deformation quantization itself works in full generality:
by a famous theorem of Kontsevich every Poisson manifold admits a formal star product.
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Chapter 1

∗-Algebras and Elementary
Representation Theory

In this first chapter we introduce the notion of a ∗-algebra over an ordered ring and establish some
first examples of such ∗-algebras which will be the guiding examples throughout these notes: The
main motivation comes from C∗-algebras which serve as quantum mechanical observable algebras
in many mathematically oriented approaches to quantum theory. However, also algebras of more
unbounded nature are of interest like O∗-algebras of unbounded operators on some Hilbert space.
Moreover, the complexified universal enveloping algebra of a real Lie algebra provides another class
of examples which controls the representation theory of the Lie algebra, thereby being responsible for
various notions of symmetries. The global analogue to this infinitesimal notion of symmetries is then
given by a group and its group algebra yielding yet a further important class of ∗-algebras.

Beside these classical examples also new examples arise when taking deformation theory into
account. Here the formal star products are the most important class of ∗-algebras we want to consider.
In fact, this class was one of the main motivations to extend the usual techniques from C∗-algebra
theory to the much more general framework since now we even have changed the underlying ring of
scalars from the complex numbers to the formal power series CJλK.

The aspired representation theory for ∗-algebras on pre-Hilbert spaces should now capture all
relevant features known from the individual representation theories of these examples: a unifying
theme is to be found. The analytic theory of C∗-algebras will be a guideline but only those aspects
can be used which are algebraic. The perhaps first surprising observation is that positivity is not
an analytic but an algebraic feature. Indeed, the order of the underlying ring will allow for various
notions of positivity. One of the major goals will then be the understanding of the representation
theory of a given ∗-algebra. Based on the concept of a state, the GNS construction yields a systematic
way to obtain such ∗-representations.

We conclude this introductory chapter with a discussion of the aims and expectations one has
when investigating the ∗-representation theory of ∗-algebras in this generality. It will be clear that
only the general algebraic features can be treated, more specific questions and results will typically
require either a more specific nature of the underlying ∗-algebra or some more analytic framework to
actually prove the interesting statements.

1.1 First Properties of ∗-Algebras

In this section we present the basic concepts of ∗-algebras and collect some first classes of examples.
Most of the statements in this section are either simple abstractions from the theory of C∗-algebras
or transfers from easy concepts in (linear) algebra.

3



4 1. ∗-ALGEBRAS AND ELEMENTARY REPRESENTATION THEORY

1.1.1 Ordered Rings and ∗-Algebras

An ordered ring is a mild generalization of an ordered field. We recall the definition:

Definition 1.1.1 (Ordered ring) An ordered ring R is an associative commutative ring with 1 6= 0
together with a distinguished subset P ⊆ R such that

i.) R is the disjoint union of P, {0}, and −P,
ii.) P · P ⊆ P and P + P ⊆ P.

The elements in P are called positive, the elements in −P are called negative elements of R.

Remark 1.1.2 Let R be an ordered ring and α, β ∈ R.
i.) As usual we write α < β if β − α ∈ P and similarly we use the symbols >, ≤, and ≥.
ii.) We have α2 ≥ 0 and α2 > 0 iff α 6= 0 by a simple case-by-case analysis.
iii.) If α > 0 then αβ ≥ 0 implies β ≥ 0.
iv.) It follows that 1 = 12 > 0 and hence also n = 1 + · · · + 1 > 0. Thus an ordered ring has

necessarily characteristic zero, i.e. Z ⊆ R is always a subring. We will sometimes assume that
also the rationals Q ⊆ R are contained in R.

v.) It is easy to see that ab = 0 implies a = 0 or b = 0, i.e. an ordered ring has no zero divisors.
This allows to pass to the quotient field which we denote by R̂. It turns out that this will be an
ordered field such that the natural inclusion R −→ R̂ is order preserving, see also Exercise 1.4.1.

As for ordered fields we say that an ordered ring R is Archimedian if for every positive α, β ∈ R one
finds an n ∈ N with αn > β.

Example 1.1.3 (Ordered rings) The following two basic examples will play a role throughout
these notes:
i.) The rings Z, Q, and R are ordered rings (even ordered fields for Q and R) with respect to

the usual notion of positive elements. The order is Archimedian. In fact, Archimedian ordered
rings are subrings of R.

ii.) If R is ordered, then the ring of formal power series RJλK is ordered as well via

a =
∞∑
r=r0

λrar > 0 if ar0 > 0. (1.1.1)

Now the order is necessarily non-Archimedian. Indeed, the formal parameter λ is positive but
nλ < 1 for all n ∈ N. This construction can of course be iterated. In formal deformation
quantization this is the relevant example with λ playing the role of Planck’s constant ~. Note
that the notion of an ordered ring is very suited for formal deformations as one stays in the
same framework before and after the deformation. We will come back to this example from
time to time and discuss the relevance of formal power series within the context of deformation
theory in Chapter 6 in detail.

Given an ordered ring R we can consider the ring extension C = R(i) by a square root i of −1. As
usual, we can view R as subring of C. Then every element in C can be uniquely written as z = x+ iy
with x, y ∈ R. The complex conjugation is defined as usual by z = x− iy for z = x+ iy and we call x
the real part and y the imaginary part of z. For z ∈ C we have z ∈ R if and only if z = z. Moreover,
zz > 0 for z 6= 0. Also the ring C has characteristic zero and no zero divisors. Its quotient field is, up
to the usual identification, given by Ĉ = R̂(i).

In the following, we always use a fixed choice of R and the corresponding C = R(i) as scalars.
Then we can define a ∗-algebra over C as follows:

c© Stefan Waldmann 2019-01-25 15:18:20 +0100 Hash: 13717b6



1.1. First Properties of ∗-Algebras 5

Definition 1.1.4 (∗-Algebra) An associative algebra A over C = R(i) is called ∗-algebra with ∗-
involution ∗ : A −→ A if the map ∗ is a C-antilinear involutive anti-automorphism of A, i.e.

i.) (αa+ βb)∗ = αa∗ + βb∗,
ii.) (a∗)∗ = a,
iii.) (ab)∗ = b∗a∗

for all a, b ∈ A and α, β ∈ C.

In the following, A will always denote a ∗-algebra over C. Mainly, we are interested in the unital case.
In this case, the unit element 1 ∈ A necessarily satisfies 1∗ = 1.

A ∗-homomorphism Φ: A −→ B from a ∗-algebra A to a ∗-algebra B is now an algebra homomor-
phism with Φ(a∗) = Φ(a)∗. This definition yields the category -alg∗ (C) of ∗-algebras over C. If the
reference to C is clear from the context, we simply write -alg∗ . Moreover, the non-full sub-category
of unital ∗-algebras with unital ∗-algebra morphisms is denoted by -Alg∗ . Typically, if we need unital
∗-homomorphisms, then we will consequently stress this fact.

A ∗-ideal J ⊆ A is an ideal which is closed under the ∗-involution. It is necessarily a two-sided
ideal. It is now a routine argument that the quotient A

/
J becomes a ∗-algebra again, unital if A was

unital, such that the quotient map A −→ A
/
J is a (unital) ∗-homomorphism, see also Exercise 1.4.2.

We recall some standard notions adopted from the well-known situation of operator algebras.

Definition 1.1.5 (Special elements) Let A be a ∗-algebra over C = R(i).
i.) An element a ∈ A is called Hermitian if a∗ = a.
ii.) An element a ∈ A is called anti-Hermitian if a∗ = −a.
iii.) An element a ∈ A is called normal if a∗a = aa∗.
iv.) In the unital case, an element u ∈ A is called an isometry if u∗u = 1.
v.) In the unital case, an element u ∈ A is called unitary if u∗u = 1 = uu∗.
vi.) An element p ∈ A is called a projection if p2 = p = p∗.

1.1.2 Positivity

Up to now we have not yet used the fact that R is ordered. The ∗-involution can already be defined
if the ring C of scalars carries a distinguished involution itself. This will now change by considering
positive functionals and algebra elements. By convention, a functional will always be linear over the
scalars C, even if we do not mention this explicitly.

Definition 1.1.6 (Positive functional) Let A be a ∗-algebra over C = R(i). A linear functional
ω : A −→ C is called positive if

ω(a∗a) ≥ 0 (1.1.2)

for all a ∈ A. The subset of positive linear functionals in the dual of A will be denoted by A∗+ ⊆ A∗.
If A is unital, then a positive functional ω is called a state if in addition ω(1) = 1.

The basic feature of positive functionals is that they fulfill the Cauchy-Schwarz inequality:

Lemma 1.1.7 (Cauchy-Schwarz inequality) Let A be a ∗-algebra over C = R(i) and let ω : A −→
C be a positive functional. Then one has the Cauchy-Schwarz inequality

ω(a∗b)ω(a∗b) ≤ ω(a∗a)ω(b∗b) (1.1.3)

as well as the reality condition
ω(a∗b) = ω(b∗a) (1.1.4)

for all a, b ∈ A.

c© Stefan Waldmann 2019-01-25 15:18:20 +0100 Hash: 13717b6



6 1. ∗-ALGEBRAS AND ELEMENTARY REPRESENTATION THEORY

Proof: We recall the proof which is entirely standard. For z, w ∈ C we consider

p(z, w) = ω((za+ wb)∗(za+ wb)) = zzω(a∗a) + zwω(a∗b) + wzω(b∗a) + wwω(b∗b) ≥ 0.

This is indeed non-negative by the positivity of ω. Evaluating this for z = 1 and w = 1 as well
as z = i and w = 1 gives (1.1.4) at once. Considering the case where ω(a∗a) = 0 = ω(b∗b) we get
with w = ω(b∗a) = ω(a∗b) the inequality (z + z)ω(a∗b)ω(a∗b) ≥ 0 for all z. This can only be true if
ω(a∗b) = 0, too. For the remaining case we can assume that e.g. ω(a∗a) > 0. Taking w = ω(a∗a)
and z = −ω(a∗b) gives then −ω(a∗a)ω(a∗b)ω(a∗b) +ω(a∗a)ω(a∗a)ω(b∗b) ≥ 0. Thus (1.1.3) holds also
in this case. �

If A is unital then (1.1.4) implies ω(a∗) = ω(a). In this case ω(1) = 0 implies ω = 0 by (1.1.3).
Thus one can safely focus on normalized positive functionals where ω(1) = 1, where one only has to
pass to the quotient field if necessary.

Remark 1.1.8 (Physical interpretation) Let us briefly recall the physical interpretation of the
positive functionals: while the Hermitian elements of the ∗-algebra A are considered to represent the
observables of the physical system described by A, the positive functionals play to role of the physical
states. Without much restriction, we assume that A is unital and ω : A −→ C is a state in the sense of
Definition 1.1.6. Then for a given Hermitian element a ∈ A the scalar Eω(a) = ω(a) is interpreted as
the expectation value of a in the physical state represented by ω. This is the average number one gets
after (idealized: infinitely) repeated measurements of the quantity a in the state ω, which of course
has to be prepared again after each measurement. Note that the possible outcomes of a measurement
will be, at least in quantum theory, quite restricted: the available numbers constitute the physical
spectrum of the observable a. In a next step, one can define the variance by

Varω(a) = ω((a− ω(a)1)∗(a− ω(a)1)) = ω(a∗a)− ω(a)ω(a) ≥ 0. (1.1.5)

Now the positivity property of ω ensures that the variance is indeed non-negative. Finally, one can
consider the covariance for several (Hermitian) observables a1, . . . , an ∈ A defined to be the matrix

Covω(ai, aj) = ω((ai − ω(ai)1)∗(aj − ω(aj)1)). (1.1.6)

Again, one can show that this is a non-negative matrix in sense to be explained below, see also Exer-
cise 1.4.10. This shows that for a physical interpretation the positivity (and the normalization) of the
functionals is crucial as variances and covariances should of course be non-negative. However, it is a
highly non-trivial question to decide whether there is indeed some probability-theoretic background
guaranteeing that these quantities are indeed variances and covariances of a certain probability dis-
tribution on the allowed values which the observable can take, i.e. its (physical) spectrum. It will
need a fair amount of analysis to obtain a reasonable notion of spectrum: One wants to define the
(mathematical) spectrum spec(a) of a normal or Hermitian element a together with a probability
distribution, the spectral measure µω for each state ω such that

ω(a) =

∫
λ∈spec(a)

λ dµω, (1.1.7)

i.e. the algebraically defined expectation value ω(a) is the expectation value in a measure-theoretic
sense. It is a remarkable and non-trivial result in C∗-algebra theory, the spectral theorem, that this
is actually possible. However, beyond C∗-algebras this last aspect needed for a physical application
seems to be very hard to get. For O∗-algebras one can still rely on the ambient algebra of bounded
operators on a Hilbert space and transfer the spectral theorem to the unbounded situation, provided
some technical assumptions are met, like the questions of self-adjointness etc., which becomes much
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1.1. First Properties of ∗-Algebras 7

more delicate when dealing with a whole algebra of (unbounded) operators instead of a single operator.
Here one can consult e.g. the monographs [104, 105] as well as for some more recent considerations.
Needless to say, this becomes even worse in the framework of formal deformation quantization where
one works with the rings of formal power series RJλK and CJλK instead of R and C. Hence we shall
ignore these questions in the following and focus on the algebraic part only.

Using positive functionals we can now define positive algebra elements as well:

Definition 1.1.9 (Positive algebra element) Let A be a ∗-algebra over C = R(i).
i.) An element a ∈ A is called positive if for all positive functionals ω : A −→ C one has

ω(a) ≥ 0. (1.1.8)

ii.) The subset of positive elements of A is denoted by A+.
iii.) The elements in the subset

A++ =
{
a ∈ A

∣∣∣ a =
∑n

i=1
βib
∗
i bi with bi ∈ A, βi > 0

}
. (1.1.9)

are called the algebraically positive elements or sums of squares.

Lemma 1.1.10 Let A be a ∗-algebra over C = R(i) and let ω : A −→ C be a positive functional.
i.) The positive functionals form a convex cone in the dual A∗ = HomC(A,C).
ii.) For all b ∈ A the functional a 7→ ωb(a) = ω(b∗ab) is again positive.
iii.) The positive elements A+ as well as the algebraically positive elements A++ form convex cones

in A.
iv.) We have A++ ⊆ A+.
v.) We have b∗A+b ⊆ A+ and b∗A++b ⊆ A++ for all b ∈ A.

Proof: The first part is clear and the second follows from ωb(a
∗a) = ω((ab)∗(ab)) ≥ 0. The third

part is a consequence of the first. The fourth part is clear by definition and the last part follows from
the second. �

The extreme points in the convex set of states are also called the pure states: here a state ω is
pure if ω = αω1 + (1 − α)ω2 with other states ω1 and ω2 and 0 < α < 1 implies that ω1 = ω2.
For a commutative ∗-algebra over C one would expect from physical considerations that the pure
states coincide with the characters of the algebra, i.e. the ∗-homomorphisms to C. Under favorable
circumstances and non-trivial usage of analytic techniques one can actually show such statements,
see e.g. for a recent approach in the unbounded situation.

In general, it is a highly nontrivial question to decide whether A++ is actually equal to A+.
In fact, for the algebra of complex polynomials in several variables it is one of the famous Hilbert
problems. Typically, we expect that A++ is strictly smaller than A+, see also Exercise 1.4.18. We
will have to come back to this difficulty at various places.

Structure preserving maps are in any field of mathematics of major interest. In our situation
we have on one hand the ∗-homomorphisms between ∗-algebras. However, there is also a slightly
weaker notion of maps which preserve only positivity. As preparation we need the following simple
observation, see Exercise 1.4.5:

Lemma 1.1.11 Let A be a ∗-algebra over C = R(i). Then the matrices Mn(A) are a ∗-algebra for
all n ∈ N with respect to the usual matrix multiplication and the ∗-involution (aij)

∗ = (a∗ji) where
(aij) ∈ Mn(A).
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8 1. ∗-ALGEBRAS AND ELEMENTARY REPRESENTATION THEORY

Definition 1.1.12 (Positive maps) A linear map φ : A −→ B is called positive if

φ(A+) ⊆ B+. (1.1.10)

Moreover, φ is called n-positive for n ∈ N if

φ(n) : Mn(A) −→ Mn(B) (1.1.11)

is positive, where φ(n) is defined by applying φ componentwise. Finally, φ is called completely positive
if φ(n) is positive for all n ∈ N.

The following properties are now obtained analogously to the statements of Lemma 1.1.10:

Remark 1.1.13 (Positive maps) Let n ∈ N.
i.) The n-positive maps as well as the completely positive maps form convex cones inside all linear

maps HomC(A,B).
ii.) The composition of n-positive (completely positive) maps is again n-positive (completely posi-

tive).
iii.) ∗-Homomorphisms are completely positive. In particular, the inclusions of ∗-subalgebras B ⊆ A

turn positive elements of B into positive elements of A.
iv.) If φ is n-positive, then φ is also (n − 1)-positive. This is actually not completely obvious and

will be discussed in Exercise 1.4.6.

There are simple examples of positive maps which are not completely positive. In fact, already for
the complex 2× 2 matrices M2(C) it is a standard example that the matrix transposition is positive
but not 2-positive, see Exercise 1.4.6. The other important observation is that there are completely
positive maps which are not ∗-homomorphisms. We list here the following two examples which will
be needed later:

Example 1.1.14 Let A be a ∗-algebra over C = R(i). Then the maps tr, τ : Mn(A) −→ A with

tr(A) =
n∑
i=1

aii and τ(A) =
n∑

i,j=1

aij (1.1.12)

are completely positive maps, see also Exercise 1.4.6.

Remark 1.1.15 (Quantum information) The fact that already for matrices there are positive but
not completely positive maps plays a central role in quantum information theory and the theory of
open quantum systems. As a first reading one should consult [21,92].

Remark 1.1.16 (Strong positivity and O∗-algebras) There are other notions of positivity which
take care of more specific properties of a ∗-algebra: for ∗-algebras over C one might consider topo-
logical properties which allow to ask for continuity of positive functionals. Thus one might specify a
sub-cone K of all positive functionals such that K is still stable under the map ω 7→ ωb for b ∈ A.
Having less positive functionals results in more positive elements, now called K-positive elements. If
this can be done consistently not only for A but also for all matrices Mn(A) then one can speak of
completely K-positive maps. Of course, this will all depend crucially on the choice of K and thus
one can not expect the same good functorial behaviour as for the canonical choice of all positive func-
tionals. Nevertheless, in the theory of unbounded operator algebras (O∗-algebras) on a pre-Hilbert
space H this plays a central role leading to the notion of strong positivity, see [104, Sect. 2.6] for a
further reading. Here the basic idea is to specify the positive cone by requiring 〈φ,Aφ〉 ≥ 0 for all
φ ∈ H in the domain of the operator A. A more abstract version of O∗-algebras and their cones of
positive elements and positive functionals can be found in .
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1.1. First Properties of ∗-Algebras 9

For later use we mention the following result from [48, Lem. 6.5] on positive elements. Note that
in general the following positive elements will not be sums of squares:

Proposition 1.1.17 Let A be a ∗-algebra over C = R(i) and let g ∈ Mn(C)+ be a positive matrix.
Then for all m ∈ N and all ak1...km ∈ A with k1, . . . , km = 1, . . . , n we have

n∑
k1,`1,...,km,`m=1

gk1`1 · · · gkm`ma∗k1...kma`1...`m ∈ A+. (1.1.13)

Proof: We rely on the characterization of positive matrices from Exercise 1.4.4. First we note
that G = g ⊗ · · · ⊗ g ∈ Mn(C) ⊗ · · · ⊗ Mn(C) = Mnm(C) is still a positive matrix since for all
z(1), . . . , z(m) ∈ Cm we have

n∑
k1,`1,...,km,`m=1

gk1`1 · · · gkm`mz(1)
k1
· · · z(m)

km
z

(1)
`1
· · · z(m)

`m

=

(
n∑

k1,`1=1

gk1`1z
(1)
k1
z

(1)
`1

)
· · ·

(
n∑

km,`m=1

gkm`mz
(m)
km

z
(m)
`m

)

=
〈
z(1), gz(1)

〉
· · ·
〈
z(m), gz(m)

〉
≥ 0.

Next, we note that for a positive linear functional ω : A −→ C the matrix (ω(a∗i aj))i,j=1,...,N ∈ MN (C)
is positive for arbitrary a1, . . . , aN ∈ A. Indeed, for z1, . . . , zN ∈ C we have

N∑
i,j=1

ziω(a∗i aj)zj = ω

((∑N

i=1
ziai

)∗(∑N

i=1
zjaj

))
≥ 0,

which implies the positivity. Thus the matrix Ω = (ω(a∗k1...km
a`1...`m)) ∈ Mnm(C) is positive for all

positive linear functionals ω. Thus we have

ω

(
n∑

k1,`1,...,km,`m=1

gk1`1 · · · gkm`ma∗k1...kma`1...`m

)
=

n∑
k1,`1,...,km,`m=1

gk1`1 · · · gkm`mω
(
a∗k1...kma`1...`m

)
= tr(GΩ)

≥ 0,

since the trace of the product of two positive matrices is still positive, see Exercise 1.4.4. This
completes the proof. �

Note that the proof would simplify drastically if we knew that the matrix g is diagonalizable with
non-negative entries on the diagonal: over C with an ordered ring R this can not be assumed directly.
For an ordered field, however, the above proof can be simplified using a basis of eigenvectors.

1.1.3 Examples of ∗-Algebras

Let us now collect some classes of examples of ∗-algebras. The first ones are still for the choice R = R

and hence C = C.

Example 1.1.18 (Smooth functions) Let M be a smooth manifold and denote by C∞(M) the
smooth complex-valued functions. Then C∞(M) forms a unital ∗-algebra with respect to the point-
wise (commutative) multiplication and the pointwise complex conjugation as ∗-involution. The com-
pactly supported smooth functions C∞0 (M) are then a ∗-ideal which is proper iff M is non-compact.
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10 1. ∗-ALGEBRAS AND ELEMENTARY REPRESENTATION THEORY

This is the class of examples underlying classical geometric mechanics on the one hand and deforma-
tion quantization on the other hand. Analogously, other classes of differentiability like Ck(M) with
k ∈ N provide ∗-algebras as well. In general one has C∞(M)++ 6= C∞(M)+, see Exercise 1.4.18.

One of the most important class of ∗-algebras is the class of C∗-algebras. Physically speaking, a
C∗-algebra is the prototype of an observable algebra in quantum theory. We recall the definition: a
∗-algebra A over C is called C∗-algebra if it is equipped with a complete norm ‖ · ‖ satisfying

‖ab‖ ≤ ‖a‖‖b‖ (1.1.14)

and
‖a∗a‖ = ‖a‖2 (1.1.15)

for all a, b ∈ A. If A is a unital C∗-algebra, ‖1‖ = 1 follows from (1.1.15). The first condition
simply implies that the product is continuous. The second condition in (1.1.15) is the C∗-condition.
It follows that

‖a∗‖ = ‖a‖ (1.1.16)

for all a ∈ A and hence the ∗-involution is continuous as well. If only (1.1.14) and (1.1.16) are
satisfied, then A is called a Banach ∗-algebra.

C∗-algebras have many nice features. The most prominent, among many others, is the continuous
spectral calculus which allows us to define continuous functions of Hermitian (more generally, of
normal) elements in a consistent way as a consequence. It follows that A+ = A++ for a C∗-algebra.
In the following, we shall sometimes use C∗-algebras as particular examples to illustrate how the
analytic techniques provide additional algebraic features not present in general. For further reading,
consult the extensive literature like e.g. [10,19,20,41,45,68,69,81].

There are two particular cases of C∗-algebras of interest. In fact, it turns out that up to isomor-
phism the following two scenarios yield already all C∗-algebras:

Example 1.1.19 (Commutative C∗-algebras) The continuous complex-valued functions C(X)
on a compact Hausdorff space X form a unital commutative C∗-algebra where the C∗-norm is the
sup-norm ‖ · ‖∞. In fact, all commutative C∗-algebras with unit are of this form up to isomorphism
withX uniquely determined up to homeomorphism. This classical statement of Gel’fand and Naimark
can be formulated as an equivalence of the category of compact Hausdorff spaces and the category
of unital commutative C∗-algebras. In this sense, the commutative C∗-algebras serve as model for
classical, i.e. commutative geometries.

Example 1.1.20 (Closed subalgebras of B(H)) For a complex Hilbert space H the continuous
(i.e. bounded) operators B(H) form a C∗-algebra with respect to the operator product and the
operator norm. More generally, any closed ∗-subalgebra of B(H) is again a C∗-algebra. It is one of
the remarkable aspects of the theory of C∗-algebras that any C∗-algebra can be obtained like this up
to isomorphism. In view of the commutative situation, one considers noncommutative C∗-algebras
as being the continuous functions on a noncommutative topological space, which of course only exists
by means of its function algebra, i.e. the noncommutative C∗-algebra. This is the starting point of
noncommutative geometry in the sense of Connes [38], see also the various textbooks and monographs
on noncommutative geometry [3,35,39,59,74,75,80,86,111]. Beside being mathematically extremely
fruitful, such noncommutative geometries are considered to play a central role in fundamental theories
of physics at very small length scales: here quantum effects should become relevant for the very notion
of geometry itself, thereby leading to some sort of noncommutativity. Of course, at the moment this is
very much speculation as there are by no means experiments possible which could probe the relevant
scales.
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1.1. First Properties of ∗-Algebras 11

While the above examples work over the complex numbers the next class requires to pass from R

toRJλK. In Chapter 6 we will put this into a much larger context when discussing formal deformations
of ∗-algebras in general.

Example 1.1.21 (Star products) For a smooth manifold M one considers a CJλK-bilinear multi-
plication ? for C∞(M)JλK. The required bilinearity over CJλK implies that for f, g ∈ C∞(M) we can
write f ? g as

f ? g =
∞∑
r=0

λrCr(f, g) (1.1.17)

with C-bilinear operators Cr, which we extend CJλK-bilinearly to all of C∞(M)JλK. Such a product
is called a star product if C0 is just the usual pointwise multiplication of functions [5]. In this case the
antisymmetric part of C1 defines a Poisson bracket for C∞(M) and M becomes a Poisson manifold.
Conversely, for a given Poisson manifold, one tries to find and classify such deformations ?. For
technical reasons one requires the operators Cr to be bidifferential operators. Moreover, for higher
r ≥ 1 they should vanish on constants which is equivalent to 1 ? f = f = f ? 1. Up to now, no reality
assumption has been made. One considers

{f, g} =
1

i
(C1(f, g)− C1(g, f)) (1.1.18)

as Poisson bracket and requires this to be a real Poisson bracket, i.e. {f, g} = {f, g}. Then the star
product is called Hermitian if

f ? g = g ? f, (1.1.19)

i.e. the complex conjugation is a ∗-involution for ?. Note that the rescaling (1.1.18) is necessary
as λ ∈ RJλK is considered to be a real and in fact positive element in the ordered ring RJλK of
scalars. It is a celebrated theorem of Kontsevich [77] that gives both the general existence of star
products on Poisson manifolds as well as a full classification of them. Much more can be said on
this class of ∗-algebras: details on star products and deformation quantization can be found e.g. in
the introductory textbook [116] as well as in [47]. It is this class of examples which provides the
core motivation to extend the notions of representation theory from C∗-algebras to our more general
framework. Note that the usage of formal power series and hence the usage of a non-Archimedian
ordered ring is inevitable as in general not much can be said about the convergence of star products.
Of course, λ > 0 points already into the correct direction which for a yet to be shown convergence
of the formal series will be relevant: once we have convergence established, the formal parameter
becomes the positive Planck constant ~. Thus another way of interpreting the ordering of RJλK is
that λ is infinitesimally small but yet positive. We will come back to this example at many occasions
and consider deformation theory in general in Chapter 6.

The next two examples are more algebraic. They allow to encode symmetries of various kinds:

Example 1.1.22 (Group algebra) Let G be a group. Then the complex group algebra C[G] is
defined as the vector space with basis vectors being the group elements g ∈ G. The multiplication is
just the group multiplication extended C-bilinearly. It is then an easy check that g∗ = g−1 extends
to a ∗-involution for C[G] such that the group elements are unitary. In addition, the group algebra
is also a Hopf algebra where the coproduct is determined by ∆(g) = g ⊗ g, the counit is determined
by ε(g) = 1, and the antipode is determined by S(g) = g−1. Then the group can be recovered as
the set of group-like elements in C[G]. Finally, the ∗-involution is compatible with the Hopf algebra
structure leading to a Hopf ∗-algebra. More information on the general theory of Hopf ∗-algebras and
their representation theory can be found e.g. in the textbooks [37, 73, 76]. Needless to say, we can
replace C by any ring C = R(i) and obtain a group algebra C[G] as well.
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12 1. ∗-ALGEBRAS AND ELEMENTARY REPRESENTATION THEORY

While the group algebra is used to describe symmetries in various contexts, the infinitesimal
versions of symmetries are usually formulated via Lie algebras.

Example 1.1.23 (Universal enveloping algebra) Let g be a real Lie algebra. Then the universal
enveloping algebra of g is

U(g) = T•(g)
/〈
ξ ⊗ η − η ⊗ ξ − [ξ, η]

∣∣ ξ, η ∈ g
〉
, (1.1.20)

where T•(g) denotes the tensor algebra over g and 〈ξ⊗ η− η⊗ ξ− [ξ, η]〉 denotes the two-sided ideal
generated by the elements of the form ξ ⊗ η − η ⊗ ξ − [ξ, η] for all ξ, η ∈ g. The universal enveloping
algebra is generated by 1 and g and is universal for the relations ξ · η− η · ξ = [ξ, η] for ξ, η ∈ g. Then
the complexification

UC(g) = U(g)⊗R C (1.1.21)

becomes a ∗-algebra over C by requiring
ξ∗ = −ξ (1.1.22)

for all ξ ∈ g, i.e. the Lie algebra elements become anti-Hermitian elements. Also in this case we have
a Hopf ∗-algebra structure where ∆(ξ) = ξ ⊗ 1 + 1 ⊗ ξ, ε(ξ) = 0, and S(ξ) = −ξ. Finally, we can
replace R by any ordered ring R and C by C = R(i).

In order to obtain more examples we first have to recall the definition of a pre-Hilbert space over
C. This is the direct translation of the usual definition of a complex pre-Hilbert space.

Definition 1.1.24 (Pre-Hilbert space and adjointable maps) A pre-Hilbert space H over C is
a C-module with an inner product

〈 · , · 〉 : H ×H −→ C (1.1.23)

such that
i.) 〈 · , · 〉 is C-linear in the second argument,
ii.) 〈φ, ψ〉 = 〈ψ, φ〉 for all φ, ψ ∈ H,
iii.) 〈φ, φ〉 > 0 for φ 6= 0.
A map A : H1 −→ H2 between pre-Hilbert spaces is called adjointable if there exists an adjoint map
A∗ : H2 −→ H1 such that

〈φ,Aψ〉2 = 〈A∗φ, ψ〉1 (1.1.24)

for all φ ∈ H2 and ψ ∈ H1. We denote the set of all such adjointable operators by B(H1,H2).

Note that the notion “space” does not imply that the module H behaves like a vector space, i.e. H

needs not to be free at all. In fact, later on we shall meet pre-Hilbert modules over other ∗-algebras,
so the usage of “space” should only imply that the module is over the scalars C.

Note also, that the adjoint A∗ of an adjointable operator is necessarily unique and both A and
A∗ are C-linear. We will come back to these properties in a much more general context, see also
Exercise 1.4.8 for a first approach.

Example 1.1.25 (Pre-Hilbert space) The standard example of a pre-Hilbert space is given by
the free module Cn for n ∈ N. The canonical inner product is given by

〈z, w〉 =
n∑
k=1

zkwk, (1.1.25)
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where z =
∑n

k=1 z
kek with the standard basis vectors e1, . . . , en of Cn. More generally, for any set I

we can consider the direct sum C(I) of I copies of C and define the canonical inner product the same
way, as now only finitely many coefficients zi are different from zero in z =

∑
i∈I z

iei ∈ C(I). Hence

〈z, w〉 =
∑
i∈I

ziwi (1.1.26)

is well-defined and yields a pre-Hilbert space structure for C(I). Note that the same formula would
not work for the Cartesian product CI if I is infinite.

Example 1.1.26 (Adjointable maps) Let H be a pre-Hilbert space. The adjointable operators

B(H) = B(H,H) (1.1.27)

form a subalgebra of EndC(H). It is easy to see that B(H) becomes a ∗-algebra with unit 1 = idH

and with the ∗-involution ∗ : A 7→ A∗. In fact, the composition of adjointable operators is again
adjointable in general. Note that for the case of a complex Hilbert space H instead of H, this
definition reproduces the bounded linear operators by the Hellinger-Toeplitz theorem, see e.g. [102,
p. 117]. However, already for complex pre-Hilbert spaces the operators B(H) typically contain many
unbounded operators, see e.g. the monograph [104] for a detailed discussion of such unbounded
operator algebras. As a first remark on the structure of the ∗-algebra B(H) we note that it is torsion-
free: if A ∈ B(H) is non-zero and z ∈ C satisfies zA = 0 then z = 0: indeed, choose a vector φ ∈ H

with Aφ 6= 0. Then 0 < 〈Aφ,Aφ〉 and 0 = 〈zAφ, zAφ〉 = zz〈Aφ,Aφ〉. This implies z = 0. It follows
that also all ∗-subalgebras of B(H) are torsion-free, a feature which is of course trivially fulfilled if R
and hence C are fields. With the same argument one shows that H is torsion-free as well. Moreover,
if A ∈ B(H) satisfies A∗A = 0 then we already have A = 0. Finally, if A is normal and nilpotent
then A = 0 follows, see also Exercise 1.4.8.

Example 1.1.27 (Finite-rank operators) Let H1 and H2 be pre-Hilbert spaces. For φ ∈ H2 and
ψ ∈ H1 we define the rank-one operator Θφ,ψ : H1 −→ H2 by

Θφ,ψ(χ) = φ〈ψ, χ〉1. (1.1.28)

In Dirac’s bra-ket notation this would be Θφ,ψ = |φ〉〈ψ|. However, we will prefer the notation (1.1.28).
The finite-rank operators are then defined by

F(H) =
{
A : H −→ H

∣∣∣ A =
∑

i
Θφi,ψi for some φ1, . . . , φn, ψ1, . . . , ψn ∈ H

}
⊆ B(H). (1.1.29)

They form a ∗-ideal in B(H). Note that

Θ∗φ,ψ = Θψ,φ. (1.1.30)

In the case of a complex Hilbert space H, the completion of F(H) with respect to the operator norm
will give the compact operators K(H), which form a norm-closed ∗-ideal in B(H). Hence K(H) is a
(in general non-unital) C∗-algebra. For an infinite-dimensional separable Hilbert space, the quotient
C∗-algebra C(H) = B(H)

/
K(H) is called the Calkin algebra, see e.g. [69, Sect. 10.4] or [10, Sect. I.8.2].

Example 1.1.28 For the pre-Hilbert space Cn it is easy to see that the finite-rank operators F(Cn)
just coincide with all linear endomorphisms of Cn. Hence we get

F(Cn) = B(Cn) = End(Cn). (1.1.31)

If we pass to the infinite-dimensional version of countably many copies of C, we denote the corre-
sponding pre-Hilbert space simply by C∞. In this case, it is easy to see that the finite-rank operators
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14 1. ∗-ALGEBRAS AND ELEMENTARY REPRESENTATION THEORY

are given by the infinite matrices with at most finitely many non-trivial entries, denoted by M∞(C).
Clearly, such matrices provide a (non-unital) ∗-algebra with respect to the matrix multiplication and
the usual adjoint of matrices. Identifying these matrices with the operators acting on C∞ we get

F(C∞) = M∞(C). (1.1.32)

The last example we would like to mention is based on the passage from a ∗-algebra to matrices
with entries in a ∗-algebra:

Example 1.1.29 (The algebras Mn(A) and M∞(A)) Let A be a ∗-algebra over C = R(i) and
n ∈ N. Then the n× n matrices Mn(A) with entries in A form a ∗-algebra with respect to the usual
matrix multiplication based on the product of A and the usual matrix adjoint using the ∗-involution
of A instead of complex conjugation as we have seen in Lemma 1.1.11. Clearly, Mn(A) is unital iff
A is unital. We can extend this also to infinite matrices of arbitrary size (indexed by pairs (i, j) with
i, j ∈ I), provided we have at most finitely many non-zero entries. The case of I = N, i.e. countably
infinite matrices will simply be denoted by M∞(A). Now M∞(A) is no longer unital.

1.2 ∗-Representations and the GNS Construction

It is a general theme in algebra to study a ring by means of its modules. In our case we would like
to establish a module category which captures the structure of a ∗-algebra over C = R(i) as good as
possible. To this end, we use the situation of C∗-algebras as guideline.

The reasons are at least two-fold. First, for C∗-algebras there is a very well-developed theory
of ∗-representations on Hilbert spaces which provides deep insight into the structure of C∗-algebras.
Since any C∗-algebra can, by means of a ∗-representation, be identified as a closed ∗-subalgebra of
the bounded operators on a suitable Hilbert space, this seems to be the right choice.

The second motivation comes from quantum physics: the observables of a quantum system will
be described by a C∗-algebra (or just a ∗-algebra) while the physical states are encoded as positive
normalized functionals, i.e. the states in the sense of Definition 1.1.6. This will be enough to define
expectation values for measurements. However, one crucial ingredient for quantum physics is still
missing: two pure states ω1 and ω2 of quantum systems can be superposed. Here we encounter a
serious problem since we can form convex combination of positive functionals but clearly not arbitrary
linear combinations. The way out in quantum physics is that one has to pass to a representation π
on a (pre-) Hilbert space H and then try to find vectors φ1, φ2 ∈ H such that ω1 and ω2 are realized
as vector states, i.e.

ωk(a) = 〈φk, π(a)φk〉 (1.2.1)

for all a ∈ A. In this situation one can form arbitrary linear combinations φ = z1φ1 + z2φ2 of
the state vectors to get a new state vector φ. After normalizing properly, this will give a new state
ω(a) = 〈φ, π(a)φ〉. It is clear that the additional linear structure of the representation space is needed
for this construction. The crucial questions are now, which ∗-representation of A should be used and
whether and how a given state ω can be realized as vector state.

1.2.1 ∗-Representations on Pre-Hilbert Spaces

The following definition of a ∗-representation is now the direct translation of the C∗-algebraic situation.
The main point is that B(H) is a ∗-algebra itself. Hence we can give yet another motivation for ∗-
representations, namely we want to compare a “complicated” ∗-algebra A with the “standard” ∗-algebra
like B(H).

Definition 1.2.1 (∗-Representation) Let A be a ∗-algebra over C = R(i).
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1.2. ∗-Representations and the GNS Construction 15

i.) A ∗-representation (H, π) of A is a ∗-homomorphism

π : A −→ B(H), (1.2.2)

where H is a pre-Hilbert space over C.
ii.) An intertwiner T : (H1, π1) −→ (H2, π2) from one ∗-representation of A to another is an ad-

jointable map T ∈ B(H1,H2) such that for all a ∈ A one has

Tπ1(a) = π2(a)T. (1.2.3)

iii.) The representation theory of A is the category -rep∗ (A) with ∗-representations of A as objects
and intertwiners as morphisms.

From what we said on the composition of adjointable operators it is clear that the intertwiners
indeed form morphisms of a category. This justifies the third part of the definition.

Remark 1.2.2 (Different conventions for intertwiners) There is yet another possibility of in-
troducing the notion of intertwiners. Equally reasonable would be to consider isometric C-linear maps
T : (H1, π1) −→ (H2, π2) satisfying the relation (1.2.3). Again, the composition of such isometric in-
tertwiners is an isometric intertwiner and we obtain a category. The isomorphisms in this category
would be unitary intertwiner and not adjointable bijective intertwiners as in our above version. In
case of Hilbert spaces and hence representations by bounded operators, the polar decomposition then
shows that an adjointable bijective intertwiner can be factored into a unitary and a positive inter-
twiner. Hence in this case, both notions of equivalent representations lead to the same equivalence
classes. In our more general setting, however, these choices will lead to different notions. The reason
that we favour adjointable over isometric intertwiners is that there might be isometric maps not al-
lowing for an adjoint. The set of adjointable intertwiners also carries the additional feature of being
a module over C, since (1.2.3) is clearly a linear condition for T . Finally, if T : (H1, π1) −→ (H2, π2)
is an intertwiner then its adjoint is an intertwiner in the opposite direction T ∗ : (H2, π2) −→ (H1, π1)
since π1 and π2 are ∗-representations and thus one can just take the adjoint of the defining condition
(1.2.3). We will later use this fact to formulate the unitary equivalence of representations in a more
categorical language. Nevertheless, even with our notion of intertwiner we will mainly be interested
in the situation of having unitary intertwiners and unitary equivalence of representations.

Up to now, a ∗-representation of A can be quite trivial. To enforce some non-triviality one has
several options. It turns out that the strongly non-degenerate ∗-representations will play a particular
role: Here a ∗-representation (H, π) is called strongly non-degenerate if

π(A)H = H, (1.2.4)

i.e the C-linear span of vectors of the form π(a)φ is the whole representation space, see also Exer-
cise 1.4.9. If A has a unit element 1 ∈ A then π(1) ∈ B(H) is a projection. In fact, with respect to the
orthogonal decomposition H = π(1)H ⊕ (id−π(1))H, the representation π becomes block-diagonal
such that π is identically zero on (id−π(1))H and strongly non-degenerate on the block π(1)H.
Hence we can just forget about the trivial part and focus on the strongly non-degenerate block. Also
in the non-unital case, we shall mainly be interested in strongly non-degenerate ∗-representations. In
the unital case they can simply be characterized by the condition π(1) = id. We denote the full
subcategory of strongly non-degenerate ∗-representations of A by -Rep∗ (A).

We list some basic examples. The first class of examples shows that the ∗-representations of group
algebras correspond precisely to the unitary representations of the underlying group.
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16 1. ∗-ALGEBRAS AND ELEMENTARY REPRESENTATION THEORY

Example 1.2.3 (Group representation) A ∗-representation (H, π) of the group algebra C[G] gives
a unitary representation of the group G on the pre-Hilbert space H by g 7→ π(g), i.e. the maps π(g)
are unitary for all g ∈ G. Conversely, any unitary representation of G canonically extends to a ∗-
representation of C[G]. If C = C, it is a standard argument that a unitary map on a pre-Hilbert space
is actually bounded and thus extends to the Hilbert space completion while staying unitary. Thus
we get a unitary representation of G on a Hilbert space. The functoriality is slightly more tricky as
our notion of intertwiner does not provide any continuity assumption: so in general the intertwiners
between pre-Hilbert space representations will not extend to intertwiners between the completions.
However, if the intertwiners happen to be unitary themselves then they extend. Thus the notions of
unitarily equivalent ∗-representations of G in both contexts coincide.

Also for C∗-algebras one has an automatic continuity statement:

Example 1.2.4 (∗-Representation of C∗-algebra) Let A be a C∗-algebra and let (H, π) be a
∗-representation of A on a pre-Hilbert space H over C. Then the operators π(a) turn out to be
bounded and we get a canonical extension π̂ to the Hilbert space completion Ĥ. For the functoriality
we have the same situation as in the group algebra case.

The case of the universal enveloping algebra of a real Lie algebra is closely related to the group algebra
case. However, the continuity properties are now much more delicate:

Example 1.2.5 (Lie algebra representation) Let g be a Lie algebra over R. A ∗-representation
(H, π) of UC(g) restricts to an anti-Hermitian representation of the Lie algebra g on H. Conversely,
an anti-Hermitian Lie algebra representation of g canonically extends to a ∗-representation of UC(g)
by the universal property of the universal enveloping algebra. In the case C = C, we do not have any
reasonable continuity of the operators π(ξ). Instead, for finite-dimensional g, the interesting question
is whether the Lie algebra representation is actually coming from a unitary (strongly continuous)
representation of the corresponding (connected and simply connected) Lie group G such that the
vectors in H are smooth vectors of the representation of G. In general, this is a highly nontrivial
question, see e.g. [104, Chap. 10] for more details.

We conclude this subsection with the following remark: given an index set I and a family of
∗-representations {(Hi, πi)}i∈I of A we can consider their direct orthogonal sum. The representation
space is defined by

H =
⊕
i∈I

Hi, (1.2.5)

with the inner product given by

〈(φi)i∈I , (ψj)j∈J〉 =
∑
i∈I
〈φi, ψi〉i. (1.2.6)

Note that this is indeed again a well-defined inner product as thanks to the direct sum we only
have finitely many non-zero contributions for two given vectors. The ∗-representation is then the
block-diagonal sum of the single πi, i.e. we set

π(a) =
⊕
i∈I

πi(a) (1.2.7)

for a ∈ A. It is now a routine check to see that this defines indeed a ∗-representation of A. Moreover,
let Pi ∈ B(H) be the projection operator onto the i-th component Hi of the direct sum. Note that
we have P ∗i = Pi for all i ∈ I. Then we have

Piπ(a) = π(a)Pi = πi(a). (1.2.8)
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1.2. ∗-Representations and the GNS Construction 17

Hence Pi is a self-intertwiner of the ∗-representation π. This shows that we can recover the original
∗-representations form the direct sum by means of these projections. Moreover, it shows that the
subspaces Hi ⊆ H are invariant subspaces under the representations since Hi = imPi.

Conversely, for a given ∗-representation (H, π) of A it would be very desirable to decompose it into
a direct sum (H, π) =

⊕
i∈I(Hi, πi) such that each component (Hi, πi) is no longer decomposable in a

non-trivial way. Such “atoms” of the representation theory are usually called irreducible. A complete
understanding of the representation theory would be a full list of all irreducible ∗-representations up
to equivalence together with a statement how a given ∗-representation can be decomposed.

However, beside very particular situations for C = C and nice algebras, this seems to be completely
unrealistic: there might be ∗-representations which contain invariant subspaces but which do not
decompose into a direct sum, as there might be no invariant complement. Moreover, finding a
complete list of irreducible ∗-representations will not be achievable due to the complexity of the
problem. Finally, even in the very nice situations for C = C and Hilbert spaces instead of pre-Hilbert
spaces, an understanding of the decomposition requires heavy analytic machinery: the projections
commuting with the ∗-representation are in the commutant of π, a von Neumann algebra, the type
of which might prevent us from a reasonable decomposition.

1.2.2 The GNS Construction

Let us now discuss one of the standard ways to construct ∗-representations, the GNS construction.
We start with a positive linear functional ω : A −→ C. Then

Jω =
{
a ∈ A

∣∣ ω(a∗a) = 0
}

(1.2.9)

is a left ideal in A, the so-called Gel’fand ideal since

Jω =
{
a ∈ A

∣∣ ω(b∗a) = 0 for all b ∈ A
}

=
{
a ∈ A

∣∣ ω(a∗b) = 0 for all b ∈ A
}
. (1.2.10)

This follows immediately from the Cauchy-Schwarz inequality (1.1.3). Thus the quotient

Hω = A
/
Jω (1.2.11)

becomes a left A-module in the canonical way, namely by setting

πω(a)ψb = ψab, (1.2.12)

where ψb ∈ Hω denotes the equivalence class of b. Moreover, we have a well-defined inner product

〈ψa, ψb〉ω = ω(a∗b), (1.2.13)

which turns Hω into a pre-Hilbert space. With respect to this inner product, πω is a ∗-representation,
the GNS representation of A with respect to ω, named after Gel’fand, Naimark and Segal who
considered mainly the case of a C∗-algebra. In this case one can complete the pre-Hilbert space to a
Hilbert space and extend the ∗-representation π to the completion thanks to the automatic continuity
of the operators π(a) mentioned in Example 1.2.4. This will of course not be available in our general
algebraic situation.

Finally, we assume that in addition A is unital. This gives a distinguished vector ψ1 ∈ Hω in the
GNS representation space. This vector has two features: first it is cyclic in the sense that

ψa = πω(a)ψ1, (1.2.14)

i.e. any other vector can be obtained by applying an algebra element to ψ1. In particular, the GNS
representation is always strongly non-degenerate. Second, we can recover the positive functional ω as
a vector state since

ω(a) = 〈ψ1, πω(a)ψ1〉ω (1.2.15)
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18 1. ∗-ALGEBRAS AND ELEMENTARY REPRESENTATION THEORY

for all a ∈ A. It is now an easy check that these features characterize the GNS representation up to
unitary equivalence:

Proposition 1.2.6 Let A be a unital ∗-algebra over C = R(i) and let ω : A −→ C be a positive
functional. If (H, π,Ω) is a cyclic ∗-representation with cyclic vector Ω such that ω(a) = 〈Ω, π(a)Ω〉H,
then this ∗-representation is unitarily equivalent to the GNS representation with respect to ω via the
unitary intertwiner explicitly given by

U : Hω 3 ψa 7→ π(a)Ω ∈ H. (1.2.16)

Proof: First we show that U is well-defined at all: let a ∈ Jω be in the Gel’fand ideal. Then
〈π(a)Ω, π(a)Ω〉 = 〈Ω, π(a∗a)Ω〉 = ω(a∗a) = 0 shows that π(a)Ω = 0. Thus U is well-defined and
injective. Moreover, U is surjective since we assume that Ω is a cyclic vector for π. Finally, U is
isometric since 〈Uψa, Uψb〉 = 〈π(a)Ω, π(b)Ω〉 = 〈Ω, π(a∗b)Ω〉 = ω(a∗b) = 〈ψa, ψb〉ω for all a, b ∈ A.
Since U is bijective, this is all we need to conclude that it is unitary. The intertwiner property is clear
by construction. �

There are numerous examples where the GNS representation can be determined explicitly for a
given positive functional. The first is the defining representation of B(H):

Example 1.2.7 Let H be a pre-Hilbert space. For a fixed unit vector Ω ∈ H we consider the
functional

ω : B(H) 3 A 7→ ω(A) = 〈Ω, AΩ〉 ∈ C. (1.2.17)

We claim that the GNS representation of this obviously positive functional is the defining representa-
tion of B(H) on H. Indeed, all we have to show is that Ω is cyclic: but this is clear since for every
other vector φ ∈ H we have φ = Θφ,ΩΩ with Θφ,Ω ∈ F(H) ⊆ B(H) since Ω is assumed to be a unit
vector. Thus we can apply Proposition 1.2.6. However, note that in ring-theoretic framework it might
well happen that H does not contain any unit vector.

The next example is from deformation quantization: there one has many other examples of positive
functionals leading to physically interesting GNS representations, we just mention one of them without
presenting the details:

Example 1.2.8 (Schrödinger representation) Consider the ∗-algebra of formal power series C∞(R2n)JλK
with smooth functions as coefficients equipped with the usual Weyl-Moyal star product

f ?Weyl g = µ ◦ e
iλ
2

∑
k

(
∂

∂qk
⊗ ∂
∂pk
− ∂
∂pk
⊗ ∂

∂qk

)
f ⊗ g, (1.2.18)

where µ(f ⊗ g) = fg is the undeformed product. This star product is Hermitian and thus a ∗-algebra
over
mathbbCJλK as claimed. The functions C∞0 (R2n)JλK are now easily shown to form a ∗-ideal. On this
∗-ideal, the functional

ω(f) =

∫
Rn

f(q, p = 0) dnq (1.2.19)

is well-defined. In fact, it would suffice to require compact support in every order of λ in q-direction
only. By some elementary integration by parts, this functional turns out to be positive. Moreover,
the GNS pre-Hilbert space is, up to a simple identification, the space of wave functions C∞0 (Rn)JλK
with the canonical CJλK-valued L2-inner product [18, Sect. 8]. From Exercise 1.4.12 we know that
the GNS representation extends from the ∗-ideal to the whole algebra C∞(R2n)JλK. Then the GNS
representation becomes the Schrödinger representation, i.e. for polynomials in p’s and q’s we have
the usual action by momentum and position operators on wave functions together with the Weyl
symmetrization rule. Analogous results hold for any cotangent bundle [13–15], see also [116, Sect. 7.2]
for further details and explicit proofs.
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1.2. ∗-Representations and the GNS Construction 19

On consequence of the GNS construction is now that we can find faithful ∗-representations of
a ∗-algebra provided it has many positive functionals. Here the following definition turns out to
guarantee this feature [26, Def. 2.7]:

Definition 1.2.9 (Sufficiently many positive functionals) Let A be a ∗-algebra over C = R(i).
Then A has sufficiently many positive linear functionals if for every non-zero Hermitian element
a = a∗ ∈ A there is a positive functional ω : A −→ C with ω(a) 6= 0.

Proposition 1.2.10 Let A be a unital ∗-algebra over C = R(i). Then the following statements are
equivalent:

i.) The ∗-algebra A has sufficiently many positive linear functionals.
ii.) For every non-zero Hermitian element a = a∗ 6= 0 there is a ∗-representation π with π(a) 6= 0.
iii.) The ∗-algebra has a faithful ∗-representation.
In this case, the ∗-algebra A satisfies the following additional properties:

i.) If a ∈ A satisfies a∗a = 0 then a = 0.
ii.) If a ∈ A is normal and nilpotent then a = 0.
iii.) The ∗-algebra A is torsion-free, i.e. for a ∈ A and z ∈ C with z 6= 0 and za = 0 one has a = 0.

Proof: We consider the set of all positive linear functionals A∗+ ⊆ A∗ and define the ∗-representation
π to be the direct sum of all GNS representations, i.e.

π =
⊕
ω∈A∗+

πω on the pre-Hilbert space H =
⊕
ω∈A∗+

Hω. (∗)

Suppose i.). Then we claim that π is faithful. Indeed, let first a ∈ A be Hermitian. Then we find
a positive linear functional ω with ω(a) 6= 0. Hence ω(a) = 〈ψ1, πω(a)ψ1〉ω shows that πω(a) 6= 0.
Being a direct summand of π shows then π(a) 6= 0, too. Thus ii.) follows. Now assume ii.), let π be
a ∗-representation which is non-trivial on non-zero Hermitian elements, and let a ∈ A be arbitrary.
Then clearly π is also non-trivial on non-zero anti-Hermitian elements. Now a + a∗ is Hermitian
and a − a∗ is anti-Hermitian. Suppose that π(a) = 0 then π(a + a∗) = 0 = π(a − a∗), too. By
assumption, this implies a + a∗ = 0 = a − a∗ and thus a = a∗ is Hermitian. But then π(a) = 0
implies a = 0. This shows that π is non-trivial on all non-zero elements of A, hence iii.) follows.
In particular, (∗) is faithful. Finally, if we have a faithful ∗-representation π of A on H then the
functionals ωφ(a) = 〈φ, π(a)φ〉 are positive and will detect all non-zero Hermitian elements, see also
Exercise 1.4.8, v.). This shows the equivalence of the first three statements. If A satisfies these
conditions then A is ∗-isomorphic to a ∗-subalgebra of B(H) for some suitable pre-Hilbert space H.
Then A inherits the remaining properties from the adjointable operators, see also Example 1.1.26.�

Example 1.2.11 The existence of a unit can be weakened [26, Prop. 2.8] but not completely aban-
doned: consider the one-dimensional non-unital ∗-algebra A = Cx with the ∗-algebra structure defined
by x2 = 0 and x∗ = x. In this case, every linear functional is positive for trivial reasons and hence
A has sufficiently many positive functionals. However, a faithful ∗-representation of A would yield a
Hermitian operator π(x) 6= 0 with π(x)2 = 0 which is not possible.

If A has sufficiently many positive functionals, the ∗-ideal structure of A allows for some nice
characterization [25], see also Exercise 1.4.14 and Exercise 1.4.15. In the case of C = C such ∗-
algebras were treated in detail in [104, Sect. 6.4], where these algebras are called ∗-semisimple.

Physically speaking, the condition of having sufficiently many positive linear functionals means
that we can detect an observable a being non-zero by investigating all the expectation values Eω(a) =
ω(a). This is clearly desirable and anything else would not qualify as a physically reasonable observ-
able algebra.
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20 1. ∗-ALGEBRAS AND ELEMENTARY REPRESENTATION THEORY

1.3 Aims and Expectations

Let us now list several aims and expectation which should be addressed in the course of these notes.
• First, we would like to see how ∗-representations can be constructed beyond the fundamental

construction out of positive functionals as in the GNS approach. Here suitable generalizations
will be discussed.
• We shall focus on the algebraic aspects of ∗-representation theory. This is motivated by the

generality of the examples which we would like to discuss on a common ground: for deformation
quantization it will be important to deal with formal star products as well as with C∞(M) and,
ultimately, with more analytic situations like C∗-algebras. This requires the usage of general
ordered rings in favour of the real numbers R. Note, however, in the case of ∗-algebras over
C, and in particular for C∗-algebras and O∗-algebras, much more sophisticated results can be
obtained after appropriate use of (heavy) analytic techniques.
• We will need generalizations of ∗-representations on spaces beyond pre-Hilbert spaces. Such

generalizations will naturally occur when we discuss the question of functors

-Rep∗ (A) −→ -Rep∗ (B) (1.3.1)

between categories of representations for different ∗-algebras. Particular and very important
examples of functors like (1.3.1) will be obtained from certain tensor product constructions. The
reason to consider such functors is to compare the representation theories of different ∗-algebras
without knowing them explicitly: we have seen that it is very unrealistic to have a complete
understanding of -Rep∗ (A). However, it will turn out that under certain circumstances it will
be possible to say that A and B have the same representation theory even without knowing
the representation theories individually.
• This is closely related to the question how much information about A is contained in the

representation theory -Rep∗ (A): Can one reconstruct A from of -Rep∗ (A)? For rings and their
module categories this is the classical task of Morita theory. We shall discuss this question for
several adapted versions of Morita equivalence taking care of the additional structure present
for ∗-algebras over C = R(i).
• Since the concept of an ordered ring works well together with formal power series we are able

to study the behaviour of ∗-algebras and their ∗-representations under formal deformations in
the sense of Gerstenhaber [53–56]. The main class of examples of such deformations are of
course the star products from deformation quantization. In fact, deformation quantization will
be one of the main guidelines to develop the relevant notions in the sequel. As applications,
representation-theoretical techniques can be used to understand e.g. the Dirac monopole and
the behavior of representations under reduction with respect to symmetries. Without being able
to go into the details, we mention in particular the recent works [27, 33, 62, 67]. Note, however,
that we will focus on the general deformation theory of ∗-algebras and their ∗-representations
which makes our concepts applicable also beyond star products.

1.4 Exercises

Exercise 1.4.1 (From ordered rings to ordered fields) Let R be an ordered ring.
i.) Show that R has no zero divisors. Hence one obtains a quotient field R̂ of R.
ii.) Show that R̂ inherits the ordering of R in a unique way such that the canonical inclusion R ⊆ R̂

is order-preserving.
iii.) Show that the ring extension C = R(i) by a square root i of −1 has no zero divisors, too.

Conclude that the quotient field Ĉ of C is canonically isomorphic to R̂(i).
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Exercise 1.4.2 (Quotients of ∗-algebras) Show that the quotient of a (unital) ∗-algebra by a
∗-ideal becomes in a unique way a (unital) ∗-algebra again, such that the quotient map is a ∗-
homomorphism. Formulate and prove the universal property of this quotient procedure.

Exercise 1.4.3 (Polarization identity) Let V and W be two modules over C = R(i) with an
ordered ring R. Moreover, let S : V ×V −→W be a sesquilinear map, i.e. assume that S is antilinear

S(αu+ βv,w) = αS(u,w) + βS(v, w) (1.4.1)

in the first argument and linear in the second S(u, αv + βw) = αS(u, v) + βS(u,w), where α, β ∈ C
and u, v, w ∈ V .
i.) Show that the polarization identity

S(v, w) =
1

4

3∑
k=0

ikS
(
v + i−kw, v + i−kw

)
(1.4.2)

holds for all v, w ∈ V and conclude that S is the constant 0-map if and only if S(v, v) = 0 for
all v ∈ V .

ii.) Now assume that W = C. A sesquilinear map S : V × V −→ C is usually called a sesquilinear
form. Such a sesquilinear form is said to be Hermitian if S(v, w) = S(w, v) holds for all v, w ∈ V .
Show that a sesquilinear form S on V is Hermitian iff S(v, v) ∈ R holds for all v ∈ V .

iii.) Finally, let A be a unital ∗-algebra over C. Show that for every a ∈ A there exist 4 algebraically
positive elements b0, b1, b2, b3 ∈ A++ such that a =

∑3
k=0 ikbk holds.

Hint: Show first that for all a, b ∈ A one has

ab =
1

4

3∑
k=0

ik(a+ ik)b(a+ ik)∗ (1.4.3)

and

ba =
1

4

3∑
k=0

ik(a+ ik)∗b(a+ ik). (1.4.4)

iv.) Discuss under which assumptions the above statement also holds for (particular) non-unital
∗-algebras and give examples where it does not hold.

Exercise 1.4.4 (Positive matrices) Let n ∈ N and consider C = R(i) with an ordered ring R. The
aim of this exercise is to prove Lemma 2.1.10. As a tool we will need the quotient fields R̂ and Ĉ of
R and C. For further reading see [26, App. A].
i.) Show that every C-linear functional ω : Mn(C) −→ C is of the form

ω(A) = tr(%A) (1.4.5)

with a uniquely determined matrix % ∈ Mn(C). Show that ω is a real functional, i.e. ω(A∗) =
ω(A), iff % = %∗. Thus, since Mn(C) is unital, for positive functionals it will be sufficient to
consider a Hermitian % in the following.

ii.) Let % = %∗ ∈ Mn(C). Show that the corresponding linear functional ω is positive iff % satisfies

〈v, %v〉 ≥ 0 (1.4.6)

for all v ∈ Cn.
Hint: For a given matrix A ∈ Mn(C) consider the vectors v(k) = (v

(k)
i )i=1,...,n ∈ Cn with entries v(k)

i = Aki.
Conclude that for % with (1.4.6) we then have tr(%A∗A) ≥ 0. For the converse, let v ∈ Cn be given and consider
the matrix A ∈ Mn(C) with entries Aki = vi for all k = 1, . . . , n. Conclude that tr(%A∗A) implies 〈v, %v〉 ≥ 0.
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22 1. ∗-ALGEBRAS AND ELEMENTARY REPRESENTATION THEORY

iii.) Let % = %∗ ∈ Mn(C). Show that % satisfies (1.4.6) iff % viewed as matrix % ∈ Mn(Ĉ) satisfies
(1.4.6) for all v ∈ Ĉn by choosing suitable common denominators.

iv.) Let % ∈ Mn(Ĉ) satisfy (1.4.6). Show that there exists a basis v1, . . . , vn ∈ Ĉn and non-negative
numbers p1, . . . , pn ∈ R̂ such that 〈vi, %vj〉 = δijpi for all i, j = 1, . . . , n. Without further
assumptions on R̂ we can not assume that the v1, . . . , vn are orthonormal, nevertheless they
define idempotents Pi projecting onto vi according the the direct sum decomposition induced
by the basis. Use this to conclude that for the matrix U ∈ Mn(Ĉ) defined by ei = Uvi we have

% =

n∑
i=1

piU
∗P ∗i PiU ∈ Mn(Ĉ)++, (1.4.7)

even though U is not a unitary matrix in general and the Pi are not Hermitian in general.
Hint: Use e.g. [65, Thm. 6.19].

v.) Show that % ∈ Mn(C) is positive iff % satisfies (1.4.7) when viewed as element of Mn(Ĉ).
vi.) Let A,B ∈ Mn(C)+. Show that tr(AB) ≥ 0.
vii.) Let A ∈ Mn(C)+. Show that A ∈ Mn(Ĉ)++.

Exercise 1.4.5 (Matrix algebras) Prove Lemma 1.1.11.

Exercise 1.4.6 (Positive maps) Let A and B be a ∗-algebras over C = R(i).
i.) Show that a linear map φ : A −→ B is positive iff for every a ∈ A and every positive linear

functional ω : B −→ C one has ω(φ(a∗a)) ≥ 0, i.e. the linear functional φ∗ω = ω ◦ φ : A −→ C
is positive.

ii.) Show that a linear map φ : A −→ B is positive iff φ(A++) ⊆ B+.
iii.) Let ω : A −→ B be a positive linear functional. Show that ω is completely positive.

Hint: Use Exercise 1.4.4.

iv.) Solve [68, Exercise 11.5.15] to show that there are positive maps which are not completely
positive.

Exercise 1.4.7 (Complete positivity of tr and τ) Let A be a ∗-algebra over C = R(i).
i.) Show that Mn(Mm(A)) ∼= Mnm(A) as ∗-algebras for all n,m ∈ N.
ii.) Show that tr(A∗A) ∈ A++ for all A ∈ Mn(A). Conclude that tr : Mn(A) −→ A is a completely

positive linear map.
iii.) Show analogously that the map τ : Mn(A) −→ A from (1.1.12) is completely positive.

Exercise 1.4.8 (Adjointable operators) Let H,H′ be pre-Hilbert spaces over C = R(i).
i.) Let A : H −→ H′ be an adjointable map. Show that A is C-linear and that the adjoint A∗ is

uniquely determined. Show that A∗ is adjointable, too, and compute its adjoint.
ii.) Show that linear combinations of adjointable maps are again adjointable and determine their

adjoints. Also, show that the composition of adjointable maps (into some further pre-Hilbert
space H′′) is adjointable and compute the adjoint.

iii.) Conclude that B(H) is a unital ∗-algebra over C with respect to the usual composition of linear
maps and A 7→ A∗ as ∗-involution.

iv.) Let A ∈ B(H) satisfy A∗A = 0. Show that this implies A = 0. Moreover, show that the only
nilpotent and normal element A ∈ B(H) is A = 0.

v.) Show by a suitable polarization that if 〈φ,Aφ〉 = 0 for A ∈ B(H) and all φ ∈ H then A = 0.
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Exercise 1.4.9 (Non-degenerate ∗-representations) Let A be a ∗-algebra over C and let (H, π)
be a ∗-representation of A on a pre-Hilbert spaceH. Then (H, π) is called non-degenerate if π(a)φ = 0
for all a ∈ A implies φ = 0.
i.) Show that (H, π) is non-degenerate if (H, π) is strongly non-degenerate.
ii.) Show that for a non-degenerate ∗-representation (H, π) the orthogonal space of π(A)H is trivial,

i.e.
(π(A)H)⊥ = {0}. (1.4.8)

iii.) Show that (H, π) is strongly non-degenerate if (H, π) is the direct orthogonal sum of cyclic
∗-representations.

iv.) Assume that A is unital. Show that a ∗-representation is strongly non-degenerate iff it is
non-degenerate.

Exercise 1.4.10 (Variance, covariance, and uncertainty) Let A be a unital ∗-algebra over C =
R(i) and let ω : A −→ C be a state.
i.) Show that for all a1, . . . , an ∈ A the covariance matrix (Covω(ai, aj)) ∈ Mn(C) is positive.
ii.) Show that for all a, b ∈ A one has

(ω(a∗b)− ω(a∗)ω(b))(ω(a∗b)− ω(a∗)ω(b)) ≤ Varω(a) Varω(b). (1.4.9)

Conclude that a linear functional ω is a unital ∗-homomorphism iff it is a state and the variances
Varω(a) vanish for all algebra elements a ∈ A.

iii.) Let a, b ∈ A be Hermitian. Prove that one has Heisenberg’s uncertainty relations

4 Varω(a) Varω(b) ≥ ω([a, b])ω([a, b]) (1.4.10)

for the variances of a and b.

Exercise 1.4.11 (Positive elements of a subalgebra) Let A be a ∗-algebra over C with a ∗-
subalgebra B ⊆ A.
i.) Show that the restriction of a positive functional ω : A −→ C is a positive functional on B.
ii.) Show that a positive element b ∈ B is also a positive element in A.
iii.) Give easy examples that the two reverse implications are not true in general: not all positive

linear functionals on B are restrictions of positive linear functionals on A and not all elements
b ∈ B which are positive when viewed as elements of A are also positive in B.
Hint: Consider C[x] ⊆ C([0, 1]).

This is the mechanism used in O∗-algebra theory: the strong positivity of an O∗-algebra is inherited
from the ambient ∗-algebra of all adjointable operators on a pre-Hilbert space.

Exercise 1.4.12 (The GNS construction for a ∗-ideal) Let A be a ∗-algebra over C = R(i) and
let B ⊆ A be a ∗-ideal. Consider a positive linear functional ω : B −→ C and denote the Gel’fand
ideal of ω byJω ⊆ B as usual.
i.) Use the Cauchy-Schwarz inequality to show thatJω ⊆ A is still a left ideal.
ii.) Show that the GNS representation πω of B on Hω extends to a ∗-representation πω of A by

setting πω(a)ψb = ψab. Why is this well-defined at all?

Exercise 1.4.13 (Inner-product spaces and indefinite GNS construction) Analogously to a
pre-Hilbert space one defines an inner-product space H over C = R(i) to be a C-module endowed
with a non-degenerate inner product as in Definition 1.1.24 except for the requirement of positivity.
Instead, the non-degeneracy is explicitly required, i.e. 〈φ, ψ〉 = 0 for all φ ∈ H implies ψ = 0.
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i.) Show that the analogous definition of adjointable and finite-rank operators between inner-
product spaces gives B(H1,H2) and F(H1,H2) enjoying the properties as in the pre-Hilbert
case: the composition of adjointable operators is again adjointable, the finite-rank operators
form a ∗-ideal, etc.

ii.) Show that an inner-product space H has no torsion, i.e. zφ = 0 for φ 6= 0 implies z = 0, where
z ∈ C and φ ∈ H. Show that also B(H1,H2) and F(H1,H2) have no torsion.

A ∗-representation π of a ∗-algebra on an inner-product space H is now defined to be a ∗-homomor-
phism π : A −→ B(H) as in the case of a pre-Hilbert space. We consider now a real linear functional
ω : A −→ C, i.e. for all a, b ∈ A we have ω(a∗b) = ω(b∗a).
iii.) Show that for a unital ∗-algebra a functional ω is real iff ω(a∗) = ω(a) for all a ∈ A.
iv.) Show thatJω = {a ∈ A | ω(b∗a) = 0 for all b ∈ A} is a left ideal in A, called again the Gel’fand

ideal.
v.) Show that on the quotient Hω = A

/
Jω the definition 〈ψa, ψb〉 = ω(a∗b) yields a well-defined

inner product, making Hω an inner-product space.
vi.) Show that the canonical left A-module structure πω(a)ψb = ψab on H is a ∗-representation,

again called the GNS representation of ω.

Exercise 1.4.14 (The kernel of a ∗-representation) Consider a unital ∗-algebra A over C =
R(i).
i.) Let ω : A −→ C be a positive linear functional with GNS representation (Hω, πω). For b ∈ A

we define ωb as in Lemma 1.1.10, ii.). Show that

kerπω =
⋂
b∈A

Jωb =
⋂
b∈A

kerωb. (1.4.11)

Note that even though neitherJωb nor kerωb is a ∗-ideal in general, their intersection turns out
to be a ∗-ideal.
Hint: For the second equation use polarization to get ω(c∗ab) = 0 for all c, b ∈ A and a in the kernel of all ωb.

ii.) Use the unit element of A to show that kerπω ⊆Jω ⊆ kerω.
iii.) Now let (π,H) be an arbitrary ∗-representation of A and denote by ωφ the vector state ωφ(a) =

〈φ, π(a)φ〉 where φ ∈ H. Show that

kerπ =
⋂
φ∈H

kerπωφ =
⋂
φ∈H

Jωφ =
⋂
φ∈H

kerωφ, (1.4.12)

using again a suitable polarization.

Exercise 1.4.15 (The minimal ideal: scalar case) Let A be a unital ∗-algebra over C = R(i).
Following [25], we call a ∗-idealJ ⊆ A closed if it is the kernel of a ∗-representation (H, π) of A. We
will later put this into a much larger context in Section 5.3.4.
i.) Show that an arbitrary intersection of closed ∗-ideals is again closed. In particular, the intersec-

tion of all closed ∗-ideals of A is a closed ∗-ideal, called the minimal ∗-ideal Jmin(A). This can
also be viewed as a ∗-algebra version of the Jacobson radical.

ii.) Show that
Jmin(A) =

⋂
ω

kerπω =
⋂
ω

Jω =
⋂
ω

kerω, (1.4.13)

where the intersections are taken over all positive linear functionals. Note that the Gel’fand
idealsJω are only left ideals, the kernels of positive linear functions kerω have no ideal property
at all.
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iii.) Determine the minimal ∗-ideal of B(H) for a pre-Hilbert space H over C.
iv.) Let B be another unital ∗-algebra and Φ: A −→ B a ∗-homomorphism. Show that one has

Φ(Jmin(A)) ⊆Jmin(B).
v.) Show that A has a faithful ∗-representation on a pre-Hilbert space iffJmin(A) = {0}.
vi.) Let a ∈ A satisfy a∗a = 0. Show that a ∈Jmin(A). Let b ∈ A be a normal element with bk = 0

for some k ∈ N. Show that b ∈Jmin(A).
vii.) Show that passing to the quotient ∗-algebra A

/
Jmin(A) is functorial.

viii.) Let J ⊆Jmin(A) be a ∗-ideal contained in the minimal ideal. Show that the representation
theories -Rep∗ (A) and -Rep∗ (A

/
J) are equivalent.

Hint: Any ∗-representation of the quotient ∗-algebra A
/
J can be pulled back to A. More nontrivial is the

fact that every ∗-representation π of A can be pushed forward to a ∗-representation of the quotient by setting
π([a]) = π(a). These two procedures are functorial and implement an equivalence (in fact even an isomorphism).

ix.) Show thatJmin(A
/
Jmin) = {0}.

The idea is that the minimal ∗-ideal contains all the unpleasant elements of A concerning representa-
tion theory on pre-Hilbert spaces. Passing to the quotient A

/
Jmin(A) allows to get rid of them in a

functorial way without changing the representation theory, see also [25].

Exercise 1.4.16 (The ∗-algebra Z2) Consider R = Z and hence C = Z(i). Let A = Z2.
i.) Show that Z2 with its usual ring structure becomes a unital ∗-algebra over C in a unique way.

How has i · 1 to be defined?
ii.) Show that A has no non-zero positive functional.
iii.) Show that every ∗-representation π of A is trivial, i.e. π(1) = 0.
iv.) Show that A = A++, in particular, every element in A is positive.
Clearly, such a ∗-algebra is quite far away from any reasonable physical observable algebra.

Exercise 1.4.17 (Positive elements and positive functionals of C∞(M)) Consider a smooth
manifold M and the ∗-algebra C∞(M) of complex-valued smooth function on it with the ∗-ideal
C∞0 (M) of compactly supported such functions. Much of the following can also be done in slightly
different settings as well, like e.g. for not too badly behaved topological spaces and continuous
functions etc.
i.) Prove that f ∈ C∞(M) is positive iff f(p) ≥ 0 for all points p ∈M .

Hint: One direction is trivial. For the other, consider first the function f + ε with some ε > 0 and show that it
has a smooth square root. Compute now ω(f + ε) for a positive linear functional ω : C∞(M) −→ C. How does
this argument simplify if you only work with continuous functions instead of smooth ones?

ii.) Show that for the ∗-algebra C∞0 (M) the same conclusion still holds: f ∈ C∞0 (M) is positive iff
f(p) ≥ 0 for all points p ∈M .
Hint: Again, one direction is trivial. For the other, let χ ∈ C∞0 (M) be a cut-off function with χ ≥ 0 and
χ
∣∣
supp(f)

= 1. For a positive linear functional ω : C∞0 (M) −→ C consider ω̃(g) = ω(χgχ) for g ∈ C∞(M). Show
that ω̃ is positive and use i.).

We continue now first with the compactly supported functions and their positive linear functionals.
iii.) Let ω : C∞0 (M) −→ C be a positive linear functional. Then ω is continuous in the C0-topology:

for every compact subset K ⊆M there exists a cK > 0 with

|ω(f)| ≤ cK‖f‖∞ (1.4.14)

for all f ∈ C∞0 (M) with supp(f) ⊆ K.
Hint: Let again χ ∈ C∞0 (M) with χ

∣∣
K

= 1 be a cut-off function. Consider ω̃(g) = ω(χgχ) as before and
evaluate ω̃ on the functions ‖f‖∞±Re(f) and ‖f‖∞± Im(f) using i.). Prove that cK = 2ω(χχ) will do the job.
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iv.) Use the density of C∞0 (M) inside C0(M) with respect to the C0-topology to extend a positive
linear functional ω : C∞0 (M) −→ C to a positive linear functional on C0(M) by continuity.
Prove that this extension (still denoted by ω) is positive.

v.) Use Riesz’ representation theorem, see e.g. [101, Thm. 2.14], to conclude that for a positive
linear functional ω : C∞0 (M) −→ C there exists a σ-algebra containing the topology of M and
a uniquely determined, positive, complete, and regular Borel measure µ on it such that

ω(f) =

∫
M
fµ (1.4.15)

for all f ∈ C∞0 (M). This determines the positive linear functionals of C∞0 (M) completely.
In a last step one wants to extend this to arbitrary smooth functions without restriction on the
supports. The main idea is now that we can have arbitrarily fast growth of smooth functions which
forces a positive functional to have compact support.
vi.) Let ω : C∞(M) −→ C be a positive linear functional. Show that there exists a χ ∈ C∞0 (M)

with
ω(f) = ωχ(f) = ω(χfχ) (1.4.16)

for all f ∈ C∞(M).
Hint: Prove the statement by contradiction. Use an exhausting sequence Kn ⊆ M of compact subsets, i.e.
compact subsets with Kn ⊆ K◦n+1 and M =

⋃
n∈NKn. Let fn ∈ C∞(M) be non-negative functions with

supp fn ⊆M \Kn and ω(fn) = 1. Show that FN = 1 +
∑∞
n=N fn is a well-defined smooth positive function for

all N ∈ N. Conclude that ω(F1) ≥ N and arrive at a contradiction. Why does this prove the claim?

vii.) Show that for a positive linear functional ω : C∞(M) −→ C there exists a σ-algebra containing
the topology of M and a uniquely determined, positive, complete, and regular Borel measure µ
on it with compact support such that

ω(f) =

∫
M
fµ (1.4.17)

for all f ∈ C∞(M).
Hint: Let χ ∈ C∞0 (M) be given as in vi.). Apply v.) to conclude that

ωχ(f) = ω(χfχ) =

∫
M

χχfν

for some positive Borel measure ν and all f ∈ C∞(M). Define µ by µ(A) =
∫
A
χχν for measurable sets A.

viii.) Extend the above statements to matrix-valued functions Mn( C∞(M)) = C∞(M,Mn(C)) and
determine the positive elements and the positive functionals explicitly.

Exercise 1.4.18 (Algebraically positive elements of C∞(M)) While C∞(M)+ consists of the
non-negative smooth functions on M according to Exercise 1.4.17, the algebraically positive elements
C∞(M)++ form typically a strict subset:
i.) Show that the polynomial

p(x, y, z) = z6 + x4y2 + x2y4 − 3x2y2z2 (1.4.18)

is non-negative on R3 but not a sum of squares. This an explicit example to the 17th Hilbert
problem due to Motzkin [89].

ii.) Consider now the case of smooth functions and show that p can not be written as sum of squares
of smooth functions, i.e. p ∈ C∞(R3)+ but p 6= C∞(R3)++.
Hint: Use the Taylor expansion of the smooth functions around 0 to achieve a contradiction based on i.),
see [108].
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Thus in general, non-negative smooth functions on a manifold M are not sums of squares. For more
details on the regularity required to write non-negative functions as (sums of) squares, see [11,12].

Exercise 1.4.19 (Positive linear functionals of CJz, zK) Consider the complex formal power se-
ries A = CJz, zK in two variables.
i.) Show that A becomes a complex commutative ∗-algebra with respect to the usual product of

formal series and the ∗-involution

a∗ =

 ∞∑
k,`=0

ak`z
kz`

∗ =
∞∑

k,`=0

ak`z
`zk. (1.4.19)

ii.) Let δ : A −→ C be the δ-functional at z = 0 = z, i.e. a 7→ a00 for a given as in (1.4.19). Show
that δ is a positive linear functional.

Consider now a positive linear functional ω : A −→ C and let k ≥ 1. Define α = ω(zk) and set
H = zz.
iii.) Use the Cauchy-Schwarz inequality to show αα ≤ ω(Hk). Show by induction (αα)2n ≤

ω(Hk)2n ≤ ω((Hk)2n) for all n ∈ N.
iv.) Assume α 6= 0 and define for a fixed N ∈ N0 ∪ {+∞} the new algebra element

aN =
N∑
n=0

1

(αα)2n
(Hk)2n . (1.4.20)

Write a∞ = aN + bN and show that aN ∈ A++ for N ∈ N0. Show that a∞ ∈ A is indeed a
well-defined formal series. Show that bN can be written as a square of some Hermitian element
cN , by constructing cN recursively order by order in the z and z variables. Conclude that
a∞ ∈ A++.

v.) Conclude that ω(a∞) ≥ N for all N ∈ N0. Hence we arrive at a contradiction showing that in
fact α = 0.

vi.) Show that ω(Hk) and ω(H) = 0 as well as ω(zk) = 0 for all k ≥ 1. Conclude that ω(zkz`) = 0
for all k + ` ≥ 1.

vii.) Now let a ∈ A with δ(a) = 0 be given. Write a = zb + zc with some b, c ∈ A and use the
Cauchy-Schwarz inequality to get ω(a) = 0.

viii.) Show that δ is the only state of A.
ix.) Show thatC[z, z] ⊆ A is a unital ∗-subalgebra which has, quite contrary to A, for every non-zero

Hermitian element a ∈ C[z, z] a positive linear functional ω : A −→ C with ω(a) 6= 0.

Exercise 1.4.20 (A scary Banach ∗-algebra) Consider the complex-valued continuous functions
A = C(S2) on the 2-sphere S2 with the involution f 7→ f † defined by

f †(x) = f(−x) (1.4.21)

for f ∈ C(S2) and x ∈ S2.
i.) Show that f 7→ f † is a ∗-involution on A.
ii.) Show that A becomes a Banach ∗-algebra with respect to the sup-norm ‖ · ‖∞.
iii.) Let f ∈ A and λ ∈ C. Show that f − λ is invertible iff λ is in the range of f : the spectrum of

an algebra element is not referring to the ∗-involution but only to the associative structure.
iv.) Show that there are non-zero Hermitian elements h ∈ A with purely imaginary spectrum.
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v.) Let λ ∈ R \ {0}. Show that there are unitary elements u ∈ A with spectrum containing λ. In
particular, spectral values of unitary need not to have absolute value 1.

vi.) Show that there is a positive element a ∈ A with spectrum in (−∞, 0].
vii.) Show that the δ-functionals δx for x ∈ S2 are not positive.
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Chapter 2

Pre-Hilbert Modules

While pre-Hilbert spaces over C = R(i) are already a valuable class of representation spaces, we have
to enlarge the framework drastically: instead of scalar products taking their values in the scalars C we
are now looking for a replacement of C by an arbitrary ∗-algebra A. This way, the pre-Hilbert spaces
will be replaced by pre-Hilbert modules over A which now play the role of the new representation
spaces on which another ∗-algebra B will be represented.

In this chapter we give a detailed study of such inner-product modules over a ∗-algebra and explain
the necessary positivity requirements which turn an inner-product module into a pre-Hilbert module.
Many examples of such pre-Hilbert modules will be given, in particular from differential geometry. An
important class of pre-Hilbert modules will arise from projective modules, leading ultimately to the
study of various types of K0-theories. The guiding class of examples will be the Hilbert modules over
C∗-algebras as discussed e.g. in [79,87]. As before, we will abandon the continuity and completeness
aspects and focus solely on the algebraic aspects.

2.1 Module Categories

In this section we establish the fundamental notions of the module categories which we want to study:
after a short reminder on the purely algebraic situation we introduce algebra-valued inner products.
Modules with non-degenerate algebra-valued inner products will constitute the first category of inter-
est, the inner-product modules. Requesting an additional positivity requirement takes care of both
structures, the ∗-involution and the notions of positivity. This leads to the category of pre-Hilbert
modules.

2.1.1 Ring-Theoretic Module Categories

As a warming-up we recall the basic definitions from a ring-theoretic approach to module categories.
We fix a ring A and denote by mod(A) the category of left A-modules as objects where the morphisms
are given by left A-linear maps between the modules. We write MA for a left A-module M in order
to emphasize that A acts from the left. Analogously, we write MA for a right A-module. For a
detailed study of modules over rings and algebras one can consult any standard textbook in algebra
as e.g. [78].

Since in the following we are mainly interested in the case where A is an algebra over a fixed
commutative unital ring C of scalars (later it will be even of the form C = R(i)), we require all
modules to carry a compatible C-module structure in addition, even though we do not emphasize this
in our notation.

In general, the way A acts on a module can be quite trivial: recall that even in the unital situation
we do not require algebra homomorphisms to be unital. Thus a ·m = 0 will always define a module

29
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structure for a ∈ A and m ∈ MA . Like for ∗-representations also here we can impose the condition

A · MA = MA (2.1.1)

and call such a left A-module strongly non-degenerate. This gives a full sub-category Mod(A) of
strongly non-degenerate left A-modules. Again, if A is unital then MA is strongly non-degenerate iff
it is unital, i.e. 1 ·m = m for all m ∈M.

As a last step, we can consider two algebras A and B where one plays the role of coefficients and
the other one is considered as being represented : we consider a (B,A)-bimodule MB A where B acts
from the left and A acts from the right. Recall that bimodule means that the two actions commute.
So far the situation is completely symmetric in A and B. But anticipating later applications we
denote the corresponding bimodule category by modA(B) and speak of the representation theory of
B on right A-modules. We also have the corresponding full sub-category of strongly non-degenerate
representations of B on right A-modules which we denote by ModA(B). Note that we do not require
any non-degeneracy of MB A ∈ ModA(B) with respect to the coefficient algebra A.

2.1.2 Algebra-Valued Inner Products

The reason to treat the two algebras in ModA(B) in an asymmetric way becomes clearer when we
consider inner products. From now on, C = R(i) will be again the ring extension of an ordered ring R
by a square root i of −1 and all algebras over C will be ∗-algebras. In this section we will focus on the
coefficient algebra and describe how we can get an algebra-valued inner product for it. Note that A
may well be non-commutative. The following definitions are motivated by the well-known situation
of Hilbert modules over C∗-algebras, see e.g. the textbooks [79,81,95]. We follow in our presentation
mainly the approach of [26,29].

The central definition of this subsection is the algebra-valued inner product:

Definition 2.1.1 (Algebra-valued inner product) Let EA be a right A-module. An A-valued
inner product on EA is a map

〈 · , · 〉
A

: EA × EA −→ A (2.1.2)

with the following properties:
i.) 〈 · , · 〉

A
is C-linear in the second argument.

ii.) 〈φ, ψ · a〉
A

= 〈φ, ψ〉
A
a for all φ, ψ ∈ EA and a ∈ A.

iii.) 〈φ, ψ〉
A

= (〈ψ, φ〉
A

)∗ for all φ, ψ ∈ EA.
If we have in addition
iv.) 〈φ, ψ〉

A
= 0 for all ψ implies φ = 0,

then 〈 · , · 〉
A
is called non-degenerate and (EA, 〈·, ·〉A) is called an inner-product module over A.

From the first and third requirement we see that 〈 · , · 〉
A
is C-antilinear in the first argument. Moreover,

for all φ, ψ ∈ EA and a ∈ A we have

〈φ · a, ψ〉
A

= a∗〈φ, ψ〉
A
. (2.1.3)

Thanks to the symmetry property iii.) it is enough to require non-degeneracy in one of the two
arguments: non-degeneracy in the second argument is then a consequence of non-degenerate in the
first. As already for modules, the position of the subscript A indicates the algebra where the inner
product takes its values and to which direction we have A-linearity.

The definition matches best to right modules. For left modules we can state an analogous definition
of inner products with the only change that they are required to be C- and A-linear to the left in the
first argument. Consequently, we write 〈 · , · 〉

A
for such an inner product. The following construction
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shows that we can obtain a left A-module from a right A-module including the inner product by
complex conjugation.

Let EA be a right A-module with inner product 〈 · , · 〉
A
. Then we consider the complex conjugate

left A-module EA of EA which is defined as follows: as additive group we set EA = EA, where the
identity map is denoted by EA 3 φ 7→ φ ∈ EA . The multiplication with scalars α ∈ C is defined by

αφ = αφ (2.1.4)

for φ ∈ EA. This makes EA a C-module. Now for a ∈ A we define the left multiplication

a · φ = φ · a∗ (2.1.5)

for φ ∈ EA, which is easily shown to be a C-bilinear left A-module structure. Thus EA becomes a left
A-module. Finally, we set

〈φ, ψ〉
A

= 〈φ, ψ〉
A

(2.1.6)

for φ, ψ ∈ EA. Then a straightforward computation shows that this is now C-linear and left A-linear
in the first argument and hence an inner product on the left A-module EA . Conversely, one can
pass from a left A-module with inner product to a right A-module with inner product by complex
conjugation and the two operations are inverse to each other, see also Exercise 2.4.3. We summarize
this construction in the following proposition:

Proposition 2.1.2 (Complex conjugate module) Let EA be a right A-module with inner product
〈 · , · 〉

A
.

i.) The complex conjugate module EA is a left A-module with inner product 〈 · , · 〉
A

.
ii.) The inner product 〈 · , · 〉

A
is non-degenerate iff 〈 · , · 〉

A
is non-degenerate.

iii.) The complex conjugate of ( EA , 〈 · , · 〉
A

) is again (EA, 〈 · , · 〉A).

Thus we can pass freely from the left to the right and back. Note that the ∗-involution of A is crucial:
for a general ring there is no canonical way to construct a left module out of a given right module as
above.

To allow degenerate inner products is convenient as an intermediate step in many constructions.
However, at the end we want to get rid of the degeneracy spaces. This can always be done, see
Exercise 2.4.4:

Proposition 2.1.3 Let EA be a right A-module with inner product 〈 · , · 〉
A
.

i.) The left and right degeneracy spaces of 〈 · , · 〉
A
coincide, i.e.{

φ ∈ EA

∣∣ 〈ψ, φ〉
A

= 0 for all ψ ∈ EA

}
=
{
φ ∈ EA

∣∣ 〈φ, ψ〉
A

= 0 for all ψ ∈ EA

}
. (2.1.7)

ii.) The degeneracy space, denoted by E⊥A , is a right A-submodule of EA.
iii.) The inner product 〈 · , · 〉

A
passes to the quotient right A-module EA

/
E⊥A which becomes an

inner-product right A-module.

Thus we can always pass from an arbitrary right A-module with inner product to an inner-product
module in a canonical way.

In a next step we consider the maps compatible with the structures of an inner-product module.
The following definition is the direct analogue of Definition 1.1.24 of adjointable maps for pre-Hilbert
spaces.
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Definition 2.1.4 (Adjointable maps) Let EA and E′A be right A-modules with A-valued inner prod-
ucts 〈 · , · 〉

A
and 〈 · , · 〉′

A
, respectively. A right A-linear map T : EA −→ E′A is called adjointable if

there exists a right A-linear map T ∗ : E′A −→ EA with

〈φ, Tψ〉′
A

= 〈T ∗φ, ψ〉
A

(2.1.8)

for all φ ∈ E′A and ψ ∈ EA. The set of all adjointable maps is denoted by BA(EA, E
′
A).

If the coefficient algebra A is clear from the context, we shall sometimes simply write B(E, E′). Using
this definition we can speak of isometries and unitary isomorphisms of inner products as usual. Note
that an isometric map needs not to be adjointable. Nevertheless, an isometric map is necessarily
injective once the inner product of the domain is non-degenerate. If in addition it is surjective, then
it is necessarily adjointable with adjoint given by the inverse, i.e. it is unitary.

Lemma 2.1.5 (Adjointable maps) Let EA, E′A, and E′′A be right A-modules with inner products.
i.) Compositions and C-linear combinations of adjointable maps are again adjointable.
ii.) If the inner products are non-degenerate then adjointable maps are necessarily right A-linear

and the adjoint T ∗ of T is uniquely determined. The map T 7→ T ∗ is C-antilinear.
iii.) For inner-product modules and T ∈ BA(EA, E

′
A) and S ∈ BA(E′A, E

′′
A) the composition ST ∈

BA(EA, E
′′
A) as well as the adjoint T ∗ ∈ BA(E′A, EA) are again adjointable, where

(ST )∗ = T ∗S∗ and (T ∗)∗ = T. (2.1.9)

iv.) For an inner-product module EA the adjointable maps BA(EA) form a ∗-algebra over C with unit
element idE. Moreover, EA is a (BA(EA),A)-bimodule.

Proof: The proof is completely analogous to the case of a pre-Hilbert space over C and can safely
be done as an exercise, see also Exercise 1.4.8. �

Note that for a Hilbert module over a C∗-algebra one can speak of continuous endomorphisms.
However, this notion is not quite as useful as it seems at a first glance. The reason is that there
is no analogue of the Hellinger-Toeplitz Theorem available: continuous endomorphisms need not to
have an adjoint at all. Nevertheless, it can be shown that the adjointable operators on a Hilbert
module are necessarily continuous, by the same closed graph argument as in the usual Hellinger-
Toeplitz Theorem, see Exercise 2.4.2. A similar difficulty arises also for the compact operators on
a Hilbert module: in general the closure of the finite-rank operators needs not to be equal to the
compact operators, this is a feature present for Hilbert spaces but fails for general Banach spaces.
Thus one defines the “compact” operators for Hilbert modules as the norm closure of the finite-rank
operators. Note, however, that as already in the Hilbert module case there is no analogue of Riesz’
Representation Theorem for the dual module. Thus we make explicit use of the inner product instead
of requiring (continuous) right A-linear functionals in the definition of “finite-rank” operators:

Definition 2.1.6 (Finite-rank operators) For right A-modules EA and E′A with A-valued inner
products one defines the map Θφ,ψ : EA −→ E′A for φ ∈ E′A and EA by

Θφ,ψ(χ) = φ · 〈ψ, χ〉
A

(2.1.10)

for χ ∈ EA. The C-linear span of these maps is denoted by FA(EA, E
′
A) and its elements are called the

finite-rank operators.
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Lemma 2.1.7 Let EA, E′A, and E′′A be right A-modules with inner products. Then FA(EA, E
′
A) ⊆

BA(EA, E
′
A) and an adjoint (the unique adjoint for non-degenerate inner products) for Θφ,ψ is Θψ,φ.

Moreover,

HomA(E′A, E
′′
A) ◦ FA(EA, E

′
A) ⊆ FA(EA, E

′′
A) and FA(E′A, E

′′
A) ◦BA(EA, E

′
A) ⊆ FA(EA, E

′′
A). (2.1.11)

In particular, FA(EA) ⊆ BA(EA) is a ∗-ideal for an inner-product module EA.

Proof: Again, this is an elementary verification analogously to the case A = C. For (2.1.11) one
notes that for A ∈ HomA(E′A, E

′′
A) and B ∈ BA(EA, E

′
A) one has

A ◦Θφ,ψ = ΘAφ,ψ and Θφ,ψ ◦B = Θφ,B∗ψ. �

As already for pre-Hilbert spaces, an important construction with inner-product modules is the
direct orthogonal sum:

Lemma 2.1.8 Let {E(i)}i∈I be right A-modules with A-valued inner products 〈 · , · 〉(i)A . The direct
sum

E =
⊕
i∈I

E(i) (2.1.12)

becomes a right A-module with A-valued inner product via

(φi)i∈I · a = (φi · a)i∈I (2.1.13)

and 〈
(φi)i∈I , (ψj)j∈I

〉
A

=
∑
i∈I
〈φi, ψi〉(i)A , (2.1.14)

such that 〈E(i), E(j)〉 = 0 for i 6= j. The inner product 〈 · , · 〉
A
is non-degenerate if and only if 〈 · , · 〉(i)A

is non-degenerate for all i ∈ I.

Proof: Clearly, (2.1.13) gives a right A-module structure and (2.1.14) is well-defined as in the direct
sum only finitely many entries in (φi)i∈I are non-zero. The remaining statements follow easily. �

2.1.3 Complete Positivity and Pre-Hilbert Modules

Up to now, the notion of an algebra-valued inner product and an inner-product module only makes
use of the ∗-involution but not of the concepts of positivity. We have to find an appropriate notion
of positivity for an A-valued inner product which generalizes the positive-definite inner product of a
pre-Hilbert space as good as possible. Guided by the notion of completely positive maps we state the
following definition:

Definition 2.1.9 (Completely positive inner product) Let (EA, 〈 · , · 〉A) be a right A-module
with A-valued inner product.

i.) 〈 · , · 〉
A
is called positive if 〈φ, φ〉

A
∈ A+ for all φ ∈ EA.

ii.) 〈 · , · 〉
A
is called n-positive if (〈φi, φj〉A) ∈ Mn(A)+ for all φ1, . . . , φn ∈ EA.

iii.) 〈 · , · 〉
A
is called completely positive if 〈 · , · 〉

A
is n-positive for all n ∈ N.

iv.) 〈 · , · 〉
A
is called positive definite if it is positive and 〈φ, φ〉

A
6= 0 for φ 6= 0.

In order to learn something about the relations between these different notions we first recall the
following result on positive matrices, see e.g. [116, Example 7.1.27] and Exercise 1.4.4.
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Lemma 2.1.10 Let n ∈ N.
i.) The positive linear functionals ω : Mn(C) −→ C are of the form

ω(A) = tr(%A) (2.1.15)

with a uniquely determined matrix % ∈ Mn(C) satisfying

〈z, %z〉 ≥ 0 (2.1.16)

for all z ∈ Cn.
ii.) A matrix A ∈ Mn(C) is positive if and only if it satisfies (2.1.16).

Corollary 2.1.11 Let H be a pre-Hilbert space over C. Then the scalar product 〈 · , · 〉 is completely
positive in the sense of Definition 2.1.9.

Proof: Let φ1, . . . , φn ∈ H be given and let z ∈ Cn. Then we have

〈z, (〈φi, φj〉) · z〉 =
∑

i,j
zi〈φi, φj〉zj =

〈∑
i
ziφi,

∑
j
zjφj

〉
≥ 0,

thanks to the positivity of the scalar product 〈 · , · 〉 of H. With the criterion of Lemma 2.1.10 we
conclude (〈φi, φj〉) ∈ Mn(C)+. �

Lemma 2.1.12 Let n ∈ N.
i.) For all a1, . . . , an ∈ A one has a∗aT = (a∗i aj) ∈ Mn(A)++.
ii.) For a positive linear functional Ω: Mn(A) −→ C also the functional Ω̃ : Mn+1(A) −→ C, defined

by

Ω̃

(
a bT

c D

)
= Ω(D), (2.1.17)

is positive, where a ∈ A, b, c ∈ An and D ∈ Mn(A).
iii.) An (n+ 1)-positive A-valued inner product is n-positive, too.

Proof: For the first part we consider the matrix

B =

(
a1 . . . an

0

)
∈ Mn(A),

for which we have B∗B = a∗aT. For the second part we compute

Ω̃

((
a bT

c D

)∗(
a bT

c D

))
= Ω̃

(
a∗a+ (c∗)Tc a∗bT + (c∗)TD

b∗a+D∗c b∗bT +D∗D

)
= Ω(b∗bT +D∗D) ≥ 0,

since by the first part the matrix b∗bT is positive. For the last part we consider φ0 = 0 and φ1, . . . , φn ∈
EA. Then by the second part

0 ≤ Ω̃
(

(〈φi, φj〉A)i,j=0,...,n

)
= Ω

(
(〈φi, φj〉A)i,j=1,...,n

)
shows the n-positivity. �
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Remark 2.1.13 For certain classes of ∗-algebras we have the reverse implication: a positive inner
product is automatically completely positive. Here C is an example by Corollary 2.1.11. Also C∗-
algebras have this very nice property, see e.g. [79, Lem. 4.2] and Exercise 3.3.5. However, the proof
requires a fair amount of rather specific properties of C∗-algebras and hence we can not transfer it to
our completely algebraic situation. In general, it is not clear whether complete positivity is already
implied by positivity. In practice, we will have to check this by hand as we will see in the following
examples.

In the following we will need the complete positivity for a reasonable and useful definition of a
pre-Hilbert module. This will become clear when we consider tensor products in Section 3.1.2.

Definition 2.1.14 (Pre-Hilbert module) Let A be a ∗-algebra over C and (EA, 〈 · , · 〉A) an inner-
product module over A. Then (EA, 〈 · , · 〉A) is called pre-Hilbert module if 〈 · , · 〉

A
is completely posi-

tive.

Note that we do not require positive definiteness, non-degeneracy will be sufficient. Indeed, there
are ∗-algebras where this makes a subtle difference:

Example 2.1.15 (Graßmann algebra) Let A = Λ•(Cn) be the Graßmann algebra over C with
n generators. Denote by e1, . . . , en ∈ Cn the canonical basis. Then by e∗i = ei one determines a
∗-involution for A making the Graßmann algebra a ∗-algebra. We consider now EA = A with the
canonical inner product 〈α, β〉 = α∗ ∧ β. As we shall see in the next section, this is a completely
positive inner product which is non-degenerate since 〈1, α〉 = α. On the other hand 〈ei, ei〉 = 0, and
thus it is not positive definite.

Positivity behaves well with respect to direct orthogonal sums and restrictions to submodules, see
Exercise 2.4.6:

Lemma 2.1.16 Let A be a ∗-algebra over C = R(i).
i.) A direct orthogonal sum of right A-modules with positive (n-positive, completely positive) A-

valued inner products has again a positive (n-positive, completely positive) A-valued inner prod-
uct.

ii.) A restriction of a positive (n-positive, completely positive, positive definite) A-valued inner prod-
uct to a right A-submodule is again positive (n-positive, completely positive, positive definite).

On the other hand, there are examples of (rather weird) ∗-algebras A where the direct orthogonal
sum of positive definite A-valued inner products is not necessarily positive definite anymore, see [29,
Remark 3.3] and Exercise 2.4.7.

If a non-degenerate positive inner product is restricted to a submodule, then it might become
degenerate. Here one can also find easy pathological examples, see Exercise 2.4.8. In order to avoid
these phenomena we sometimes restrict ourselves to more well-behaved ∗-algebras:

Definition 2.1.17 (Admissible ∗-algebra) A ∗-algebra A is called admissible if for any right A-
module EA with positive A-valued inner product 〈 · , · 〉

A
one has

E⊥A =
{
φ ∈ EA

∣∣ 〈φ, φ〉
A

= 0
}
. (2.1.18)

Clearly, the inclusion ⊆ is fulfilled for any ∗-algebra. For an admissible ∗-algebra A the inner product
on a pre-Hilbert module is automatically positive definite. Thus also the restriction to a submodule
is positive definite and hence non-degenerate. This implies that a submodule of a pre-Hilbert module
over A is again a pre-Hilbert module: it is this statement we want to be true.

From Example 2.1.15 we see that the Graßmann algebra is not admissible. In general, the above
definition makes it of course difficult to decide whether a given ∗-algebra is admissible or not. However,
the following proposition gives a sufficient criterion, see also [26, Lem. 5.21]:
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Proposition 2.1.18 Let A be a unital ∗-algebra with sufficiently many positive linear functionals.
Then A is admissible.

Proof: Let EA be a right A-module with positive inner product 〈 · , · 〉
A
. Moreover, let φ0 ∈ EA

satisfy 〈φ0, φ0〉A = 0. We have to show φ0 ∈ E⊥A . To this end we consider a positive linear functional
ω : A −→ C and define

〈φ, ψ〉ω = ω(〈φ, ψ〉
A

)

for φ, ψ ∈ EA. This gives a positive semi-definite inner product on EA: indeed, the sesquilinearity is
clear and we have

〈φ, ψ〉ω = ω(〈φ, ψ〉
A

) = ω((〈ψ, φ〉
A

)∗) = ω(〈ψ, φ〉
A

) = 〈ψ, φ〉ω,

since for a unital ∗-algebra and a positive linear functional we have ω(a∗) = ω(a) for all a ∈ A. Finally,
〈φ, φ〉ω = ω(〈φ, φ〉

A
) ≥ 0 follows by the positivity of 〈φ, φ〉

A
∈ A+. Thus we have the Cauchy-Schwarz

inequality for 〈 · , · 〉ω, i.e.
〈φ, ψ〉ω〈φ, ψ〉ω ≤ 〈φ, φ〉ω〈ψ,ψ〉ω

for all φ, ψ ∈ EA. Applied to φ0 we see that 0 = 〈ψ, φ0〉ω = ω(〈ψ, φ0〉A) for all ψ since 〈φ0, φ0〉ω = 0.
Since

2〈ψ, φ0〉A = 〈ψ, φ0〉A + 〈φ0, ψ〉A︸ ︷︷ ︸
=a

+ 〈ψ, φ0〉A − 〈φ0, ψ〉A︸ ︷︷ ︸
=b

,

and a∗ = a and b∗ = −b we see that 0 = 2〈ψ, φ0〉ω = ω(a) + ω(b). By ω(a) = ω(a) and ω(b) = −ω(b)
we conclude that ω(a) = 0 = ω(b). Thus by assumption, a = 0 = b since ω was arbitrary. This shows
2〈ψ, φ0〉A = 0 and by Corollary 1.2.10 we can conclude φ0 ∈ E⊥A . �

We conclude this section with an alternative formulation for the complete positivity requirement
following [114, Sect. 4]. Thus let EA be again a right A-module with A-valued inner product 〈 · , · 〉

A

and let EA be the corresponding complex conjugated left A-module. Out of EA and EA we can build
the (A,A)-bimodule

FA A = EA ⊗ EA, (2.1.19)

where the tensor product is taken over C. Clearly, FA A is a (A,A)-bimodule. For FA A we can define
a complex conjugation I as follows. For φ, ψ ∈ EA we set

I(φ⊗ ψ) = ψ ⊗ φ, (2.1.20)

and extend this to a C-antilinear map I : FA A −→ FA A. One easily confirms that (2.1.20) is well-
defined. Now we can define the positive elements in FA A by setting

F+
A A =

{∑
i
βiφi ⊗ φi

∣∣∣ βi > 0 and φi ∈ EA

}
. (2.1.21)

By the very definition this is a convex cone in FA A. We have now the following result:

Proposition 2.1.19 Let EA be a right A-module.
i.) The map I : FA A −→ FA A is an involutive antilinear (A,A)-bimodule antiautomorphism, i.e.

I(a · Φ · b) = b∗ · I(Φ) · a∗ (2.1.22)

for a, b ∈ A and Φ ∈ FA A. One has I( F+
A A ) ⊆ F+

A A .
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ii.) An A-valued inner product 〈 · , · 〉
A
on EA corresponds to a unique (A,A)-bimodule morphism

P : FA A −→ AA A (2.1.23)

with the property P (I(Φ)) = P (Φ)∗ via

〈φ, ψ〉
A

= P (φ⊗ ψ). (2.1.24)

iii.) An A-valued inner product is positive if and only if the corresponding map P is positive in the
sense that

P
(

F+
A A

)
⊆ A+. (2.1.25)

Proof: For the first part we compute for factorizing tensors φ⊗ ψ ∈ FA A

I(a · (φ⊗ ψ) · b) = I(φ · a∗ ⊗ ψ · b)
= ψ · b⊗ φ · a∗

= b∗ · (ψ ⊗ φ) · a∗

= b∗ · I(φ⊗ ψ) · a∗,

from which (2.1.22) follows in general. Clearly, I is involutive and C-antilinear, hence the first part
is shown. Now let 〈 · , · 〉

A
be an A-valued inner product. Then

P (φ⊗ ψ) = 〈φ, ψ〉
A

has the correct sesquilinearity properties to extend to a C-linear map P : FA A −→ A. From the
properties of an A-valued inner product it is immediate that P is an (A,A)-bimodule morphism and
satisfies P (I(Φ)) = P (Φ)∗. Conversely, if a map P with these properties is given, then one defines
〈 · , · 〉

A
by (2.1.24) and checks that this gives an A-valued inner product. This completes the second

part. The last part is obvious. �

The characterization of completely positive inner products is obtained by the following consider-
ations: The direct sum EnA is a right Mn(A)-module in the canonical way, i.e. via

(φi) · (aij) =

(
n∑
i=1

φi · aij

)
. (2.1.26)

Thus F(n) = E
n

A ⊗EnA becomes a (Mn(A),Mn(A))-bimodule and we can repeat the above construction
for Mn(A) instead of A. Elements in F(n) are now C-linear combinations of factorizing elements of
the form (φi) ⊗ (ψj) which we can represent as matrix (φi ⊗ ψj)i,j=1,...,n. The positive elements in
F(n) are by (2.1.21) explicitly given by

F(n),+ =

{∑
α
βα

(
φ

(α)
i ⊗ φ

(α)
j

) ∣∣∣∣ βα > 0 and (φ
(α)
1 , . . . , φ(α)

n ) ∈ EnA

}
. (2.1.27)

The map I from (2.1.20) in this situation is explicitly given by

I
(
(φi ⊗ ψj)

)
= (ψj ⊗ φi). (2.1.28)

Finally, if P is an (A,A)-bimodule morphism P : FA A −→ AA A then applying P componentwise gives

P (n)
(
(φi ⊗ ψj)

)
=
(
P (φi ⊗ ψj)

)
, (2.1.29)

which is a (Mn(A),Mn(A))-bimodule morphism from F(n) to Mn(A). This follows either from our
general considerations or from an explicit observation using (2.1.29). Moreover, P (n) is compatible
with the involution I if and only if P is compatible. The following proposition is now obvious:
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Proposition 2.1.20 Let EA be a right A-module with A-valued inner product 〈 · , · 〉
A
and let n ∈ N.

i.) The inner product 〈 · , · 〉
A
is n-positive if and only if the corresponding map P is n-positive, i.e.

P (n) is positive.
ii.) The inner product 〈 · , · 〉

A
is completely positive if and only if the corresponding map P is

completely positive, i.e. P (n) is positive for all n.

Proof: We only have to show the first part. If P is n-positive we have by definition P (n)
(
F(n),+

)
⊆

Mn(A)+ and
P (n)

(
(φi ⊗ φj)

)
= (〈φi, φj〉A),

from which the first part follows immediately. �

The practical use of the Proposition 2.1.19 and Proposition 2.1.20 is rather limited. However, they
show the relation to the theory of matrix-ordered spaces [104, Chap. 11], see also [114] for a more
detailed discussion of this relation.

2.1.4 The Representation Theories -Mod∗ and -Rep∗

Using the notion of a pre-Hilbert module we can enlarge our framework of ∗-representations of a ∗-
algebra: in the following, B will be a ∗-algebra over C as before and A will be an additional ∗-algebra,
typically even an admissible one in the sense of Definition 2.1.17. This auxiliary ∗-algebra will now
play the role of the scalars:

Definition 2.1.21 (∗-Representation) Let B and A be ∗-algebras over C = R(i).
i.) A ∗-representation of B on an inner-product right A-module EA is a ∗-homomorphism

π : B −→ BA(EA). (2.1.30)

ii.) An intertwiner T : (EA, π) −→ (E′A, π
′) between two ∗-representations of B on inner-product

right A-modules is an adjointable map T ∈ BA(EA, E
′
A) such that for all b ∈ B

Tπ(b) = π′(b)T. (2.1.31)

iii.) The category of all ∗-representations of B on inner-product modules over A will be denoted by
-mod∗

A(B).

Remark 2.1.22 (Intertwiners) First we note that the composition of intertwiners is again an inter-
twiner and hence we indeed obtain a category. Since adjointable maps are automatically right A-linear
in the case of non-degenerate inner products, a ∗-representation (EA, π) of B on EA is equivalent to
a (B,A)-bimodule structure on EA with the additional feature that

〈π(b)φ, ψ〉
A

= 〈φ, π(b∗)ψ〉
A

(2.1.32)

for all b ∈ B and φ, ψ ∈ EA. In the following, we will frequently suppress the symbol π for the
representation and simply write b · φ instead. For later use we note that C-linear combinations of in-
tertwiners are again intertwiners, too. This endows the space of morphisms from one ∗-representation
to another one with the structure of a C-module structure. Clearly, the composition of intertwiners
is bilinear with respect to this C-module structure.

Intertwiners are just adjointable (B,A)-bimodule morphisms. This allows to forget about the
inner product and the result is then just a (B,A)-bimodule. It yields a forgetful functor

-mod∗
A(B) −→ modA(B) (2.1.33)
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into the category of representations of B on right A-modules.
For any inner-product module EA we have the canonical left module structure of BA(EA) on EA.

It is, by the very definition of the ∗-involution of BA(EA), a ∗-representation of BA(EA) on EA. This
way, BA(EA) is the largest ∗-algebra which can be represented faithfully on EA. The ∗-algebra FA(EA)
is also represented faithfully on EA when we view it as a ∗-subalgebra of BA(EA).

In a next step we proceed as we did for the ring-theoretic module categories: we consider strongly
non-degenerate ∗-representations on inner-product modules:

Definition 2.1.23 (Inner-product bimodule) Let A and B be ∗-algebras over C = R(i).
i.) A ∗-representation (EA, π) of B on an inner-product right A-module EA is called strongly non-

degenerate if
π(B)EA = EA. (2.1.34)

ii.) A strongly non-degenerate ∗-representation of B on an inner-product right A-module is also
called an inner-product (B,A)-bimodule.

iii.) The full sub-category of -mod∗
A(B) of inner-product (B,A)-bimodules is denoted by -Mod∗

A(B).

Clearly, the forgetful functor from (2.1.33) restricts to a forgetful functor

-Mod∗
A(B) −→ ModA(B). (2.1.35)

In a last step we require the inner product to be completely positive. This will give us the
representation theories on pre-Hilbert modules, again with or without strong non-degeneracy:

Definition 2.1.24 (Pre-Hilbert bimodule) Let A and B be ∗-algebras over C = R(i).
i.) The full sub-category of -mod∗

A(B) of ∗-representations of B on pre-Hilbert right A-modules
is denoted by -rep∗

A(B).
ii.) An inner-product (B,A)-bimodule (EA, π) with completely positive inner product is called a

pre-Hilbert (B,A)-bimodule.
iii.) The full sub-category of -Mod∗

A(B) of pre-Hilbert (B,A)-bimodules is denoted by -Rep∗
A(B).

Again, we can forget that the inner product is completely positive. As the notion of an intertwiner
only needs the notion of an adjoint but not of positivity, we get forgetful functors

-rep∗
A(B) −→ -mod∗

A(B) and -Rep∗
A(B) −→ -Mod∗

A(B), (2.1.36)

which is now even fully faithful, contrary to the forgetful functors (2.1.33) and (2.1.35), since the
additional adjointability of intertwiners is not affected by the complete positivity of the inner products.

Remark 2.1.25 Let B be a ∗-algebra over C = R(i). Then we get back our previous ∗-representation
theories by taking the coefficient algebra to be C, i.e. we have

-rep∗
C(B) = -rep∗ (B) and -Rep∗

C(B) = -Rep∗ (B). (2.1.37)

Thus -rep∗
A(B) provides indeed a generalization of -rep∗ (B) where the auxiliary ∗-algebra A plays

now the role of the scalars C. The important point is that A might very well be noncommutative.

Note the asymmetry in the definition of a inner-product bimodule in Definition 2.1.23, ii.), as well
as in Definition 2.1.24, ii.): we do not require a B-valued inner product on an inner-product (B,A)-
bimodule. Moreover, we do not require E ·A = E. This additional requirement will become important
only in Section 4.3. Finally, note that as in the case of pre-Hilbert spaces the restriction to strongly
non-degenerate ∗-representations is not severe: for unital ∗-algebras we can always decompose the
representation space into a strongly non-degenerate one, where π(1) = id, and the zero-representation.
Thus we are mainly interested in -Mod∗

A(B) and -Rep∗
A(B), respectively.
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Remark 2.1.26 Of course, an analogous framework for ∗-representations of B from the right can
be established on inner-product left A-modules. As usual, by complex conjugation we can easily pass
from one to the other. Hence it will be sufficient to study -mod∗

A(B) and -rep∗
A(B).

For the following constructions it will be useful to allow for degenerate inner products as inter-
mediate steps as already before. Thus let EB A be a (B,A)-bimodule with A-valued inner product
〈 · , · 〉

A
. Then we call 〈 · , · 〉

A
compatible with the left B-module structure if

〈b · φ, ψ〉
A

= 〈φ, b∗ · ψ〉
A

(2.1.38)

for all b ∈ B and φ, ψ ∈ EB A. In this case the degeneracy space of 〈 · , · 〉
A
is preserved by the left

B-multiplications:

Proposition 2.1.27 Let A and B be ∗-algebras over C = R(i) and let EB A be a (B,A)-bimodule
with a compatible A-valued inner product 〈 · , · 〉

A
.

i.) The left B-multiplications preserve the degeneracy space, i.e. we have

B · E⊥A ⊆ E⊥A . (2.1.39)

ii.) The quotient EA

/
E⊥A becomes an inner-product (B,A)-bimodule.

iii.) If the inner product 〈 · , · 〉
A

was completely positive then the quotient is even a pre-Hilbert
(B,A)-bimodule.

Proof: Let b ∈ B, φ ∈ E⊥A , and ψ ∈ EA be given. Then 〈ψ, b · φ〉
A

= 〈b∗ · ψ, φ〉
A

= 0 shows that
b ·φ ∈ E⊥A , too. This proves the first part. But then it is clear that the quotient is a (B,A)-bimodule.
The induced left B-module structure is still compatible with the induced inner product as this can
be checked on representatives. Finally, the induced inner product stays completely positive since this
can again be checked on representatives. �

This proposition will prove very useful in the construction of ∗-representations of ∗-algebras: the
non-degeneracy of the inner products can always be achieved by a simple quotient procedure.

2.2 Examples of Pre-Hilbert Modules

In this section we collect some fundamental examples of inner-product modules and pre-Hilbert mod-
ules, starting with the canonical inner product on the free module An. Beyond the case of unital
∗-algebras, one typically has to require some additional non-triviality conditions on the multiplication
law in A as otherwise pathological behaviour occurs easily. It turns out that non-degenerate and
idempotent ∗-algebras provide a good class, also for later applications in Morita theory. Passing from
a non-degenerate to a strongly non-degenerate inner product will provide additional features simplify-
ing the parametrization of all possible inner products drastically. However, for non-unital ∗-algebras
such inner products will be typically rather rare.

2.2.1 First Examples and Constructions

We start with the most fundamental and simple example of a completely positive inner product: we
consider A itself as a right A-module via right multiplications and set for a, b ∈ A

〈a, b〉 = a∗b. (2.2.1)

We call this the canonical inner product on the ∗-algebra A.

c© Stefan Waldmann 2019-01-25 15:18:20 +0100 Hash: 13717b6



2.2. Examples of Pre-Hilbert Modules 41

Lemma 2.2.1 The canonical A-valued inner product (2.2.1) is completely positive.

Proof: First it is clear that 〈 · , · 〉 satisfies the remaining requirements of an A-inner product. Thus
consider a1, . . . , an ∈ A. Then the matrix (a∗i aj) is positive by Lemma 2.1.12, i.). �

This simple example gives immediately further examples of completely positive inner products.
The following is of equal major importance:

Example 2.2.2 (Canonical inner product) Let n ∈ N. Then the free right A-module An (with
multiplication defined componentwise from the right) has an A-valued inner product

〈x, y〉 =
n∑
i=1

x∗i yi, (2.2.2)

still called the canonical inner product. It is completely positive by Lemma 2.1.16 since it is obtained
as the finite direct orthogonal sum of (2.2.1). Sometimes we shall also make use of an infinite direct
orthogonal sum A(Λ) with arbitrary index set Λ. Of course, also A(Λ) inherits a completely positive
A-valued inner product. Recall that a module of this form is called free and in case where #Λ <∞
it is called finitely generated in addition. In the free module A(Λ) over a unital algebra we have a
canonical basis {eλ}λ∈Λ given by eλ = (eλλ′)λ′∈Λ with eλλ′ = δλλ′1. This basis is orthonormal with
respect to the canonical inner product in the sense that

〈eλ, eλ′〉 = δλλ′1 (2.2.3)

for all λ, λ′ ∈ Λ.

The question whether (2.2.1) and thus (2.2.2) are non-degenerate depends strongly on the ∗-algebra
A. Here the following notions turn out to be useful:

Definition 2.2.3 (Non-degenerate and idempotent algebra) A ∗-algebra A is called
i.) non-degenerate if ab = 0 for all a ∈ A implies b = 0,
ii.) idempotent if the elements of the form ab with a, b ∈ A span A.

Remark 2.2.4 Let A be a ∗-algebra over C = R(i).
i.) A unital ∗-algebra is non-degenerate and idempotent.
ii.) The non-degeneracy of A from the left or from the right coincide thanks to the presence of the

∗-involution. Thus we only need to state non-degeneracy from one side.
iii.) The canonical inner product (2.2.1) is non-degenerate if and only if A is non-degenerate. In

this case A and also An becomes a pre-Hilbert module over A via the canonical inner products.
iv.) For an admissible non-degenerate ∗-algebra we have a∗a = 0 only for a = 0.

For a non-unital ∗-algebra there is a reasonable replacement of a unit element, given by local
(Hermitian) unit elements:

Definition 2.2.5 (Local Hermitian unit elements) Let A be a ∗-algebra over C = R(i) and let
{ei}i∈I be a collection of Hermitian elements in A. They are called local Hermitian units if for all
n ∈ N and a1, . . . , an ∈ A one finds an index i ∈ I with

eiak = ak = akei (2.2.4)

for all k = 1, . . . , n.
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Proposition 2.2.6 Let A be a ∗-algebra over C = R(i) with local Hermitian units. Then A is non-
degenerate and idempotent.

Example 2.2.7 Consider a non-compact smooth manifold M . Then C∞0 (M) is non-unital but has
local Hermitian units. Indeed, choose an exhausting sequence

K0 ⊆ K◦1 ⊆ · · · ⊆ Kn−1 ⊆ K◦n ⊆ · · ·M (2.2.5)

of compact subsets Kn of M , i.e. we have
⋃
n∈N0

Kn = M . By the C∞-Urysohn Lemma we find
smooth functions χn = χn ∈ C∞0 (M) with suppχn ⊆ Kn+1 but χn

∣∣
Kn

= 1. It is then easy to see
that they form local Hermitian units for C∞0 (M). This has easy generalizations to other kinds of
topological spaces and function algebras on them.

Still within differential geometry we have further important examples of completely positive inner
products and pre-Hilbert modules. First we note the following result:

Proposition 2.2.8 Let n ∈ N. For a matrix-valued function A ∈ C∞(M,Mn(C)) = Mn(C∞(M))
we have A ∈ Mn(C∞(M))+ if and only if A(p) ∈ Mn(C)+ for all p ∈M .

The proof of this proposition is contained in Exercise 1.4.17. The positive functionals of C∞(M) are
determined by using Riesz’ Representation Theorem.

Example 2.2.9 (Hermitian vector bundles) Consider A = C∞(M) for a manifold M and let
E −→ M be a complex vector bundle. The sections Γ∞(E) are a C∞(M)-module in the usual way.
Since C∞(M) is commutative we can choose whether we want to consider this as a left or as a right
module. In order to fit to the current presentation, we choose a right module. Next, let h be a
pseudo-Hermitian fiber metric. Then

〈φ, ψ〉(p) = h(p)(φ(p), ψ(p)) (2.2.6)

with p ∈ M defines a smooth function 〈φ, ψ〉 ∈ C∞(M) for all sections Γ∞(E). It is easy to see
that this way we obtain a non-degenerate C∞(M)-valued inner product. Hence Γ∞(E) becomes an
inner-product module over C∞(M). By Lemma 2.2.8 it is easy to see that for a Hermitian fiber
metric, the inner product (2.2.6) is actually completely positive and positive definite. Thus Γ∞(E)
becomes a pre-Hilbert module over C∞(M) for a Hermitian vector bundle. We will come back to
this example after introducing some more advanced technology and give an independent proof of
complete positivity. Needless to say, this example is the starting point to investigate a deformation
quantization of vector bundles with inner products.

The next example generalizes the canonical inner product on the free module by twisting it with
a collection of module morphisms.

Example 2.2.10 Let EA be a right A-module with inner product 〈 · , · 〉
A
. Assume that it can be

written as

〈φ, ψ〉
A

=

m∑
α=1

Pα(φ)∗Pα(ψ) (2.2.7)

with A-module morphisms Pα : EA −→ A. We note that 〈 · , · 〉
A

is an A-valued inner product
for any choice of such module morphisms. Moreover, 〈 · , · 〉

A
is completely positive. Indeed, let

φ1, . . . , φn ∈ EA be given then

(〈φi, φj〉A) =

(
m∑
α=1

Pα(φi)
∗Pα(φj)

)
=

m∑
α=1

(
Pα(φi)

∗Pα(φj)
)
∈ Mn(A)++ (2.2.8)
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by Lemma 2.1.12, i.), as already (Pα(φi)
∗Pα(φj)) ∈ Mn(A)++ for each α. More generally, we can

also use an infinite number {Pα}α∈I of such module morphisms and an infinite sum provided that for
a fixed element φ ∈ EA only finitely many Pα(φ) ∈ A are different from zero. Note that in general
it is of course difficult to say whether such an inner product 〈 · , · 〉

A
is non-degenerate: this depends

very much on the details of the maps Pα.

2.2.2 Strongly Non-Degenerate Inner Products

Also for an inner-product or pre-Hilbert module we can impose a stronger version of the non-
degeneracy of the inner product. To formulate this, we first recall that for a right A-module EA

the dual module is defined by the set of right A-module homomorphisms

E∗ = HomA(EA,A), (2.2.9)

where we endow A with its canonical right A-module structure as usual. Note that E∗ is a left
A-module in a canonical way by setting

(a · χ)(φ) = aχ(φ) (2.2.10)

for a ∈ A, φ ∈ EA, and χ ∈ E∗. In the following, we will emphasize this by writing E∗A instead of E∗.
Now if we have an inner product 〈 · , · 〉

A
on EA then this gives a map

[ : EA 3 φ 7→ φ[ = 〈φ, · 〉
A
∈ E∗A , (2.2.11)

which is an antilinear antihomomorphism of modules in the sense that

φ · a 7→ a∗ · 〈φ, · 〉
A

(2.2.12)

for a ∈ A and φ ∈ EA. This antihomomorphism is called musical in analogy to the usual musical
homomorphism of inner products. Clearly, the inner product is non-degenerate iff the map (2.2.11)
is injective. This motivates the following definition:

Definition 2.2.11 (Strongly non-degenerate inner product) Let EA be a right A-module with
inner product 〈 · , · 〉

A
. Then the inner product is called strongly non-degenerate if the induced map

(2.2.11) is bijective.

Thus it is the surjectivity which is the additional property of a strongly non-degenerate inner product
compared to a non-degenerate one. The following is obvious:

Proposition 2.2.12 A finite direct orthogonal sum of strongly non-degenerate inner products is again
strongly non-degenerate.

For an infinite direct orthogonal sum the statement is false in general. The simplest examples are
already obtained for A = C = C.

Example 2.2.13 Consider again a (finite-dimensional) vector bundle E −→M over a smooth man-
ifold and endow the sections Γ∞(E) with its usual right C∞(M)-module structure. If h is a pseudo-
Hermitian fiber metric then the inner product h(p) on each fiber Ep is non-degenerate at every point.
Since the fiber is finite-dimensional, the induced map from Ep to the dual fiber E∗p is bijective for
every p ∈ M . From this one concludes that the induced map for the sections Γ∞(E) −→ Γ∞(E∗)
is bijective as well. Finally, Γ∞(E∗) is known to coincide with the dual module Γ∞(E)∗. Hence a
pseudo-Hermitian fiber metric gives a strongly non-degenerate inner product. We see that if h(p)
is degenerate at some few points, the corresponding map Γ∞(E) −→ Γ∞(E∗) can still be injective

c© Stefan Waldmann 2019-01-25 15:18:20 +0100 Hash: 13717b6



44 2. PRE-HILBERT MODULES

by the continuity of the sections. However, the surjectivity will be lost. Conversely, if we have a
bijective map (2.2.11) for an inner product on Γ∞(E) then the induced map on every fiber has to
be bijective, too. Thus we arrive at the statement, that the pseudo-Hermitian fiber metrics on E
correspond precisely to the strongly non-degenerate inner products on Γ∞(E) with values in C∞(M).
Again, there is an analogous statement in the continuous category.

If we have a strongly non-degenerate inner product on a right A-module EA then we can parametrize
all other inner products in terms of Hermitian elements of BA(EA) as we know this from finite-
dimensional complex vector spaces:

Proposition 2.2.14 Let EA be a right A-module with strongly non-degenerate inner product 〈 · , · 〉
A
.

i.) We have BA(EA) = EndA(EA) with the unique ∗-involution determined by the condition

〈x,Ay〉
A

= 〈A∗x, y〉
A

(2.2.13)

for A ∈ EndA(EA) and x, y ∈ EA.
ii.) The A-valued inner products 〈 · , · 〉′

A
on EA are in bijection to the Hermitian elements H ∈

BA(EA) via
〈φ, ψ〉′

A
= 〈φ,Hψ〉

A
. (2.2.14)

iii.) The inner product 〈 · , · 〉′
A
is non-degenerate if and only if H is injective.

iv.) The inner product 〈 · , · 〉′
A
is strongly non-degenerate if and only if H is bijective.

v.) The inner product 〈 · , · 〉′
A
is isometric to 〈 · , · 〉

A
if and only if there exists an invertible U ∈

BA(EA) with H = U∗U .
vi.) Let 〈 · , · 〉

A
be in addition completely positive. Then 〈 · , · 〉′

A
is completely positive, too, if H ∈

BA(EA)+.

Proof: For each A ∈ EndA(EA) and each φ ∈ EA the map ψ 7→ 〈φ,Aψ〉
A
is right A-linear and, by

strong non-degeneracy, of the form ψ 7→ 〈A∗φ, ψ〉E
A
with a unique A∗φ ∈ EA. This defines the map

A∗ : EA −→ EA. Thus A is adjointable. For the second part we argue analogously by noting that the
map ψ 7→ 〈φ, ψ〉′

A
is right A-linear and thus of the form ψ 7→ 〈φ̃, ψ〉

A
with a unique φ̃ ∈ EA. Again,

φ 7→ φ̃ is right A-linear. Hence it is of the form φ̃ = Hφ with some unique H ∈ EndA(EA). The
symmetry of 〈 · , · 〉′

A
then shows immediately that H = H∗. Conversely, it is clear that any Hermitian

H = H∗ ∈ BA(EA) = EndA(EA) induces a new inner product 〈 · , · 〉′
A
via (2.2.14). This shows that

second part. The third and fourth part are obvious. For the fifth part, we have to be a little bit
more careful as the ∗-involution in BA(EA) refers to the inner product 〈 · , · 〉

A
. For an isometric

isomorphism U between the two inner products 〈 · , · 〉
A
and 〈 · , · 〉′

A
we have to find an adjointable

and bijective map U ∈ BA(EA, E
′
A) with

〈φ, ψ〉′
A

= 〈Uφ,Uψ〉
A
, (∗)

where E′A is the right A-module EA, but now endowed with the inner product 〈 · , · 〉′
A
. We denote the

adjoint of U in BA(EA, E
′
A) by U † ∈ BA(E′A, EA), i.e.

〈Uφ, ψ〉
A

= 〈φ,U †ψ〉′
A
.

From the first part we know that U ∈ BA(EA, E
′
A) ⊆ EndA(EA, EA) = BA(EA). Thus U is adjointable

with respect to 〈 · , · 〉
A
, too, and (∗) gives H = U∗U . Conversely, if H = U∗U with an invertible

U then we clearly have 〈φ, ψ〉′
A

= 〈Uφ,Uψ〉
A
. Since by assumption U is invertible, we can write

ψ = U−1Uψ leading to 〈φ,U−1Uψ〉′
A

= 〈Uφ,Uψ〉
A
showing that U is also adjointable with respect

to the involution † and satisfies U−1 = U †. Thus, in this sense, U is unitary as wanted, proving
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the fourth part. Now let 〈 · , · 〉
A
be completely positive and let H ∈ BA(EA)+. For given elements

φ1, . . . , φn ∈ EA and a given positive linear functional Ω: Mn(A) −→ C we consider the map

BA(EA) 3 A 7→ Ω̃(A) = Ω(〈φi, Aφj〉A).

This is a positive functional since Ω(〈φi, A∗Aφj〉A) = Ω(〈Aφi, Aφj〉A) ≥ 0 by the complete positivity
of 〈 · , · 〉

A
and the positivity of Ω. Thus for a positive element H ∈ BA(EA)+ we have

0 ≤ Ω̃(H) = Ω(〈φi, Hφj〉A) = Ω
(
〈φi, φj〉′A

)
,

which gives immediately the complete positivity of 〈 · , · 〉′
A
. �

Remark 2.2.15 For the canonical pre-Hilbert module An and a unital ∗-algebra A one has the
stronger result that 〈 · , · 〉′

A
is completely positive if and only if H ∈ BA(An)+ ∼= Mn(A)+. The only-

if part follows easily since (〈ei, ej〉′A) = (〈ei, Hej〉A) = H, hence by complete positivity of 〈 · , · 〉′
A
the

matrix H has to be positive.

2.3 Various K0-Theories

In Example 2.2.10, the module morphisms Pα guaranteed the complete positivity of the inner product.
However, in general it is not clear how one can possibly construct such maps. We shall now present a
simple situation with a natural and explicit construction of such maps Pα, leading us into the realm of
projective modules and K0-theory. The following example will turn out to be of crucial importance:

Example 2.3.1 Let P ∈ Mn(A) be a projection, P 2 = P = P ∗. Then we consider the image of P
as a submodule of An, i.e. let

EA = PAn ⊆ An (2.3.1)

be endowed with the induced right A-module structure. Elements in EA are of the form Px with
x ∈ An arbitrary. The restriction of the canonical inner product 〈 · , · 〉 on An to PAn is still
completely positive by Lemma 2.1.16, ii.). On the other hand, we have

〈Px, Py〉 =

n∑
i=1

(P (x))∗iP (y)i, (2.3.2)

where the maps Pi : Px 7→ (P (x))i =
∑n

j=1 Pijxj are right A-module morphisms as in Example 2.2.10.
Moreover, we have 〈Px, Py〉 = 0 for all Px ∈ PAn if and only if 〈x, Py〉 = 0 for all x ∈ An since
P ∗P = P . Thus if A is non-degenerate as algebra then Py = 0 follows. In this case, the inner product
on PAn is non-degenerate and PAn is a pre-Hilbert module for all projections P .

2.3.1 Projective Modules and Ring-Theoretic K0-Theory

The construction in Example 2.3.1 will be of major importance in many places. Hence it is worth to
take a closer look at the right A-module structure obtained from a projection. We recall the following
definition of a projective module:

Definition 2.3.2 (Projective module) A right A-module E is called projective if there exists an-
other right A-module F such that E ⊕F is a free right A-module, i.e. isomorphic to some A(Λ) for
suitable index set Λ.
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Note that the definition of a projective module does not refer to a ∗-involution, instead it applies for
general rings. In order to keep things simple, we shall focus on unital rings and ∗-algebras in this
section. The non-unital case will require some slightly more involved definition of the K0-theories.

We collect some well-known properties of projective modules. For convenience of the reader, we
sketch the proofs, see also e.g. the textbooks [78, Sect. 1.2] or [4] and [99, Chap. 1] for a detailed
discussion of projective modules and K-theory:

Proposition 2.3.3 Let E be a right A-module over a unital ring A. Then the following statements
are equivalent:

i.) The module E is projective.
ii.) There exists an index set Λ and an idempotent element e ∈ EndA(A(Λ)) such that E ∼= eA(Λ)

as right A-modules.
iii.) There exist elements {eλ}λ∈Λ in E and elements {eλ}λ∈Λ in the dual (left) module E∗ such that

for a given x ∈ E only finitely many eλ(x) ∈ A are different from zero and

x =
∑
λ∈Λ

eλ · eλ(x). (2.3.3)

iv.) Let φ : M −→ N and ψ : E −→ N be right A-module morphisms with φ surjective. Then there
exists a right A-module morphism χ : E −→M with φ ◦ χ = ψ, i.e. the diagram

E

M N 0

χ

φ

ψ (2.3.4)

commutes.

Proof: We show i.) =⇒ ii.) =⇒ iii.) =⇒ iv.) =⇒ i.). Thus, let us assume i.) and let
E ⊕F = A(Λ) be a free module after the choice of an appropriate isomorphism. For x ∈ A(Λ) we
have a unique decomposition x = x‖ + x⊥ where x‖ ∈ E and x⊥ ∈ F. Since the decomposition is a
direct sum as right A-modules the map e : x 7→ x‖ is right A-linear and clearly idempotent e2 = e.
It follows that E = im e and thus ii.). Now we assume ii.) and let {eλ}λ∈Λ be the canonical module
basis of A(Λ). Then x =

∑
λ∈Λ eλ · xλ with unique coefficients xλ where for each x only finitely many

of them are non-zero. The map eλ : x 7→ xλ is right A-linear and thus eλ is in the dual module E∗.
Now let x = e(x) ∈ E = im e ⊆ A(Λ) with an idempotent e ∈ EndA(A(Λ)) be given then

x = e(x) = e
(∑

λ
eλ · eλ(x)

)
=
∑

λ
e(eλ)eλ(x).

Thus we have found the elements eλ = e(eλ) and eλ = eλ|im e ∈ E∗ as wanted. Assuming iii.), let
eλ ∈ E and eλ ∈ E∗ with (2.3.3) be given. Let φ : M −→ N be a surjective and let ψ : E −→ N be
an arbitrary right A-module morphism. Since φ is surjective we find mλ ∈M with φ(mλ) = ψ(eλ).
Then we define χ(x) =

∑
λ∈Λmλ · eλ(x). Clearly, for a given x ∈ E the sum is finite. Moreover, χ

is right A-linear since the eλ are in E∗. A simple computation using (2.3.3) shows φ(χ(x)) = ψ(x)
which is iv.). Finally, assume iv.). First we note that for every right A-module E there exists a large
enough free module A(Λ) together with a surjective right A-linear map φ : A(Λ) −→ E. This is clear
as we can use Λ = E as index set and define

φ
(∑

x∈E
ex · ax

)
=
∑

x∈E
x · ax.
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Next, we set ψ = id: E −→ E. Thus by assumption we find a right A-linear map χ : E −→ A(Λ) with
φ ◦ χ = id. This implies that χ is injective with imχ ∼= E as right A-modules. Moreover, F = kerφ
is a right A-submodule of A(Λ) which is complementary to imχ. Thus E is projective. �

Remark 2.3.4 (Projective modules) Let A be a unital ring.
i.) Mainly, we will be interested in finitely generated projective modules over A. In this case, one

can show that the index set Λ in Proposition 2.3.3 can be replaced by some suitable n ∈ N, see
Exercise 2.4.17.

ii.) The elements eλ ∈ E and eλ ∈ E∗ from iii.) are called a dual basis. Note, however, that the eλ
are by far not A-linearly independent: from

∑
λ∈Λ eλ · aλ = 0 we can not conclude aλ = 0 in

general. If this would be true then the projective module is even a free module which in general
needs not to be the case. Nevertheless, free modules are examples for projective ones. Moreover,
in general the vectors eλ do not even span the dual module E∗, see also Exercise 2.4.15.

iii.) It is easy to see that the direct sum of projective modules is again projective. Moreover, it is
again finitely generated whenever the direct sum was finite and each term was finitely generated.

The question whether two projective modules are isomorphic can be encoded in terms of the
idempotents of Proposition 2.3.3.

Proposition 2.3.5 Let E and F be finitely generated projective right modules over a unital ring A
which we write without restrictions as E = eAn and F = fAn with the same n ∈ N and suitably
chosen idempotents e, f ∈ Mn(A). Then the following statements are equivalent:

i.) The right A-modules E and F are isomorphic.
ii.) There are u, v ∈ Mn(A) with

e = uv and f = vu. (2.3.5)

iii.) There exists an invertible matrix V ∈ M2n(A) with

V

(
e 0

0 0

)
V −1 =

(
f 0

0 0

)
. (2.3.6)

Proof: First we note that adding zero entries we can always bring two idempotents to the same size
n without changing their images. Hence we can assume that n is the same without restriction from
the beginning. We show i.) =⇒ ii.) =⇒ iii.) =⇒ i.). First, we assume that φ : E −→ F is
an isomorphism of right A-modules. Now we set v = fφe : An −→ An which is again right A-linear.
Hence we can identify v with a matrix in Mn(A). Analogously we define u = eφ−1f ∈ Mn(A). Since
f is the identity on the image of φ (which is F) we have

uv(x) = eφ−1ffφe(x) = eφ−1fφ(e(x)) = ee(x) = e(x).

Similarly, one shows vu = f and hence we obtain ii.). Now assume ii.) and let e, f ∈ Mn(A) be
idempotent elements with (2.3.5) for some u, v ∈ Mn(A). Then we define the block matrix

V =

(
−v 1− f
1− e u

)
∈ M2n(A).

An elementary computation shows that V is invertible with inverse given by

V −1 =

(
−u 1− e
1− f v

)
.
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Using these explicit formulas, (2.3.6) is a straightforward computation thereby verifying iii.). Finally,
we assume (2.3.6). Then the projective modules E and F can also be considered as submodules
of A2n as images of the idempotents ( e 0

0 0 ) and ( f 0
0 0

), respectively. Then (2.3.6) gives the desired
isomorphism V

∣∣
E

: E −→ F. Note that this restriction gives indeed a map into F. �

This property of idempotent elements is the starting point for the definition of the K0-theory of an
algebra A with unit. First we denote by Proj(A) the category of all finitely generated and projective
right A-modules with module homomorphisms as morphisms. By Proj(A) we denote the class of
isomorphism classes of finitely generated and projective modules over A. Thanks to Proposition 2.3.5
we see that Proj(A) is in bijection to the set of all equivalence classes of idempotent elements in
M∞(A): here two idempotents e, f are called equivalent if there exist u, v ∈M∞(A) such that

e = uv and f = vu. (2.3.7)

Though it follows from Proposition 2.3.5 that this is indeed an equivalence relation, it is also a nice
exercise to check this directly, see Exercise 2.4.16. Obviously, (2.3.7) means that there is a large
enough n ∈ N such that e, f, u, v ∈ Mn(A) ⊆ M∞(A). Alternatively, we can also use the third
statement in Proposition 2.3.5 to define the equivalence of idempotents: e and f are equivalent if
they are conjugate to each other after one has brought them to equal size in some sufficiently large
Mn(A) by adding zeros.

The set Proj(A) has now an additional structure: we can take finite direct sums of projective
modules which are again finitely generated and projective by Remark 2.3.4, iii.). Then the direct
sum⊕ becomes an associative and commutative (only on the level of isomorphism classes) composition
law. The commutativity and also the associativity is not fulfilled on the level of projective modules
directly: we have to use the canonical isomorphism to obtain E⊕F ∼= F⊕E etc. Finally, the 0-module
is the neutral element with respect to ⊕, again after using the isomorphisms E ⊕ 0 ∼= E ∼= 0⊕ E. We
summarize these considerations in the following proposition:

Proposition 2.3.6 The set of isomorphism classes of finitely generated projective modules Proj(A)
is an abelian semi-group with respect to ⊕ with neutral element [0]. Moreover, Proj(A) is isomorphic
to the abelian semi-group of equivalence classes of idempotent elements in M∞(A) where on the level
of representatives e ∈ Mn(A) and f ∈ Mm(A) the direct sum is defined by e⊕f =

(
e 0
0 f

)
∈ Mn+m(A).

An abelian semi-group can always be turned into an abelian group by adding sufficiently many
inverses. This process is well-known from the transition from the semi-group of natural numbers N0

to Z. The resulting group is called the Grothendieck group of the semi-group, see Exercise 2.4.18.

Definition 2.3.7 (K0-Theory) The Grothendieck group of Proj(A) is denoted by K0(A) and called
the K0-theory of A.

Remark 2.3.8 (K-Theory) The above algebraic definition of K-theory allows for many general-
izations and specializations, we only presented the most simple version. On can extend the above
construction to algebras without unit element, where a slightly different approach has to be taken.
Moreover, there are higherK-groups Kn(A) which we will not need in the sequel. A detailed discussion
can be found in monographs [4, 99].

2.3.2 The Serre-Swan Theorem

Before we define the Hermitian K0-theory we will give a geometric interpretation of the construction
of K0(A) for the case where A = C∞(M). The following classical theorem of Serre and Swan was
originally formulated for commutative unital C∗-algebras, i.e. A = C(X) with a compact Hausdorff
space X, and in an algebraic-geometric situation, see [107, 110]. Ever since there have been various
other formulations and contexts for this theorem, one of which we shall present here:
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Theorem 2.3.9 (Serre-Swan Theorem) Let M be a connected manifold.
i.) The sections Γ∞(E) of a complex vector bundle π : E −→ M are a finitely generated and

projective module over C∞(M).
ii.) If EC∞(M) is a finitely generated and projective module over C∞(M) then there exists a complex

vector bundle π : E −→M such that EC∞(M)
∼= Γ∞(E) C∞(M) with E being determined uniquely

up to vector bundle isomorphisms over the identity of M .
iii.) Vector bundle homomorphisms over the identity of M correspond to module homomorphisms

under the correspondence in part i.).

Proof: The first part is the most non-trivial one. We give here a proof which works for the case
of compact M to simplify things. By definition of a vector bundle there is a vector bundle atlas
{(Ui, ϕi)}i∈I where Ui ⊆ M is open and ϕi : π−1(Ui) ⊆ E −→ Ui ×Ck is a local trivialization. Here
k is the fiber dimension. As we assume M to be compact, finitely many Ui already cover M , say
U1, . . . , UN . We choose a subordinate quadratic partition of unity {χi}i=1,...,N , i.e. smooth functions
χi ∈ C∞(M) with suppχi ⊆ Ui and χ2

1 + · · · + χ2
N = 1. Moreover, let ei,α ∈ Γ∞(E|Ui) be the

local base sections given by the trivialization and denote the corresponding dual base sections by
eαi ∈ Γ∞(E∗|Ui). Here and in the following α = 1, . . . , k. We define now the global sections

ei,α = χiei,α ∈ Γ∞(E) and ei,α = χie
α
i ∈ Γ∞(E∗).

Indeed, since suppχi ⊆ Ui these sections are extended smoothly from Ui to M by setting them equal
to zero outside of Ui. Now let φ ∈ Γ∞(E) be an arbitrary section. Then for all p ∈M we have∑

i,α

ei,α · ei,α(φ)
∣∣
p

=
∑
i

χ2
i (p)

∑
α

ei,α(p)eαi (φ)
∣∣
p

=
∑
i

χ2
i (p)φ

∣∣
p

= φ
∣∣
p
,

where we have used that either p ∈ Ui so that we can use the locally defined base sections or p is not
in Ui, in which case χi(p) = 0. Together, this means

φ =
∑
i,α

ei,α · ei,α(φ).

Since the natural pairing of ei,α ∈ Γ∞(E∗) with φ is C∞(M)-linear we have found a finite dual
basis in the sense of Remark 2.3.4, ii.). Thus by Proposition 2.3.3 the C∞(M)-module Γ∞(E)
is finitely generated and projective. For the second part we consider EC∞(M) = eC∞(M)N with
some idempotent e = e2 ∈ MN ( C∞(M)) = C∞(M,MN (C)). Then the image eC∞(M)N is a
submodule of the free module C∞(M)N = Γ∞(M ×CN ). Since we can interpret e as a vector bundle
endomorphism of the trivial vector bundle M ×CN , the projective module is the image of a vector
bundle homomorphism. Since for p ∈ M we have dim(im e(p)) = tr(e(p)) and since p 7→ tr(e(p)) is
smooth, we see that the dimension of the image is locally constant and hence constant. Thus the
image has constant rank which shows that it defines a vector bundle. Clearly, E is unique up to
isomorphism and Γ∞(E) ∼= E. The third part is well-known, see e.g. [116, Thm. 2.2.24] for a detailed
proof. �

Remark 2.3.10 The above proof of the first part relies on the fact that we can find a finite vector
bundle atlas. If the vector bundle atlas is not finite then the proof still gives a projective module,
which might not be finitely generated. In particular, by the σ-compactness of second-countable
manifolds we always find a countable vector bundle atlas. However, it can be shown that even in
the non-compact case, one always can find a finite vector bundle atlas. Hence the above proof also
applies in the non-compact case, see e.g. [121, Prop. 4.1]. An alternative proof can be found by using
the Whitney embedding theorem for the (non-compact) tangent bundle TE of E. Since the vector
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bundle E −→ M can be viewed as the vertical bundle of TE −→ E, restricted to the zero section,
one can use the orthogonal complement inside the large RN . As the tangent bundle of RN is trivial,
the same holds for its restriction to M and hence we have found a complementary bundle to E inside
a trivial bundle. From this, the Serre-Swan Theorem easily follows. We also note that an analogous
statement holds in the continuous case of topological vector bundles over compact Hausdorff spaces,
see Exercise 2.4.20. Finally, we note that there is an elaborate theory of the topological version of
K-theory based on vector bundles on topological spaces in general, see e.g. the classical textbook [71].

Corollary 2.3.11 Passing to sections E 7→ Γ∞(E) gives an equivalence of categories

Γ∞ : Vect(M)
∼=−→ Proj( C∞(M)), (2.3.8)

where Vect(M) denotes the category of smooth vector bundles over M with vector bundle morphisms
over id : M −→ M as morphisms. Moreover, it is compatible with Whitney sums of vector bundles
and direct sums of projective modules, respectively. Finally, it descends to an isomorphism

Vect(M) 3 [E] 7→ [Γ∞(E)] ∈ Proj(C∞(M)) (2.3.9)

of semi-groups, where Vect(M) denotes the semi-group of isomorphism classes of vector bundles over
M .

In particular, the group K0( C∞(M)) has the interpretation of classifying smooth vector bundles over
M . The Grothendieck group of Vect(M) is called the (smooth) topological K-theory of M which is
denoted by K0(M). Thus the Serre-Swan Theorem states that these two groups are isomorphic. In
fact, one can show that the restriction to smooth vector bundles is superfluous: the smooth vector
bundles and the topological vector bundles over a manifold given the same K-theory.

2.3.3 Hermitian K0-Theory

After this excursion to the ring-theoretic definition of K-theory, we will now take the ∗-involution as
well as the positivity structures into account, leading to two notions of a “Hermitian” K0-theory. It
turns out that the strong non-degeneracy plays a crucial role.

Proposition 2.3.12 Let A be a unital ∗-algebra over C = R(i) and let EA be a right A-module with
A-valued inner product 〈 · , · 〉

A
. Then the following statements are equivalent:

i.) The inner product 〈 · , · 〉
A
is strongly non-degenerate and EA is finitely generated and projective.

ii.) There exists a finite Hermitian dual basis e1, . . . , en, f1, . . . , fn ∈ EA, i.e. we have for all x ∈ EA

x =

n∑
α=1

eα · 〈fα, x〉A. (2.3.10)

iii.) The inner product is non-degenerate and one has FA(EA) = BA(EA).

Proof: Assume that 〈 · , · 〉
A
is strongly non-degenerate and let {eα, eα}α=1,...,n be a finite dual basis

thanks to Proposition 2.3.3, iii.). Then there are uniquely determined fα ∈ EA with eα = 〈fα, · 〉A
and hence (2.3.10) follows. Conversely, assume (2.3.10). Since eα : x 7→ 〈fα, x〉 is right A-linear,
(2.3.10) provides a finite dual basis. Thus EA is finitely generated and projective. Now let χ ∈ E∗ be
given. Then for all x ∈ EA

χ(x) = χ
(∑

α
eα · 〈fα, x〉A

)
=
∑

α
χ(eα)〈fα, x〉A =

〈∑
α
fα · χ(eα)∗, x

〉
A
,
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showing that the map y 7→ 〈y, · 〉
A
is surjective. The injectivity is obvious from (2.3.10). Finally,

assume FA(EA) = BA(EA). Since the finite-rank operators are a ∗-ideal in the unital ∗-algebra of all
adjointable operators for an inner-product module, this is equivalent to idE ∈ FA(EA). Thus there
exist finitely many eα, fα ∈ EA with idE =

∑
α Θeα,fα . But this is precisely (2.3.10) and hence we

have a dual Hermitian basis. Conversely, (2.3.10) shows that idE ∈ FA(EA) and by the first part, the
inner product is non-degenerate. �

For a vector bundle with a pseudo-Hermitian fiber metric we obtain a Hermitian dual basis from
this proposition:

Example 2.3.13 (Pseudo-Hermitian vector bundles) Let E −→ M be a complex vector bun-
dle. According to Example 2.2.13 we know that the pseudo-Hermitian fiber metrics on E correspond
exactly to the strongly non-degenerate inner products. For an alternative proof of this, one can con-
struct a Hermitian dual basis: Locally this is certainly possible and given by a local frame ei,α and
fi,α determined by the local dual frame via eαi (p) = h(p)(fi,α, · ) which indeed determines a smooth
section fi,α ∈ Γ∞(E|Ui). From here one can continue as in the proof of Theorem 2.3.9 to globalize the
section without spoiling the property of a Hermitian dual basis. It turns out that such a Hermitian
dual basis is often a very efficient tool for studying vector bundles.

This example also motivates the refined definition of Hermitian K-theory which takes into account
the different isometry classes of inner products. We have two versions by either taking into account
the additional complete positivity or not:

Definition 2.3.14 (Hermitian K0-theory) Let A be a unital ∗-algebra over C = R(i).
i.) The category of finitely generated projective right A-modules with strongly non-degenerate A-

valued inner products as objects and adjointable maps as morphisms is denoted by Proj∗(A).
ii.) The category of finitely generated projective right A-modules with strongly non-degenerate and

completely positive A-valued inner products as objects and adjointable maps as morphisms is
denoted by Projstr(A).

iii.) The corresponding semi-groups of isometric isomorphism classes are denoted by Proj∗(A) and
Projstr(A), respectively.

iv.) The resulting Grothendieck groups are denoted by K∗0(A) and Kstr
0 (A). The group Kstr

0 (A) is
called the Hermitian K0-theory of A.

By forgetting the additional structures we get functors and on the level of isomorphism classes we get
(semi-) group morphisms

Projstr(A) Proj∗(A)

Proj(A)

and
Kstr

0 (A) K∗0(A)

K0(A)

(2.3.11)

which, geometrically speaking, encode how many non-isometric (pseudo-) Hermitian fiber metrics one
has on the given vector bundles.

In general, the semi-group morphisms (2.3.11) are neither surjective nor injective. Clearly, if there
is a completely positive inner product, then we can pass to a “completely negative” one by inserting
a −1 into the definition. This shows that the semi-group morphism Projstr(A) −→ Proj∗(A) is not
surjective for somehow trivial reasons. Thus it is more interesting whether or not this is the only
freedom we gain when passing from completely positive inner products to general ones. Instead, it
could happen that we have possibilities for more complicated “signatures”. For the same reason we
expect the semi-group morphism Proj∗(A) −→ Proj(A) to be non-injective. Now the more interesting
question is the injectivity and surjectivity of Projstr(A) −→ Proj(A).
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2.3.4 The Properties (K) and (H)

In order to learn something about the bijectivity of the semi-group morphism Projstr(A) −→ Proj(A)
we have to understand on which finitely generated projective modules there exists a strongly non-
degenerate and completely positive A-valued inner product. The complete positivity is rather easy
to control since embedding a projective module in some An would give immediately a completely
positive inner product by restricting the canonical one. The strong non-degeneracy is more difficult
to guarantee. Here the following proposition gives a sufficient criterion:

Proposition 2.3.15 Let P = P 2 = P ∗ ∈ Mn(A) be a projection. Then the restriction of the
canonical inner product of An to PAn is strongly non-degenerate.

Proof: Let e1, . . . , en ∈ An be the canonical basis and x = Px ∈ PAn. Using P = P ∗ we compute

x =
∑

i
ei〈ei, x〉 =

∑
i
P ei〈ei, Px〉 =

∑
i
P ei〈P ei, x〉.

Since P ei ∈ PAn for all i we have found a Hermitian dual basis {P ei, P ei}i=1,...,n for PAn. Thus, by
Proposition 2.3.12, the restriction of the canonical inner product is strongly non-degenerate. �

If e is only an idempotent element then the above proof does not apply since e∗(ei) may not be
in eAn any more. This raises the question whether or not for a given finitely generated projective
module EA we can find a projection P ∈ Mn(A) such that EA

∼= PAn. As ultimately we are interested
in an arbitrary such projective module we have to find for any idempotent element e ∈ Mn(A) an
equivalent projection. In general, this needs not to be the case. However, there is a nice sufficient
criterion due to Kaplansky [70, Thm. 26]:

Theorem 2.3.16 (Kaplansky) Let A be a unital ∗-algebra over C. Assume that for all n ∈ N and
for all A ∈ Mn(A) the elements 1+A∗A ∈ Mn(A) are invertible. Then every idempotent element in
M∞(A) is equivalent to a projection.

Proof: Let e = e2 ∈ Mn(A) be given and define

z = 1+ (e− e∗)(e∗ − e) = z∗.

By assumption, z is invertible with inverse z−1 ∈ Mn(A), which is again Hermitian. We have

ez = e+ e(e− e∗)(e∗ − e)
= e+ (e− ee∗)(e∗ − e)
= e+ ee∗ − ee∗e∗ − e+ ee∗e

= ee∗e,

since e2 = e and (e∗)2 = e∗. Analogously one computes ze = ee∗e = ez and hence z and e commute.
But this implies that also z and e∗ commute and z−1 commutes with e and e∗, too. We define
p = ee∗z−1 = z−1ee∗ = ez−1e∗. Then

p2 = ee∗z−1ee∗z−1 = z−1ee∗ee∗z−1 = z−1zee∗z−1 = ee∗z−1 = p.

Clearly, p∗ = (ez−1e∗)∗ = ez−1e∗ = p showing that p is a projection. Finally, we have

pe = z−1ee∗e = z−1ez = e and ep = eee∗z−1 = ee∗z−1 = p,

which means that e and p are equivalent. �
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The assumption in this theorem will be useful at many other places. Hence we state the following
definition [29, Sect. 7A].

Definition 2.3.17 (Property (K)) A unital ∗-algebra over C = R(i) satisfies property (K) if for
all n ∈ N and A ∈ Mn(A) the matrix 1+A∗A ∈ Mn(A) is invertible.

We already know several examples of ∗-algebras with the property (K):

Example 2.3.18 (The property (K))
i.) Every unital C∗-algebra A fulfills (K) since first Mn(A) is again a C∗-algebra and second, by

the spectral calculus, the spectrum of 1+A∗A is in [1,∞). Then such a matrix is invertible by
spectral calculus.

ii.) For any manifold M the functions C∞(M) have the property (K). Here one observes that the
pointwise inverse of the matrix-valued function 1 + A∗A ∈ C∞(M,Mn(C)) is again a smooth
function on M .

iii.) If A has the property (K) then also Mk(A) for all k ∈ N since Mn(Mk(A)) ∼= Mnk(A).
iv.) The ∗-algebra C = Z(i) does not satisfy (K) since 2 = 1 + 1∗1 is not invertible in Z(i).

Corollary 2.3.19 If A has the property (K) then the canonical semi-group morphism

Projstr(A) −→ Proj(A) (2.3.12)

is surjective.

Another simple application of the property (K) is given in the following proposition:

Proposition 2.3.20 Let A be a unital ∗-algebra with the property (K). Then for all a1, . . . , aN ∈ A
the algebraically positive element 1+

∑
α a
∗
αaα is invertible.

Proof: We consider the N ×N -matrix A ∈ MN (A) defined by

A =


a1

... 0

aN


Then by (K) the matrix 1N×N +A∗A is invertible. But this matrix is diagonal and the entry in the
upper left corner is just 1A +

∑
α a
∗
αaα. Thus this element is invertible, too. �

If there is a strongly non-degenerate inner product on EA we still have to answer the question
how many non-isometric ones can be found. By Proposition 2.2.14 the strongly non-degenerate inner
products are parametrized by Hermitian, invertible elements H ∈ BA(EA). Isometric inner products
are obtained for H = U∗U with invertible U . In order to investigate this question, the following
properties will turn out useful. First we define an orthogonal partition of unity in Mn(A) to be a
finite collection of projections Pα = P 2

α = P ∗α ∈ Mn(A) with the property that

PαPβ = δαβPα and
∑

α
Pα = 1. (2.3.13)

Using this we define the following properties of a unital ∗-algebra A.

Definition 2.3.21 (Property (H)) Let A be a unital ∗-algebra over C = R(i). Then we define the
following properties of A:
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(H) Let n ∈ N and let H ∈ Mn(A)+ be invertible. Furthermore, let {Pα} be an orthogonal partition
of unity with [Pα, H] = 0. Then there exists an invertible U ∈ Mn(A) with H = U∗U and
[Pα, U ] = 0.

(H+) Let n ∈ N and let H ∈ Mn(A)+ be invertible. Then there exists an invertible U ∈ Mn(A) with
H = U∗U and [P,U ] = 0 for all those projections P ∈ Mn(A) with [P,H] = 0.

(H−) Let n ∈ N, let H ∈ Mn(A)+ be invertible, and let P ∈ Mn(A) be a projection with [P,H] = 0.
Then there exists an invertible U ∈ Mn(A) with H = U∗U and [P,U ] = 0.

For a unital ∗-algebra A we obviously have the implications

(H+) =⇒ (H) =⇒ (H−). (2.3.14)

The property (H−) can be seen as a more special case of (H) where we allow only for a partition
of unity consisting of two projections P and 1 − P instead of an arbitrary (finite) number. On the
other hand, in the case (H+) the invertible element U is universal for all the projections P while in
(H) it may depend on P .

Again, these properties are fulfilled by our primary two classes of examples:

Example 2.3.22 (The property (H))
i.) Every unital C∗-algebra fulfills property (H+). This is an immediate consequence of the spectral

calculus. In this case, we can choose U to be the unique positive square root
√
H of H which

clearly commutes with all other elements in Mn(A) which commute with H.
ii.) Slightly more interesting is the algebra C∞(M) which also fulfills (H+). Indeed, if an invertible

matrix-valued function H onM is given, such that H is positive, then we can define U to be the
unique positive square root

√
H point by point, which is again smooth as H is invertible. Note

that in general,
√
H would be continuous only. Also here [

√
H,A] = 0 for all matrix-valued

functions A with [H,A] = 0.

With the properties (H), (H+), and (H−) one mimics certain aspects of the spectral calculus as
available for C∗-algebras. However, only those aspects are required which are necessary for getting
unique inner products up to isometries. Indeed, the first consequence of (H−) is the following result:

Proposition 2.3.23 Let A be a unital ∗-algebra with property (H−). If P = P 2 = P ∗ ∈ Mn(A) is a
projection then every strongly non-degenerate, completely positive inner product on PAn is isometric
to the canonical inner product.

Proof: Let 〈 · , · 〉′ be another such inner product on PAn. On An we consider the direct sum
decomposition

An = PAn ⊕ (1− P )An, (∗)

on which we can define a new inner product h( · , · ) as follows. On the PAn-part we use 〈 · , · 〉′
and on the (1 − P )An-part we use the canonical inner product 〈 · , · 〉. From Lemma 2.2.12 and
Lemma 2.1.16 we conclude that h is strongly non-degenerate and completely positive, too. Thus
there exists a unique invertible matrix H ∈ Mn(A) with

h(φ, ψ) = 〈φ,Hψ〉

for all φ, ψ ∈ An by Proposition 2.2.14. By Remark 2.2.15, we conclude that H is a positive element
H ∈ Mn(A)+. Since the decomposition (∗) is orthogonal with respect to h by construction, we
conclude [P,H] = 0. Thus by (H−) we obtain an invertible U ∈ Mn(A) with H = U∗U and
[P,U ] = 0. It follows that U

∣∣
PAn

: PAn −→ PAn yields an isometry between 〈 · , · 〉′ and 〈 · , · 〉. Note
that [P,U ] = 0 is crucial for this argument. �
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Corollary 2.3.24 Let A be a unital ∗-algebra with the properties (K) and (H−). Then

Projstr(A) −→ Proj(A) and Kstr
0 (A) −→ K0(A) (2.3.15)

are bijective.

Corollary 2.3.25 Let E −→ M be a complex vector bundle. Then there exists a Hermitian fiber
metric on E and any two such fiber metrics are isometric.

Proof: There are of course more geometric proofs of this well-known fact but we take the opportunity
to use the algebraic techniques developed so far. First we have Γ∞(E) ∼= eC∞(M)n by the Serre-Swan
Theorem 2.3.9 with some idempotent e ∈ C∞(M,Mn(C)). By Example 2.3.18, ii.), we can assume
that e = P is a projection. Then Example 2.2.9 together with Proposition 2.3.15 shows the existence.
With Example 2.3.22, ii.), and Proposition 2.3.23 we conclude the uniqueness up to isometry. �

To conclude this section we give an example of a ∗-algebra which satisfies (K) but not (H−):

Example 2.3.26 We consider the ordered ring Q and hence C = Q(i) are the rational complex
numbers. Clearly, C satisfies (K). Indeed, for a matrix of the form 1 + A∗A with A ∈ Mn(Q(i))
we know by spectral calculus that it is invertible in Mn(C). But the components of the inverse are
obtained from rational combination of the components of A and hence the inverse is in Mn(Q(i)). For
(H−) we consider the canonical inner product 〈 · , · 〉 on Q(i) and

〈z, w〉′ = 〈z, 3w〉 = 3zw, (2.3.16)

which is again completely positive and strongly non-degenerate as 3 = 3 > 0 is invertible and positive.
However, 〈 · , · 〉′ is not isometric to 〈 · , · 〉. Indeed, assume that 3 = uu for some u = a + ib ∈ Q(i).
Then we can write a = r

n and b = s
n with r, s, n ∈ Z \ {0} not all even. The equation we have to solve

is then 3n2 = r2 + s2. Taking this equation modulo 4 gives a contradiction.

2.4 Exercises

Exercise 2.4.1 (Hilbert modules) Let A be a C∗-algebra and HA a pre-Hilbert right A-module.
i.) Show that

‖φ‖HA
=
√
‖〈φ, φ〉A‖A (2.4.1)

defines a norm on HA, where ‖ · ‖A is the C∗-norm of A.

ii.) Show that the completion HA = ĤA of HA is still a pre-Hilbert module: the module structure
as well as the inner product extends canonically by continuity.
Hint: Show first that ‖φ · a‖HA

≤ ‖φ‖HA
‖a‖A for all φ ∈HA and a ∈ A. Find a similar estimate for 〈φ, ψ〉HA

.
Why is the extension of the inner product still (completely) positive?

A complete pre-Hilbert module over a C∗-algebra is also called a Hilbert C∗-module or just Hilbert
module.

Exercise 2.4.2 (Adjointable maps are continuous) Consider a C∗-algebra A and Hilbert mod-
ules HA and H′A over A, see Exercise 2.4.1. Show that an adjointable map B : HA −→ H′A is continuous
with respect to the canonical norm topology of the Hilbert modules.
Hint: Use the closed graph theorem.

More on the rich and fascinating theory of C∗-Hilbert modules can be found e.g. in the textbooks
[79,87,95].

Exercise 2.4.3 (Complex conjugate module) Provide the detailed proof of Proposition 2.1.2.
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Exercise 2.4.4 (Degeneracy space) Prove Proposition 2.1.3.
Hint: Define the inner product on the quotient by means of representatives and the inner product on EA. Show that
this is well-defined and inherits all the necessary properties.

Exercise 2.4.5 (Non-degenerate and idempotent matrices) Let A be a non-degenerate and
idempotent ∗-algebra. Show that for all n ∈ N the ∗-algebra Mn(A) is again non-degenerate and
idempotent.
Hint: Show first Θx,yΘz,w = Θx·〈y,z〉,w for all x, y, z, w ∈ An.

Exercise 2.4.6 (Direct orthogonal sum) Let A be a ∗-algebra.
i.) Show that the direct orthogonal sum of right A-modules with positive (n-positive, completely

positive) A-valued inner products has again a positive (n-positive, completely positive) A-valued
inner product.

ii.) Show that the restriction of a positive (n-positive, completely positive) A-valued inner product
to a submodule stays positive (n-positive, completely positive).

iii.) Consider the direct orthogonal sum EA = ⊕i∈I E(i)

A of inner product right A-modules. Show that
the projections

Pi : EA −→ E(i)

A (2.4.2)

are right A-linear and adjointable with Pi = P ∗i .
iv.) Conversely, suppose that on an inner product module EA one has orthogonal projections {Pi}i∈I

with the property that for x ∈ EA only finitely many Pix are different from zero and

x =
∑
i∈I

Pix (2.4.3)

for all x ∈ EA. Show that the images E(i)

A = im(Pi) ⊆ EA of the projections Pi are right A-
submodules such that the inner product of EA restricts to non-degenerate inner products on
each E(i)

A . Conclude that EA is the direct orthogonal sum of the E(i)

A .
v.) Formulate and prove the universal property of the direct orthogonal sum of inner-product mod-

ules analogously to the universal property of the direct sum of vector spaces.
vi.) Show that all the above results stay valid after the obvious modifications if one considers inner-

product (B,A)-bimodules instead of right A-modules alone.

Exercise 2.4.7 (Direct sum of positive definite inner products) Consider again the unital ∗-
algebra A = Z2 over Z(i) as in Exercise 1.4.16. Show that the canonical inner product on A2 is
non-degenerate, completely positive, but not positive definite. Conclude that the direct sum of two
positive definite inner products needs not to be positive definite anymore.

Exercise 2.4.8 (Degenerate submodules of pre-Hilbert modules) Consider the Grassmann al-
gebra A = Λ•(C) in one dimension: it is the free C-module with basis 1 and x where the only non-
trivial relation is x2 = 0 and x∗ = x. Endow A with the canonical positive inner product 〈 · , · 〉

A
.

i.) Show that 〈 · , · 〉
A
is non-degenerate but not positive definite.

ii.) Show that spanC{x} ⊆ A is a submodule and the restriction of 〈 · , · 〉
A
to this submodule is

degenerate.

Exercise 2.4.9 (Complex conjugate of completely positive inner products) Let A be a ∗-
algebra over C = R(i) and let EA be a right A-module with a completely positive inner product
〈 · , · 〉

A
. Show that on the complex conjugate left A-module EA the induced inner product as in

(2.1.6) is again completely positive.
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Exercise 2.4.10 (Complex conjugation is functorial) Let A be a ∗-algebra over C = R(i) and
let EA, E′A, and E′′A be inner-product right A-modules. Consider the corresponding inner-product left
A-modules EA , E

′
A , and E

′′
A .

i.) Let T : EA −→ E′A be an adjointable morphism. Show that

T : EA 3 x 7→ T (x) ∈ E
′

A (2.4.4)

is an adjointable morphism again. Prove that T 7→ T gives a C-antilinear map BA(EA, E
′
A) −→

BA( EA , E
′

A ).
ii.) Show that the analogous results hold for the complex conjugation of morphisms between inner-

product left A-modules.

iii.) Show that T = T and T ∗ = (T )∗.
iv.) Show that for a further adjointable morphism S : E′A −→ E′′A one has S ◦ T = S ◦ T .

The conclusion is that the complex conjugation of inner-product modules is functorial. There are
analogous statements and variants of this e.g. for inner-product bimodules, for pre-Hilbert modules
etc.

Exercise 2.4.11 (Idempotents and matrices) Let A be a unital ∗-algebra over C = R(i) and let
e ∈ Mn(A) be an idempotent. Endow An with the canonical inner product.
i.) Show that for all n ∈ N one has EndA(An) ∼= Mn(A). Show also that a C-linear map A : An −→

An is adjointable iff A is right A-linear. Show that in this case the adjoint is the usual matrix
adjoint when interpreting A and A∗ as matrices in Mn(A).

ii.) Show that 1− e is again an idempotent with e(1− e) = 0 = (1− e)e.
iii.) Show that also e∗ is an idempotent.
iv.) Show that e induces a direct sum decomposition An = eA⊕ (1−e)An. Show that with respect

to this decomposition one has the following induced decomposition

eMn(A)e ∼= EndA(eAn), (2.4.5)
(1− e)Mn(A)(1− e) ∼= EndA((1− e)An), (2.4.6)
eMn(A)(1− e) ∼= HomA((1− e)An, eAn), (2.4.7)

and
(1− e)Mn(A)e ∼= HomA(eAn, (1− e)An). (2.4.8)

Exercise 2.4.12 (Local Hermitian unit elements) Let A be a ∗-algebra over C = R(i). A rea-
sonable replacement for the existence of a unit element is sometimes the existence of local Hermitian
unit elements {eα}α∈I as in Definition 2.2.5: This notion is borrowed from C∗-algebra theory where
one only requires convergence eαa −→ a and aeα −→ a of a net {eα}α∈I instead of equality as in
(2.2.4).

i.) Show that a unital ∗-algebra has local Hermitian units.
ii.) Find examples of non-unital ∗-algebras which have local Hermitian units.

Hint: Consider suitable non-compact topological spaces and continuous functions with compact support. Under
which conditions on the space X do you find local Hermitian units for C0(X)?

iii.) Consider the infinite matrices M∞(C) with at most finitely many non-zero entries with its usual
∗-algebra structure. Show that M∞(C) has local Hermitian units.

iv.) More generally, suppose A has local Hermitian units. Show that for all n ∈ N the matrices
Mn(A) have local Hermitian units. Do the infinite matrices M∞(A) with finitely many non-zero
entries also have local Hermitian units?
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v.) Discuss whether the additional requirement e2
α = eα for all α ∈ I would be an achievable

modification in the above examples.
vi.) Suppose that A has local Hermitian units. Show that for every positive linear functional

ω : A −→ C one has ω(a∗) = ω(a).

Exercise 2.4.13 (Sufficiently many positive functionals) Let A be a ∗-algebra with sufficiently
many positive functionals and local Hermitian unit elements {eα}α∈I . Show that in this case the
statement of Corollary 1.2.10 is still valid.
Hint: Use the vectors ψeα ∈ Hω of a GNS representation πω for some positive functional ω.

Exercise 2.4.14 (Morphisms between projective modules) Let EA and E′A be finitely gener-
ated projective right modules over A. Choose idempotents e ∈ Mn(A) and f ∈ Mm(A) such that
EA
∼= eAn and E′A

∼= fAm.
i.) Show that the right A-linear maps from EA to E′A can be identified with fMm×n(A)e ⊆

Mm×n(A).
ii.) If E′′A

∼= gAk with an idempotent g ∈ Mk(A) is another finitely generated projective right
module over A, how can one encode the composition of module morphisms EA −→ E′A and
E′A −→ E′′A?

Exercise 2.4.15 (Projective modules and their duals) Let A be a unital ring.
i.) Assume that EA is a finitely generated and projective right A-module. Show that in this case

the dual left A-module E∗A is a finitely generated and projective left A-module.
Hint: Use that the notion of a dual basis is symmetric in EA and E∗A .

ii.) Let again EA be a finitely generated and projective right A-module and choose an idempotent
e ∈ Mn(A) with EA

∼= eAn. Find a description of the dual module E∗A using e.
Hint: Exercise 2.4.14.

iii.) Give an example of a projective right A-module and a dual basis {eλ, eλ}λ∈Λ for EA such that
the elements eλ ∈ E∗A do not span E∗A .

Exercise 2.4.16 (Equivalence of idempotents) Let A be a unital ring. Define two idempotents
e ∈ Mn(A) and f ∈ Mm(A) to be equivalent if there exist (rectangular) matrices u and v with e = uv
and f = vu. Show that this defines indeed an equivalence relation. Find a reasonable adaption of
this for a unital ∗-algebra and projections instead of general idempotents.

Exercise 2.4.17 (Finitely generated projective modules) Assume that EA is a projective right
A-module over a unital ring A which in addition is finitely generated with generators e1, . . . , en ∈ EA.
Show that there exists elements e1, . . . , en in the dual module such that together with the e1, . . . , en
one has a finite dual basis.
Hint: Start with an arbitrary dual basis {fλ, fλ}λniΛ and express the elements fλ by right A-linear combinations of
the generators e1, . . . , en.

Exercise 2.4.18 (The Grothendieck group) Consider the category AbSemiGroup of abelian semi-
groups with the usual morphisms of semi-groups. For a semi-group S one considers on S × S the
relation ∼ defined by

(s, t) ∼ (s′, t′) if there exists a u ∈ S with s+ t′ + u = s′ + t+ u. (2.4.9)

i.) Show that this defines an equivalence relation.
ii.) Suppose that S has the cancellation property, i.e. if s+ u = t+ u holds then s = t. Show that

in this case one can simplify the above construction and omit the usage of u in (2.4.9) to obtain
the same relation.
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iii.) Show that the semi-group addition + passes to the quotient G(S) = (S × S)
/
∼ and yields a

group structure. The group G(S) is called the Grothendieck group of S.
iv.) Show that S 3 s 7→ [(s, 0)] ∈ G(S) is a monoid morphism.
v.) Show that for a semi-group S with the cancellation property the canonical monoid morphism

S −→ G(S) is injective.
vi.) Show that S 7→ G(S) is functorial by specifying explicitly how semi-group morphisms pass to

group morphisms between the corresponding Grothendieck groups. This yields a functor

G : AbSemiGroup −→ Ab. (2.4.10)

Exercise 2.4.19 (K0 for a field) Let k be a field. Compute the semi-group Proj(k) and the corre-
sponding K0-group K0(k).
Hint: First show that every finitely generated projective module over k is actually a finite-dimensional vector space.

Exercise 2.4.20 (Serre-Swan Theorem in the continuous case) Adapt the proof of the Serre-
Swan Theorem 2.3.9 for topological vector bundles over a connected compact Hausdorff space X.

Exercise 2.4.21 (Property (K)) Let R be an ordered ring and C = R(i) as usual. Show that
Mn(C) satisfies property (K) whenever R is an ordered field. Does the same statement hold also for
R = Z?

Exercise 2.4.22 (Property (H)) Let R be a real closed field, see e.g. [66, ????], with its canonical
ordering. Then we know that C = R(i) is algebraically closed. Show that Mn(C) satisfies property
(H+) for all n ∈ N.

Exercise 2.4.23 (A Banach ∗-algebra without property (K)) Show that the Banach ∗-algebra
A from Exercise 1.4.20 does not satisfy (K).
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Chapter 3

Tensor Products

In this chapter we describe various tensor product constructions for inner-product and pre-Hilbert
modules. The first construction of internal tensor products builds on the tensor product of bimodules
over the algebra in the middle. Here we follow Rieffel to introduce a new inner product on this tensor
product once we have inner products on the two factors. A step of major importance will be to show
that complete positivity is preserved under this internal tensor product. The second construction
extends the external tensor product (over C) of ∗-algebras to bimodules and their inner products.
This construction will provide us many interesting examples of inner-product bimodules.

3.1 Internal Tensor Products

Following Rieffel’s original construction of a tensor product of Hilbert modules over C∗-algebras,
see [97, 98], we can cast his approach now into our algebraic framework, following essentially [26, 29].
As before, we consider a ring C = R(i) as scalars where R is an ordered ring and i2 = −1.

3.1.1 Construction of the Internal Tensor Product

We start with a (B,A)-bimodule with A-valued inner product 〈 · , · 〉E
A
compatible with the left B-

module structure. Moreover, let FB be a right B-module with B-valued inner product 〈 · , · 〉F
B
. Then

the tensor product FB⊗B EB A is a right A-module in the usual way. For elementary tensors we define〈
y ⊗ x, y′ ⊗ x′

〉F⊗E

A
=
〈
x, 〈y, y′〉F

B
· x′
〉E

A
. (3.1.1)

Lemma 3.1.1 The sesquilinear extension of (3.1.1) yields a well-defined A-valued inner product
〈 · , · 〉F⊗E

A
on FB ⊗B EB A.

Proof: We have to show that (3.1.1) is well-defined on the B-tensor product. Let x, x′ ∈ EB A and
y, y′ ∈ FB as well as b ∈ B. Then we have〈

(y · b)⊗ x, y′ ⊗ x′
〉F⊗E

A
=
〈
x, 〈y · b, y′〉F

B
· x′
〉E

A

=
〈
x,
(
b∗〈y, y′〉F

B

)
· x′
〉E

A

=
〈
x, b∗ ·

(
〈y, y′〉F

B
· x′
)〉E

A

=
〈
b · x, 〈y, y′〉F

B
· x′
〉E

A

=
〈
y ⊗ (b · x), y′ ⊗ x′

〉F⊗E

A
,
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and analogously 〈y⊗x, (y′ ·b)⊗x′〉F⊗E

A
= 〈y⊗x, y′⊗(b·x′)〉F⊗E

A
. Thus the inner product is well-defined

over ⊗B. Let us now show the properties of an algebra-valued inner product. First, it is clear (on
elementary tensors and by construction for general ones) that 〈 · , · 〉F⊗E

A
is C-antilinear in the first

and C-linear in the second argument. Moreover, we have〈
y ⊗ x, (y′ ⊗ x′) · a

〉F⊗E

A
=
〈
x, 〈y, y′〉F

B
· (x′ · a)

〉E

A

=
〈
x,
(
〈y, y′〉F

B
· x′
)
· a
〉E

A

=
〈
x, 〈y, y′〉F

B
· x′
〉E

A
a

=
〈
y ⊗ x, y′ ⊗ x′

〉F⊗E

A
a

as well as (〈
y ⊗ x, y′ ⊗ x′

〉F⊗E

A

)∗
=
(〈
x, 〈y, y′〉F

B
· x′
〉E

A

)∗
=
〈
〈y, y′〉F

B
· x′, x

〉E

A

=
〈
x′,
(
〈y, y′〉F

B

)∗ · x〉E

A

=
〈
x′, 〈y′, y〉F

B
· x
〉E

A

=
〈
y′ ⊗ x′, y ⊗ x

〉F⊗E

A
.

This implies that 〈 · , · 〉F⊗E

A
is indeed an A-valued inner product on FB ⊗B EB A. �

If one defines (3.1.1) just over the C-tensor product then the above Lemma can be interpreted in
such a way that tensors of the form y ⊗ (b · x) − (y · b) ⊗ x are in the degeneracy space of the inner
product. Thus the passage to the tensor product over B can be seen as being part of the passage to
the quotient by the degeneracy space as we did that before in Proposition 2.1.3. However, the next
example shows that the degeneracy space can be strictly larger:

Example 3.1.2 Let R = (R[x])[y] = R[x, y] be the polynomials in two variables. Then we can endow
R with the structure of an ordered ring by viewing it as a subring of (RJxK)JyK, where the latter is
endowed with the ordering according to Example 1.1.3, ii.), applied twice. As usual C = C[x, y].
Now we consider H ⊆ C being the ideal generated by x and y, i.e. H = xC+ yC. Geometrically, this
is the vanishing ideal of (0, 0) in the (x, y)-plane. Being an ideal, H is a module over C and being
a submodule it inherits the canonical positive definite inner product. Thus it is a pre-Hilbert space
over C. We consider now the tensor product H ⊗ H with the induced inner product according to
(3.1.1). It is well-known that in H ⊗H the two elements x⊗ y and y ⊗ x are different. However,

〈x⊗ y − y ⊗ x, f ⊗ g〉 = xyfg − yxfg = 0

shows that x⊗ y− y⊗ x is in the degeneracy space of (3.1.1). Thus these torsion effects cause (3.1.1)
to be degenerate even though the inner products on each of the two factors are non-degenerate.

From this example we see that in general it may happen that the inner product 〈 · , · 〉F⊗E

A
is degenerate.

Thus we divide by the degeneracy space according to Proposition 2.1.3 to obtain a non-degenerate
inner product, i.e. an inner-product module:

Definition 3.1.3 (Internal tensor product) Let FB be a right B-module with B-valued inner
product and let EB A be a (B,A)-bimodule with compatible A-valued inner product. Then we define
the internal tensor product of F and E by

FB ⊗̂B EB A = FB ⊗B EB A

/
(FB ⊗B EB A)⊥, (3.1.2)

endowed with the non-degenerate induced A-valued inner product 〈 · , · 〉F⊗E

A
.
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As usual, we shall drop the explicit reference to the algebra B and simply write F ⊗̂ E if the partic-
ipating algebras are clear from the context. Moreover, we will see more particular situations where
automatically (F ⊗ E)⊥ = {0} and thus the quotient (3.1.2) is unnecessary as opposed to Exam-
ple 3.1.2.

Lemma 3.1.4 Let FC B be a ( C,B)-bimodule with compatible B-valued inner product and EB A as
before. Then the canonical left C-module structure on FC B ⊗B EB A is compatible with 〈 · , · 〉F⊗E

A
and

on the inner-product A-module FC B ⊗̂B EB A we obtain a ∗-representation of C.

Proof: Clearly, it is sufficient to consider elementary tensors y ⊗ x, y′ ⊗ x′ ∈ F⊗ E. We have for
c ∈ C 〈

c · (y ⊗ x), y′ ⊗ x′
〉F⊗E

A
=
〈
(c · y)⊗ x, y′ ⊗ x′

〉F⊗E

A

=
〈
x, 〈c · y, y′〉F

B
· x′
〉E

A

=
〈
x, 〈y, c∗ · y′〉F

B
· x′
〉E

A

=
〈
y ⊗ x, (c∗ · y′)⊗ x′

〉F⊗E

A

=
〈
y ⊗ x, c∗ · (y′ ⊗ x′)

〉F⊗E

A
,

showing that the left C-module structure is compatible with 〈 · , · 〉F⊗E

A
. Using this, Proposition 2.1.27

shows that the C-module structure passes to the quotient and yields a ∗-representation of C on F⊗̂E.�

The next nice property of ⊗̂ is the “associativity”. As in the usual case of ⊗, the associativity only
holds up to a canonical isomorphism. We will be slightly pedantic here as later we will need precisely
this canonical isomorphism to formulate a bicategorical approach to representation theory. Moreover,
due to the additional quotient procedure needed in ⊗̂, some more care is needed:

Proposition 3.1.5 Let FC B and EB A be bimodules with algebra-valued inner products which are com-
patible with the corresponding left actions of C and B, respectively. Moreover, let GC be a right
C-module with C-valued inner product.
i.) The C-linear map(

GC ⊗C FC B

)
⊗B EB A

/(
( GC ⊗C FC B)⊗B EB A

)⊥ −→ (
GC ⊗̂C FC B

)
⊗̂B EB A, (3.1.3)

determined by [(z ⊗ y) ⊗ x] 7→ [[z ⊗ y] ⊗ x], is a well-defined isometric isomorphism of inner
product modules over A.

ii.) Analogously, the map

GC ⊗C

(
FC B ⊗B EB A

)/(
GC ⊗C ( FC B ⊗B EB A)

)⊥ −→ GC ⊗̂C

(
FC B ⊗̂B EB A

)
, (3.1.4)

determined by [z⊗ (y⊗ x)] 7→ [z⊗ [y⊗ x]], gives a well-defined isometric isomorphism of inner
product modules over A.

iii.) The canonical isomorphism of right A-modules

( G ⊗C F)⊗B E 3 (z ⊗ y)⊗ x 7→ z ⊗ (y ⊗ x) ∈ G ⊗C (F⊗B E) (3.1.5)

induces a well-defined isometric isomorphism

a :
(
G ⊗̂C F

)
⊗̂B E −→ G ⊗̂C

(
F ⊗̂B E

)
(3.1.6)

of inner product modules over A. In particular, we have for equivalence classes of elementary
tensors

a
(
[[z ⊗ y]⊗ x]

)
= [z ⊗ [y ⊗ x]]. (3.1.7)
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Proof: To show the well-definedness of the above maps we have to consider φ ∈ (( G ⊗ F) ⊗ E)⊥

and show that φ becomes an element in the degeneracy space of ( G ⊗̂F)⊗ E. Denote the image of φ
in ( G ⊗̂F)⊗ E by φ̃. A general vector in ( G ⊗̂F)⊗ E is a linear combination of vectors of the form
[z ⊗ y]⊗ x. Thus for φ =

∑
i(zi ⊗ yi)⊗ xi we compute

〈
φ̃, [z ⊗ y]⊗ x

〉( G⊗̂F)⊗E

A
=
∑

i

〈
[zi ⊗ yi]⊗ xi, [z ⊗ y]⊗ x

〉( G⊗̂F)⊗E

A

=
∑

i

〈
xi,
〈
[zi ⊗ yi], [z ⊗ y]

〉 G⊗̂F

B
· x
〉E

A

=
∑

i

〈
xi, 〈zi ⊗ yi, z ⊗ y〉 G⊗F

B · x
〉E

A

=
∑

i

〈
(zi ⊗ yi)⊗ xi, (z ⊗ y)⊗ x

〉( G⊗F)⊗E

A
,

= 0

by the assumption that φ is orthogonal to all vectors. It follows that φ̃ ∈ (( G ⊗̂ F) ⊗ E)⊥ and
thus (3.1.3) is well-defined. Moreover, this map is clearly right A-linear. The analogous computation
shows that (3.1.3) is isometric. Since an isometric map between inner-product modules with non-
degenerate inner products is injective we conclude that (3.1.3) is injective, too, see Exercise 3.3.1.
The surjectivity is clear and thus we have an isometric bijection. This implies that the inverse
coincides with the adjoint, showing the first part. The second statement is proved analogously. For
the third part we compute that on the level of representatives that (3.1.5) is isometric, since〈

(z ⊗ y)⊗ x, (z′ ⊗ y′)⊗ x′
〉( G⊗F)⊗E

A
=
〈
x,
〈
z ⊗ y, z′ ⊗ y′

〉 G⊗F

B
· x′
〉E

A

=
〈
x,
〈
y, 〈z, z′〉 GC · y

′〉F

B
· x′
〉E

A

=
〈
y ⊗ x,

(
〈z, z′〉 GC · y

′
)
⊗ x′

〉F⊗E

A

=
〈
y ⊗ x, 〈z, z′〉 GC · (y

′ ⊗ x′)
〉F⊗E

A

=
〈
z ⊗ (y ⊗ x), z′ ⊗ (y′ ⊗ x′)

〉 G⊗(F⊗E)

A

for all x, x′ ∈ E, y, y′ ∈ F, and z, z′ ∈ G. As (3.1.5) is clearly a right A-linear isomorphism (with the
obvious inverse) we obtain also in the quotient an isometric isomorphism(

( G ⊗F)⊗ E
)/(

( G ⊗F)⊗ E
)⊥ −→ (

G ⊗ (F⊗ E)
)/(

G ⊗ (F⊗ E)
)⊥
.

Together with the first and second part we obtain the isometric isomorphism a which encodes the
associativity of ⊗̂. The last equation is clear from the construction. �

We can now discuss the compatibility of the internal tensor product with adjointable (bi-) module
morphisms. Here we formulate the following lemma directly for three ∗-algebras A, B, and C with
corresponding bimodules. Analogous statements are also true for the case of only two ∗-algebras with
the first module being only a right module. This case is obtained by setting C = C.

Lemma 3.1.6 Let FC B, F′C B, EB A, and E′B A be bimodules with corresponding algebra-valued inner
products compatible with the corresponding left-module structures. Moreover, let S ∈ BB( FC B, F′C B)
and T ∈ BA( EB A, E′B A) be adjointable bimodule morphisms with adjoints S∗ and T ∗ being bimodule
morphisms, too. Then the algebraic tensor product

S ⊗B T : FC B ⊗B EB A −→ F′C B ⊗B E′B A (3.1.8)
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induces an adjointable bimodule morphism

S ⊗̂B T : FC B ⊗̂B EB A −→ F′C B ⊗̂B E′B A, (3.1.9)

whose adjoint is given by S∗ ⊗̂B T
∗. If S and T are surjective isometric (not necessarily adjointable)

then S ⊗̂B T is well-defined and unitary.

Proof: Let S and T be adjointable bimodule morphisms with bimodule morphisms S∗ and T ∗ as
adjoints. Then 〈

(S ⊗ T )(y ⊗ x), y′ ⊗ x′
〉F′⊗E′

A
=
〈
S(y)⊗ T (x), y′ ⊗ x′

〉F′⊗E′

A

=
〈
T (x),

〈
S(y), y′

〉F′
B
· x′
〉E′

A

=
〈
x, T ∗

(〈
y, S∗(y′)

〉F

B
· x′
)〉E

A

=
〈
x,
〈
y, S∗(y′)

〉F

B
· T ∗(x′)

〉E

A

=
〈
y ⊗ x, S∗(y′)⊗ T ∗(x′)

〉F⊗E

A

=
〈
y ⊗ x, (S∗ ⊗ T ∗)(y′ ⊗ x′)

〉F⊗E

A
,

since T ∗ is left B-linear. This shows that S∗⊗ T ∗ is an adjoint of S ⊗ T . By an analogous argument
as in Proposition 2.1.27, the maps S ⊗ T and S∗ ⊗ T ∗ preserve the degeneracy space and hence give
well-defined adjointable bimodule morphisms in the quotient. This shows the first part. The case of
surjective isometric bimodule morphisms (adjointable or not) follows from Exercise 3.3.1. �

The above results can now be summarized as follows if we insist on non-degenerate inner products,
i.e. ∗-representations on inner-product modules, from the beginning. In this case the adjointable
endomorphisms BA(HA) form a ∗-algebra themselves and the adjoints are unique. This leads to the
following theorem [29]:

Theorem 3.1.7 (Internal tensor product) Let A, B, and C be ∗-algebras over C. Then the
internal tensor product ⊗̂ yields a covariant functor

⊗̂B : -mod∗
B( C)× -mod∗

A(B) −→ -mod∗
A( C), (3.1.10)

where the ∗-representations are tensored by means of Lemma 3.1.4. The morphisms are tensored using
Lemma 3.1.6.

Proof: We have already seen that the internal tensor product of ∗-representations gives again a
∗-representation. Moreover, the internal tensor product of intertwiners yields an intertwiner. Thus it
remains to show that the internal tensor product preserves the identity morphisms and the composi-
tion of morphisms: for x ∈ EB A and y ∈ FC B we have

(S ⊗̂B T )([y ⊗ x]) = [S(y)⊗ T (x)]

by construction. Since the equivalence classes of elementary tensors also span the quotient FC B⊗̂B EB A,
it suffices to check the compatibility with the composition on such equivalence classes of elementary
tensors where it is trivial. �

Remark 3.1.8 The probably remarkable point is that the additional structure of the inner products
allows to absorb torsion effects of the ring-theoretic tensor product as in Example 3.1.2 in a universal
way by replacing this tensor product with the internal tensor product ⊗̂. The price is of course the
additional quotient procedure needed in ⊗̂.

c© Stefan Waldmann 2019-01-25 15:18:20 +0100 Hash: 13717b6



66 3. TENSOR PRODUCTS

For strongly non-degenerate ∗-representations we obtain the following result. Note that the right
factor can be arbitrary.

Corollary 3.1.9 Let A, B, and C be ∗-algebras over C. The internal tensor product restricts to a
functor

⊗̂B : -Mod∗
B( C)× -mod∗

A(B) −→ -Mod∗
A( C). (3.1.11)

Proof: Let FC B ∈ -Mod∗
B( C) be a strongly non-degenerate ∗-representation of C on a inner-product

right B-module and let EB A ∈ -mod∗
A(B) be arbitrary. Let y ∈ F and x ∈ E. Then we find ci ∈ C

and yi ∈ F with y = c1 · y1 + · · ·+ cn · yn. Thus∑
i
ci · (yi ⊗ x) =

∑
i
(ci · yi)⊗ x = y ⊗ x

shows that C · (F⊗ E) = F⊗ E. From this, C · (F ⊗̂ E) = F ⊗̂ E follows immediately. �

3.1.2 Complete Positivity of the Internal Tensor Product

We can now formulate the main question of this section, namely whether and how the internal tensor
product is compatible with our positivity requirements. Let the inner products 〈 · , · 〉F

B
and 〈 · , · 〉E

A

be positive. Then the map
b 7→ 〈x, b · x〉E

A
(3.1.12)

is clearly a positive map. Indeed, 〈x, (b∗b) · x〉E
A

= 〈b · x, b · x〉E
A
∈ A+ by the positivity of the inner

product. Hence it follows from 〈y, y〉F
B
∈ B+ that

〈y ⊗ x, y ⊗ x〉F⊗E

A
=
〈
x, 〈y, y〉F

B
· x
〉E

A
∈ A+. (3.1.13)

Thus the inner product takes positive values on the elementary tensors y⊗ x ∈ F⊗ E. However, not
every element in F⊗ E is of the form y⊗ x. In general, we need linear combinations φ =

∑n
i=1 yi⊗ xi.

Now the sesquilinear evaluation of 〈φ, φ〉F⊗E

A
gives off-diagonal terms 〈xi, 〈yi, yj〉FB · xj〉

E

A
which in

general are non-zero but not necessarily positive. Thus the mere positivity of the inner products
〈 · , · 〉E

A
and 〈 · , · 〉F

B
does not seem to guarantee a positive inner product 〈 · , · 〉F⊗E

A
directly. This

problem is the ultimate reason that we required complete positivity for the inner products instead of
just positivity. In the case of completely positive inner products, we obtain the following result [29,
Thm. 4.7]:

Theorem 3.1.10 (Complete positivity of the internal tensor product) Let FB be a right B-
module with B-valued inner product and let EB A be a (B,A)-bimodule with compatible A-valued inner
product. If both inner products 〈 · , · 〉F

B
and 〈 · , · 〉E

A
are completely positive then 〈 · , · 〉F⊗E

A
is completely

positive, too.

Proof: Let φ(1), . . . , φ(n) ∈ F⊗ E be given. Then we can write these vectors as

φ(α) =

N∑
i=1

y
(α)
i ⊗ x(α)

i

with y(α)
i ∈ F and x(α)

i ∈ E. Without restriction we can assume that N is the same for all α. We have
to show that the matrix

(
〈φ(α), φ(β)〉F⊗E

A

)
∈ Mn(A) is positive. To this end, we consider the map

f : Mn(MN (B)) −→ Mn(MN (A))

defined by

f(B) =

(〈
x

(α)
i , Bαβ

ij · x
(β)
j

〉E

A

)
,
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where B = (Bαβ
ij ) with the Greek indices running from 1 to n and the Latin ones running from 1 to

N . We compute f(B∗B) explicitly yielding

f(B∗B) =

(〈
x

(α)
i , (B∗B)αβij · x

(β)
j

〉E

A

)
=

(〈
x

(α)
i ,

(
n∑
γ=1

N∑
k=1

(Bγα
ki )∗Bγβ

kj

)
· x(β)

j

〉E

A

)

=

n∑
γ=1

N∑
k=1

(〈
Bγα
ki · x

(α)
i , Bγβ

kj · x
(β)
j

〉E

A

)
︸ ︷︷ ︸

=Cγk

with Cγk ∈ Mn(MN (A))+, since 〈 · , · 〉E
A
is completely positive. This implies f(B∗B) ∈ Mn(MN (A))+

for all B and thus the map f is a positive map. Since the matrix
(〈
y

(α)
i , y

(β)
j

〉F

B

)
∈ Mn(MN (B))+ is

positive by the complete positivity of 〈 · , · 〉F
B
we conclude that also the matrix

f

((〈
y

(α)
i , y

(β)
j

〉F

B

))
=

(〈
x

(α)
i ,

〈
y

(α)
i , y

(β)
j

〉F

B
· x(β)

j

〉E

A

)
∈ Mn(MN (A))+

is positive. Now we use the canonical isomorphism Mn(MN (A)) ∼= MnN (A) ∼= MN (Mn(A)) as well
as the positive map τ : MN (Mn(A)) −→ Mn(A) from Example 1.1.14. Thus also

τ
(
f
((〈

y
(α)
i , y

(β)
j

〉F

B

)))
=

N∑
i,j=1

(〈
x

(α)
i ,

〈
y

(α)
i , y

(β)
j

〉F

B
· x(β)

j

〉E

A

)
=
(〈
φ(α), φ(β)

〉F⊗E

A

)
∈ Mn(A)+

is positive which finishes the proof. �

From this theorem we immediately obtain the following corollary as complete positivity is pre-
served when passing to quotients:

Corollary 3.1.11 If the algebra-valued inner products on FB and EB A are completely positive then
FB ⊗̂B EB A is a pre-Hilbert module over A.

Corollary 3.1.12 The internal tensor product yields functors

⊗̂B : -rep∗
B( C)× -rep∗

A(B) −→ -rep∗
A( C) (3.1.14)

and
⊗̂B : -Rep∗

B( C)× -rep∗
A(B) −→ -Rep∗

A( C). (3.1.15)

By fixing one of the two arguments of the functor ⊗̂ we obtain further functors which allow to move
between ∗-representation theories of ∗-algebras. The two following examples will partially answer the
questions asked in Section 1.3.

Example 3.1.13 (Rieffel induction) Let EB A ∈ -rep∗
A(B) be fixed. Then tensoring with EB A

from the left gives a functor

RE = EB A⊗̂A : -rep∗
D(A) −→ -rep∗

D(B), (3.1.16)

the so-called Rieffel induction. For the particular case D = C we simply obtain the Rieffel induction

RE = EB A⊗̂A : -rep∗ (A) −→ -rep∗ (B), (3.1.17)
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which will allow to compare (or at least relate) the representation theories of A and B. Let us
unwind the definition of RE more precisely: on objects it is simply the internal tensor product with
EB A and on morphisms it is the internal tensor product with the identity morphism on EB A, i.e. for
T : HA D −→ H′A D we set

RE(T ) = idE ⊗̂T. (3.1.18)

By Theorem 3.1.7 this is indeed a morphism RE(T ) : RE( HA D) −→ RE( H′A D) and RE is compatible
with composition of morphisms. Thus RE is a functor. If we only require EB A ∈ -mod∗

A(B) then we
still get a functor

RE : -mod∗
D(A) −→ -mod∗

D(B) (3.1.19)

for each auxiliary ∗-algebra D. If in addition EB A ∈ -Rep∗
A(B) or -Mod∗

A(B), respectively, we obtain
a functor preserving the strong non-degeneracy of the ∗-representations.

The Rieffel induction was originally formulated by Rieffel for the case of C∗-algebras, see [96,97],
with the auxiliary ∗-algebra D being just the complex numbers D = C. In addition to our algebraic
framework he required analytic features like completeness with respect to norm topologies induced
by the inner products. However, for C∗-algebras these kind of requirements are automatic as e.g.
any ∗-representation of a C∗-algebra on a pre-Hilbert space is continuous and can be extended to a
∗-representation on the Hilbert space completion. More details on the C∗-algebraic version can be
found e.g. in the textbooks [79,81,95] as well as in the Exercises 2.4.1 and 2.4.2.

The second example is interesting when we want to study the representation theory of a fixed
∗-algebra A but on pre-Hilbert modules over different auxiliary ∗-algebras.

Example 3.1.14 (Change of base ring) Let D and D′ be two ∗-algebras replacing the scalars C
and let G

D D′ ∈ -rep∗
D′(D). Then we obtain a functor

SG = ⊗̂ GD D′ : -rep∗
D(A) −→ -rep∗

D′(A) (3.1.20)

for any ∗-algebra A: on objects we set SG( HA D) = HA D ⊗̂D G
D D′ and on intertwiners T : HA D −→

H′A D we tensor with the identity, i.e. SG(T ) = T ⊗̂ idG. Analogously, we have variants of SG for
-mod∗ and -Rep∗ as well as -Mod∗ , too, see also Exercise 3.3.2.

The associativity of the internal tensor product (up to the isomorphism a) according to Proposi-
tion 3.1.5 can now be used to interchange the functors RE and SG. Here we have to be slightly more
careful as the functors do not just commute but they only commute up to a natural transformation:

Proposition 3.1.15 Let EB A ∈ -mod∗
A(B) and G

D D′ ∈ -mod∗
D′(D) be given. Then the functors RE

and SG commute up to the natural isomorphism

a : SG ◦ RE −→ RE ◦ SG (3.1.21)

induced by the associativity map a from Proposition 3.1.5.

Proof: We have to show that changing the brackets in Proposition 3.1.5 gives a natural isomorphism
between F = SG ◦ RE and G = RE ◦ SG. Let HA D ∈ -mod∗

D(A) be given. Then

(SG ◦ RE)( HA D) =
(

EB A ⊗̂A HA D

)
⊗̂D GD D′

and
(RE ◦ SG)( HA D) = EB A ⊗̂A

(
HA D ⊗̂D GD D′

)
.

For a morphism T : HA D −→ H′A D we have

(SG ◦ RE)(T ) =
(
idE ⊗̂AT

)
⊗̂D idG
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and
(RE ◦ SG)(T ) = idE ⊗̂A

(
T ⊗̂D idG

)
.

Now we define aH : (SG ◦ RE)( HA D) −→ (RE ◦ SG)( HA D) on elementary tensors before taking the
quotient needed for ⊗̂ by

aH((x⊗ φ)⊗ y) = x⊗ (φ⊗ y),

and use the induced map on ⊗̂-tensor products according to Proposition 3.1.5. By putting things
together, it is clear that

(RE ◦ SG)(T ) ◦ aH = aH′ ◦ (SG ◦ RE)(T ),

which shows that a is a natural transformation. Finally, since all the maps aH are even isometric
isomorphisms (with the obvious inverses) and hence unitary intertwiners by Proposition 3.1.5, we
have a natural isomorphism as claimed. �

We can rephrase the statement of the proposition in the following way: the diagram of functors

-mod∗
D(A) -mod∗

D(B)

-mod∗
D′(A) -mod∗

D′(B)

RE

SG SE

RG

a (3.1.22)

commutes up to the natural isomorphism given by the associativity a of the internal tensor product.
We conclude this section with a remark on the necessity to use completely positive inner products:

this is unavoidable if one insists to obtain pre-Hilbert spaces out of Rieffel induction. To this end we
need the following lemma which is also of independent interest, see [31, Lem. 3.2]:

Lemma 3.1.16 Let A be a unital ∗-algebra over C = R(i) and let n ∈ N.
i.) If Ω: Mn(A) −→ C is a positive linear functional then there exists a strongly non-degenerate
∗-representation π on a pre-Hilbert space H of A and vectors φ1, . . . , φn ∈ H with

nΩ(A) =

n∑
i,j=1

〈φi, π(aij)φj〉 (3.1.23)

for all A = (aij) ∈ Mn(A).
ii.) Conversely, if π : A −→ B(H) is a ∗-representation on a pre-Hilbert space and φ1, . . . , φn ∈ H

then

A 7→
n∑

i,j=1

〈φi, π(aij)φj〉 (3.1.24)

is a positive linear functional on Mn(A).

Proof: For the first part we consider the elementary matrices Eij ∈ Mn(A) with 1 at the (i, j)-th
position and zero elsewhere. Since E∗ij = Eji and EijEk` = δjkEi` we have

nA =
∑

i,j,k,`
E∗jiai`Ek`.

Now let (HΩ,ΠΩ) be the GNS representation of Mn(A) with respect to Ω as in Proposition 1.2.6. The
map a 7→ ΠΩ(a1n×n) defines a strongly non-degenerate ∗-representation of A onHΩ. Now we consider
the vectors φi =

∑
j ψEji ∈ HΩ where as usual ψA denotes the equivalence class of A ∈ Mn(A) in the
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GNS pre-Hilbert space. With these vectors, (3.1.23) is a simple computation. The second part is a
straightforward computation as well. For A = (aij) ∈ Mn(A) we have∑

i,j

〈
φi, π((A∗A)ij)φj

〉
=
∑

i,j,k

〈
φi, π(a∗kiakj)φj

〉
=
∑

i,j,k

〈
φ(aki)φi, π(akj)φj

〉
=
∑

k
〈ψk, ψk〉 ≥ 0

with ψk =
∑

i π(aki)φi. This shows that (3.1.24) is a positive linear functional. �

Using this lemma we can now formulate the necessity of completely positive inner products for
Rieffel induction, at least for the case of unital ∗-algebras:

Proposition 3.1.17 Let A be a unital ∗-algebra over C = R(i) and let EA be a right A-module with
A-valued inner product 〈 · , · 〉E

A
. Then the following statements are equivalent:

i.) For all strongly non-degenerate ∗-representations (H, π) ∈ -Rep∗ (A) of A, the inner product
〈 · , · 〉E⊗H on EA ⊗A H is positive.

ii.) The inner product 〈 · , · 〉E
A
is completely positive.

Proof: We have already shown ii.) =⇒ i.) in Theorem 3.1.10 in even larger generality for arbitrary
(H, π) ∈ -rep∗

D(A) with arbitrary auxiliary ∗-algebra D. Thus assume i.) and let x1, . . . , xn ∈ EA be
given. Let Ω: Mn(A) −→ C be positive and let (H, π) ∈ -Rep∗ (A) be a ∗-representation such that
(3.1.23) holds, according to Lemma 3.1.16. Then for A =

(
〈xi, xj〉EA

)
∈ Mn(A) we have

nΩ(A) =
∑

i,j

〈
φi, π

(
〈xi, xj〉EA

)
φj
〉

=

〈∑
i
xi ⊗ φi,

∑
j
xj ⊗ φj

〉E⊗H
≥ 0

by assumption. But this implies Ω(A) ≥ 0 for all positive Ω. Hence 〈 · , · 〉E
A
is completely positive.�

This algebraic observation can now be used to show that positive inner products for a C∗-algebra
are automatically completely positive since ∗-representations are known to be orthogonal sums of
cyclic representations, see Exercise 3.3.5.

3.2 External Tensor Products

In this short section we present yet another possibility to construct interesting bimodules, the external
tensor product.

As it is well-known, the tensor product A = A1⊗A2 over C of two ∗-algebras A1 and A2 is again
a ∗-algebra via the multiplication

(a1 ⊗ a2)(b1 ⊗ b2) = (a1b1)⊗ (a2b2) (3.2.1)

and the ∗-involution
(a1 ⊗ a2)∗ = a∗1 ⊗ a∗2. (3.2.2)

In this sense we have A ⊗ Mn(C) ∼= Mn(A) as a first example. The construction is functorial in the
obvious sense: If Φi : Ai −→ Bi are ∗-homomorphisms for i = 1, 2 then the tensor product

Φ = Φ1 ⊗ Φ2 : A1 ⊗ A2 −→ B1 ⊗ B2 (3.2.3)

is again a ∗-homomorphism. For Ψi : Bi −→ Ci we have

Ψ ◦ Φ = (Ψ1 ⊗ Ψ2) ◦ (Φ1 ⊗ Φ2) = (Ψ1 ◦ Φ1)⊗ (Ψ2 ◦ Φ2) (3.2.4)
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as well as
idA1

⊗ idA2
= idA1⊗A2

. (3.2.5)

Thus the tensor product ⊗ yields a functor

⊗ : -alg∗ × -alg∗ −→ -alg∗ , (3.2.6)

which yields a functor
⊗ : -Alg∗ × -Alg∗ −→ -Alg∗ (3.2.7)

in the case of unital ∗-algebras since 1A1
⊗1A2

is clearly a unit element for the external tensor product
A1⊗A2 if A1 and A2 are unital. Clearly, the external tensor product of two unital ∗-homomorphisms
is again unital.

Remark 3.2.1 (Composite systems) From a physical point of view, the external tensor product
corresponds to composite systems: If A1 is the observable algebra of the first subsystem and A2 is
the observable algebra of the second subsystem then the combined physical system has A1 ⊗ A2 as
observable algebra. As usual, some idealizations are made: for classical physics with phase spaces
M1 and M2 the external tensor product C∞(M1) ⊗ C∞(M2) is not quite C∞(M1 ×M2) but only
a dense subalgebra. Similarly, in the quantum mechanical situation with two Hilbert spaces H1 and
H2 the combined system has the Hilbert space tensor product H1 ⊗̂ H2 as Hilbert space, being the
completion of the algebraic tensor product with respect to the canonical inner product on H1 ⊗ H2.
For the bounded operators as observable algebras we have B(H1) ⊗ B(H2) ⊆ B(H1 ⊗̂ H2) where
in infinite dimension the inclusion is proper, but the algebraic tensor product is dense in various
topologies. In any case, the algebraic tensor product gives a reasonable observable algebra for the
combined system, though maybe not containing all of them. In our completely algebraic approach,
the algebraic external tensor product is all we can discuss here.

3.2.1 External Tensor Product of Inner-Product Bimodules

We shall now extend this construction to modules and bimodules. To this end we consider ∗-algebras
Ai and Bi for i = 1, 2 and set A = A1 ⊗ A2 and B = B1 ⊗ B2, respectively. Moreover, let E(1)

B1 A1

and E(2)

B2 A2
be bimodules over (B1,A1) and (B2,A2), respectively.

Lemma 3.2.2 The tensor product E = E(1) ⊗ E(2) becomes a (B,A)-bimodule via

(b1 ⊗ b2) · (x1 ⊗ x2) = (b1 · x1)⊗ (b2 · x2) (3.2.8)

and
(x1 ⊗ x2) · (a1 ⊗ a2) = (x1 · a1)⊗ (x2 ⊗ a2), (3.2.9)

where bi ∈ Bi, xi ∈ E(i) and ai ∈ Ai for i = 1, 2.

Proof: This is a trivial verification. �

Lemma 3.2.3 Let E(i)

Bi Ai
be (Bi,Ai)-bimodules with compatible Ai-valued inner products 〈 · , · 〉E

(i)

Ai
for

i = 1, 2. Then the C-sesquilinear extension of

〈x1 ⊗ x2, y1 ⊗ y2〉EA = 〈x1, y1〉E
(1)

A1
⊗ 〈x2, y2〉E

(2)

A2
(3.2.10)

endows E = E(1) ⊗ E(2) with an A-valued inner product which is compatible with the left B-module
structure.

Proof: Again, this is a simple computation. �
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As expected, the construction above is functorial in the best sense. Here we can show the following
lemma:

Lemma 3.2.4 Let Ai, Bi be ∗-algebras and let E(i)

Bi Ai
and F(i)

Bi Ai
be (Bi,Ai)-bimodules with Ai-valued

inner products 〈 · , · 〉E
(i)

Ai
and 〈 · , · 〉F

(i)

Ai
for i = 1, 2. Moreover, let Φi : E(i) −→ F(i) be adjointable

bimodule morphisms with adjoints Φ∗i being bimodule morphisms, too. Then

Φ = Φ1 ⊗ Φ2 : E(1) ⊗ E(2) −→ F(1) ⊗ F(2) (3.2.11)

is an adjointable (B,A)-bimodule morphism with adjoint given by

Φ∗ = Φ∗1 ⊗ Φ∗2. (3.2.12)

Moreover, idE(1) ⊗ idE(2) = idE and

(Ψ1 ⊗ Ψ2) ◦ (Φ1 ⊗ Φ2) = (Ψ1 ◦ Φ1)⊗ (Ψ2 ◦ Φ2) (3.2.13)

for the composition of adjointable bimodule morphisms.

Proof: We only compute the adjoint of Φ, the remaining statements are trivial. We have

〈y1 ⊗ y2,Φ(x1 ⊗ x2)〉F
A

= 〈y1 ⊗ y2,Φ1(x1)⊗ Φ2(x2)〉F
A

= 〈y1,Φ1(x1)〉F
(1)

A1
⊗ 〈y2,Φ2(x2)〉F

(2)

A2

= 〈Φ∗1(y1), x1〉F
(1)

A1
⊗ 〈Φ∗2(y2), x2〉F

(2)

A2

= 〈Φ1(y1)⊗ Φ2(y2), x1 ⊗ x2〉EA
= 〈(Φ∗1 ⊗ Φ∗2)(y1 ⊗ y2), x1 ⊗ x2〉EA

for all elementary tensors x1 ⊗ x2 ∈ E and y1 ⊗ y2 ∈ F. This gives (3.2.12). �

As already for the internal tensor product, it may happen that the inner product (3.2.10) is
degenerate. In fact, if the ∗-algebras are both C then there is no difference between the internal and
external tensor product and C⊗ C = C. Thus the Example 3.1.2 also applies for the external tensor
product.

In any case, we know how to handle a possible degeneracy of the inner product: we have to divide
by the degeneracy space E⊥. This way, we end up with a ∗-representation of B on an inner-product
module over A. We call this bimodule the external tensor product

E(1) ⊗ext E(2) = (E(1) ⊗ E(2))
/

(E(1) ⊗ E(2))⊥. (3.2.14)

Obviously, this is still compatible with morphisms and we obtain the following functor:

Proposition 3.2.5 For all ∗-algebras A1, A2, B1, and B2, the external tensor product ⊗ext is a
functor

⊗ext : -mod∗
A1

(B1)× -mod∗
A2

(B2) −→ -mod∗
A1⊗A2

(B1 ⊗ B2). (3.2.15)

3.2.2 External Tensor Products and Complete Positivity

We consider now the positivity requirements for the inner products. In order to show the complete
positivity of 〈 · , · 〉E

A
once the inner products 〈 · , · 〉E

(i)

Ai
are completely positive, we need the following

proposition which is also of independent interest. In fact, this statement is one of the main motivations
to consider completely positive maps instead of just positive maps:
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Proposition 3.2.6 Let Ai and Bi be ∗-algebras over C with i = 1, 2 and let A = A1 ⊗ A2 and
B = B1 ⊗ B2.
i.) For ai ∈ A++

i we have a1 ⊗ a2 ∈ A++.
ii.) For ai ∈ A+

i we have a1 ⊗ a2 ∈ A+.
iii.) For completely positive maps Φi : Ai −→ Bi, the tensor product Φ = Φ1 ⊗ Φ2 : A −→ B is

completely positive, too.

Proof: Let ai =
∑Ni

k=1 αikb
∗
ikbik with αik > 0 and bik ∈ Ai. Then

a1 ⊗ a2 =

N1∑
k=1

N2∑
`=1

α1kα2`(b1k ⊗ b2`)∗(b1k ⊗ b2`) ∈ A++

shows the first part. For the second part we observe that the map a1 7→ a1 ⊗ a∗2a2 is a positive
map A1 −→ A for all a2 ∈ A2: indeed a∗1a1 7→ (a∗1a1) ⊗ (a∗2a2) = (a1 ⊗ a2)∗(a1 ⊗ a2) ∈ A+. By
Exercise 1.4.6, ii.), this is enough to conclude that the map a1 7→ a1 ⊗ a∗2a2 is positive. Hence for
all a1 ∈ A+

1 also a1 ⊗ a∗2a2 ∈ A+. But this means that the map a2 7→ a1 ⊗ a2 is a positive map
for all a1 ∈ A+

1 . Hence, by the same argument, a1 ⊗ a2 ∈ A+ for all ai ∈ A+
i follows. The third

part requires slightly more work and illustrates again the importance of the notion of a completely
positive map. Let n ∈ N and A ∈ Mn(A1 ⊗ A2) be given. We write A as matrix A = (Aαβ) with
matrix entries Aαβ =

∑N
k=1 a

αβ
1k ⊗ aαβ2k and aαβik ∈ Ai. Without restriction we can assume that N is

the same for all α and β. Then we have

Φ(n)(A∗A) = Φ(n)

(
n∑
γ=1

(Aγα)∗Aγβ

)

=
n∑
γ=1

Φ

(
N∑

k,`=1

((
aγα1k

)∗ ⊗ (aγα2k

)∗)(
aγβ1` ⊗ a

γβ
2`

))

=
n∑
γ=1

N∑
k,`=1

Φ
(((

aγα1k

)∗
aγβ1`

)
⊗
((
aγα2k

)∗
aγβ2`

))

=

n∑
γ=1

N∑
k,`=1

(
Φ1

((
aγα1k

)∗
aγβ1`

)
⊗ Φ2

((
aγα2k

)∗
aγβ2`

))
. (∗)

We need now some auxiliary maps. First note that the matrix

Bγ
i =

(
Φi

((
aγαik
)∗
aγβi`

))
∈ MnN (Ai)

+

is positive for all γ and i = 1, 2: for all γ the matrix
((
aγαik
)∗
aγβi`

)
is positive by Lemma 2.1.12, i.),

and Φi is completely positive by assumption. Now we use the following map

∆: Mm(B1)⊗Mm(B2) −→ Mm(B1 ⊗ B2), (3.2.16)

defined by “evaluating on the diagonal”, i.e.(
bαβ1

)
⊗
(
bα
′β′

2

)
7→
(
bαβ1 ⊗ b

αβ
2

)
,

where α, β, α′, β′ = 1, . . . ,m denote the matrix indices. We claim that ∆ is positive. Indeed, let

B =

N∑
r=1

(
Bαβ

1r ⊗ B
α′β′

2r

)
∈ Mm(B1)⊗Mm(B2)
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be given. Then we have

∆(B∗B) =

N∑
r,s=1

∆((B1r ⊗ B2r)
∗(B1s ⊗ B2s))

=
N∑

r,s=1

m∑
γ,γ′=1

∆
((

(Bγα
1r )
∗
Bγβ

1s

)
⊗
((
Bγ′α′

2r

)∗
Bγ′β′

2s

))

=
N∑

r,s=1

m∑
γ,γ′=1

((
(Bγα

1r )
∗
Bγβ

1s

)
⊗
((
Bγ′α

2r

)∗
Bγ′β

2s

))

=
m∑

γ,γ′=1

((
N∑
r=1

Bγα
1r ⊗ B

γ′β
2r

)∗( N∑
s=1

Bγβ
1s ⊗ B

γ′β
2s

))

=
m∑

γ,γ′=1

((
bαγγ′

)∗(
bβγγ′

))
,

where bαγγ′ =
∑N

r=1B
γα
1r ⊗ Bγ′α

2r ∈ B1 ⊗ B2. But then by Lemma 2.1.12, i.), we finally see that the
matrix

((
bαγγ′

)∗(
bβγγ′

))
is (even algebraically) positive for all γ and γ′. Thus ∆(B∗B) ∈ Mm(B1 ⊗

B2)++. This shows that ∆ is a positive map. Note that ∆ is not a ∗-homomorphism. Now we can
evaluate (∗) further and get

Φ(n)(A∗A) =
n∑
γ=1

N∑
k,`=1

(
(Bγ

1 )
αβ
k` ⊗ (Bγ

2 )
αβ
k`

)

=
n∑
γ=1

N∑
k,`=1

(
∆(Bγ

1 ⊗ B
γ
2 )
αβ
k`

)
=

n∑
γ=1

(
τ(∆(Bγ

1 ⊗ B
γ
2 ))

αβ
)
,

where we have used on one hand the positive map ∆: MnN (B1)⊗MnN (B2) −→ MnN (B1⊗B2) and
on the other hand the positive map τ : MnN (B1⊗B2) = MN (Mn(B1⊗B2)) −→ Mn(B1⊗B2) from
Example 1.1.14. As for each γ the matrices Bγ

i are positive, their tensor product Bγ
1 ⊗B

γ
2 is positive

by the second part. Thus applying the positive maps ∆ and τ results in a positive matrix Φ(n)(A∗A)
which proves the complete positivity of Φ. �

Corollary 3.2.7 Let ωi : Ai −→ C be positive linear functionals. Then the linear functional ω1 ⊗
ω2 : A1 ⊗ A2 −→ C is positive as well.

Proof: This follows easily from the Proposition 3.2.6, iii.), as positive linear functionals are com-
pletely positive maps and C⊗ C = C. See also Exercise 3.3.3 for a more direct approach. �

Remark 3.2.8 (Entanglement) In general, the algebra A = A1 ⊗ A2 has more positive linear
functionals ω as those which are convex combinations of the form ω = ω1 ⊗ ω2 with positive linear
functionals ωi : Ai −→ C with i = 1, 2. The quantum mechanical interpretation is now the following:
recall that the combined system is described by A, while the two subsystems are described by A1

and A2, respectively. Then the corresponding states (viewed as positive linear functionals) of the
total system of the form ω = ω1 ⊗ ω2 show no correlations between the two sub-systems. Convex
combinations have correlations but these can be considered to be entirely classical. They are not
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entangled. The remaining positive functionals correspond to those states having correlations beyond
the classical correlations, i.e. entanglement. The characterization of such states is one of the primary
goals of quantum information theory and a highly non-trivial task, even for finite-dimensional matrix
algebras Ai = Mni(C), see again e.g. [21,92].

After this short excursion we come to the main theorem of this section, see [29, Remark 4.2]:

Theorem 3.2.9 (Complete positivity of external tensor product) Let Ai be ∗-algebras over
C = R(i) and let E(i)

Ai
be right Ai-modules with Ai-valued, completely positive inner products 〈 · , · 〉E

(i)

Ai
.

Then the A-valued external tensor product 〈 · , · 〉E
A
on EA = E(1)

A1
⊗ E(2)

A2
with A = A1⊗A2 is completely

positive, too.

Proof: Let 〈 · , · 〉E
A
for EA = E(1)

A1
⊗ E(2)

A2
be defined as in (3.2.10). Moreover, let φ(1), . . . , φ(n) ∈ E be

given which we can write as

φ(α) =

N∑
k=1

xα1k ⊗ xα2k

with xαik ∈ E(i). Then we have

〈
φ(α), φ(β)

〉E

A
=

N∑
k,`=1

〈
xα1k ⊗ xα2`, x

β
1k ⊗ x

β
2`

〉E

A
=

N∑
k,`=1

〈
xα1k, x

β
1`

〉E(1)

A1
⊗
〈
xα2k, x

β
2`

〉E(2)

A2
. (∗)

By assumption, the matrices

X(i) =
(〈
xαik, x

β
i`

〉E(i)

Ai

)
∈ MnN (Ai)

+

are positive. By Proposition 3.2.6, ii.), also their tensor product X(1)⊗X(2) ∈ MnN (A1)⊗MnN (A2)
is positive. After applying the positive diagonal map ∆ from (3.2.16) we obtain a positive matrix

∆
(
X(1) ⊗ X(2)

)
=
(〈
xα1k, x

β
1`

〉E(1)

A1
⊗
〈
xα2k, x

β
2`

〉E(2)

A2

)
∈ MnN (A1 ⊗ A2)+. (∗∗)

Finally, applying the positive map τ : MnN (A1 ⊗ A2) ∼= MN (Mn(A1 ⊗ A2)) −→ Mn(A1 ⊗ A2) from
Example 1.1.14, which is just the summation over k and ` in this case, we get from (∗) and (∗∗)(〈

φ(α), φ(β)
〉E

A

)
= τ∆

(
X(1) ⊗ X(2)

)
∈ Mn(A1 ⊗ A2)+,

which proves the complete positivity of 〈 · , · 〉E
A
. �

Corollary 3.2.10 The external tensor product ⊗ext yields a functor

⊗ext : -rep∗
A1

(B1)× -rep∗
A2

(B2) −→ -rep∗
A1⊗A2

(B1 ⊗ B2). (3.2.17)

Example 3.2.11 We can now view our canonical example of the (Mn(A),A)-bimodule An
Mn(A) A with

its canonical inner product from Example 2.2.2 as an external tensor product. Indeed, for a ∗-algebra
A we have the bimodule AA A with completely positive A-valued inner product 〈a, b〉 = a∗b which is
clearly compatible with the canonical left A-module structure. Moreover, Cn is a (Mn(C),C)-bimodule
with the canonical completely positive inner product, also compatible with the left Mn(C)-module
structure. With the canonical identifications A ⊗ C ∼= A and A ⊗Mn(C) ∼= Mn(A) we see that

AA A ⊗ext CnMn(C) C
∼= An

Mn(A) A, (3.2.18)

including all bimodule structures and inner products, see also Exercise 3.3.4.
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3.3 Exercises

Exercise 3.3.1 (Isometries are injective) A situation we encounter quite often is to have an iso-
metric C-linear map T : EA −→ E′A between two right A-modules with inner products which may be
degenerate.
i.) Show that in this case

kerT ⊆ E⊥A . (3.3.1)

Conclude that for a non-degenerate inner product on the domain EA the map T is injective.
ii.) Assume in addition that T is surjective. Show that T maps E⊥A into E′⊥A .
iii.) Assume again that T is surjective and assume that E′A is an inner-product module. Show that

in this case kerT = E⊥A .
iv.) Show that an isometric surjective T induces a unitary and hence adjointable right A-linear map

T : EA

/
E⊥A −→ E′A

/
E′⊥A . (3.3.2)

Exercise 3.3.2 (Change of base ring) Show that the change of base ring functor SG as in Exam-
ple 3.1.14 can also be defined as a functor

SG : -mod∗
D(A) −→ -mod∗

D′(A), (3.3.3)

whenever G
D D′ ∈∈ -mod∗

D′(D). Discuss the compatibility with strongly non-degenerate ∗-representations
of A, i.e. the compatibility with the subcategories -Rep∗ (A) and -Mod∗ (A), respectively.

Exercise 3.3.3 (Direct proof of Corollary 3.2.7) Give a direct proof for the fact that the tensor
product of positive linear functionals is again a positive linear functional without using the results of
Proposition 3.2.6.

Exercise 3.3.4 (An as external tensor product) Provide the isomorphism realizing (3.2.18) ex-
plicitly and check all its properties directly.

Exercise 3.3.5 (Positive inner products for C∗-algebras) Consider a ∗-algebra A over C =
R(i) and a right A-module EA with positive (but not necessarily completely positive) inner prod-
uct 〈 · , · 〉

A
.

i.) Suppose that (H, π) ∈ -Rep∗ (A) is a cyclic ∗-representation. Show that the induced inner
product 〈 · , · 〉E⊗H on EA ⊗A H is positive again.

ii.) Suppose next that (H, π) ∈ -Rep∗ (A) is an orthogonal direct sum of cyclic ∗-representations.
Show that also in this case 〈 · , · 〉E⊗H on EA ⊗A H is positive.

iii.) Conclude that for a C∗-algebra A over C every positive inner product is actually completely
positive.
Hint: Use first that every (strongly non-degenerate) ∗-representation of a C∗-algebra is (a completion of) a
direct sum of cyclic ∗-representations. Then use Proposition 3.1.17.

Exercise 3.3.6 (The internal tensor product and direct orthogonal sums) Let A, B, and
C be ∗-algebras over C = R(i). Moreover, let FC B and { E(i)

B A }i∈I be inner-product bimodules.
i.) Show that one has an isometric isomorphism

FC B ⊗̂B

(⊕
i∈I

E(i)

B A

)
∼=
⊕

i∈I
FC B ⊗̂B E(i)

B A . (3.3.4)

Show analogously, that such an isomorphism also exists for a direct sum in the first argument
of the internal tensor product.
Hint: It might be advantageous to use Exercise 2.4.6, iv.), to construct the orthogonal projections needed for
the right hand side directly.
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ii.) Let now F̃′C B and { Ẽ(i)

B A }i∈I be further inner-product modules with adjointable bimodule mor-
phisms, i.e. intertwiners, ψ : FC B −→ F̃′C B and φi : E(i)

B A −→ Ẽ(i)

B A for all i ∈ I. Let φ =⊕
i∈I φi :

⊕
i∈I E(i)

B A −→
⊕

i∈I Ẽ(i)

B A be the direct sum of the intertwiners φi. Show that the
diagram

FC B ⊗̂B

(⊕
i∈I E(i)

B A

) ⊕
i∈I FC B ⊗̂B E(i)

B A

F̃′C B ⊗̂B

(⊕
i∈I Ẽ(i)

B A

) ⊕
i∈I F̃′C B ⊗̂B Ẽ(i)

B A

ψ ⊗̂ φ
⊕

i∈I ψ ⊗̂ φi (3.3.5)

commutes. This is the naturality of the isomorphism in (3.3.4). Formulate and prove the
analogous statement for the direct sum in the first argument of the tensor product.

iii.) Conclude that the Rieffel induction functor is compatible with direct orthogonal sums of ∗-
representations.

Exercise 3.3.7 (Complex conjugation and ⊗ext) Let A1, A2, B1, and B2 be ∗-algebras over C =
R(i). We set A = A1 ⊗ A2 as well as B = B1 ⊗B2. Moreover, let E(1)

B1 A1
and E(2)

B2 A2
be inner-product

bimodules with external tensor product EB A = E(1)

B1 A1
⊗ext E(2)

B2 A2
.

i.) Show that there is a isometric isomorphism

i : E(1)

B1 A1
⊗ext E(2)

B2 A2
−→ E(1)

B1 A1
⊗ext E(2)

B2 A2
, (3.3.6)

mapping the equivalence class of y ⊗ x to the equivalence class of y ⊗ x.
ii.) Consider now additional inner-product bimodules F(1)

B1 A1
and F(2)

B2 A2
with external tensor prod-

uct FB A = F(1)

B1 A1
⊗ext F(2)

B2 A2
. Suppose T1 : E(1)

B1 A1
−→ F(1)

B1 A1
and T2 : E(2)

B2 A2
−→ F(2)

B2 A2
are

intertwiners. Show that the isomorphism i is natural in the sense that

i ◦ (T1 ⊗ext T2) = (T1 ⊗ext T2) ◦ i (3.3.7)

c© Stefan Waldmann 2019-01-25 15:18:20 +0100 Hash: 13717b6





Chapter 4

Morita Equivalence

In this chapter, we first present a rather naive approach to Morita theory: we require the existence
of certain bimodules which implements an equivalence relation between ∗-algebras. Beside the ring-
theoretic version which we discuss later, we have two flavours of this equivalence relation: ∗-Morita
equivalence and strong Morita equivalence. After this direct approach we discuss a more conceptual
definition of Morita equivalence as isomorphism in an enlarged category of ∗-algebras: we enlarge the
notion of ∗-homomorphism to certain inner-product or pre-Hilbert bimodules giving new categories
in which we have the same objects but more morphisms. In particular, more ∗-algebras become
isomorphic in these new categories, and isomorphism turns out to be precisely Morita equivalence.
The actual construction of these enlarged categories can be done in essentially two ways. Either
one has to use equivalence classes of bimodules to obtain an honest category, or one can stay with
bimodules directly, paying a price in form of getting only a bicategory. We will discuss both versions
in detail.

4.1 Strong and ∗-Morita Equivalence

Dealing directly with the bimodules, the approach is now rather simple: on one hand we have to
ensure a symmetric situation for the two ∗-algebras A and B. For EB A ∈ -mod∗

A(B) the ∗-algebras
A and B enter quite differently: there is only an A-valued inner product but not a B-valued one.
Thus we have to equip EB A with a B-valued inner product as well, now of course left B-linear and
C-linear in the first argument since EB A is a left B-module. On the other hand, the bimodule together
with the inner products should be as non-trivial as possible in order to get a meaningful equivalence
relation.

4.1.1 ∗-Equivalence and Strong Equivalence Bimodules

Concerning the non-triviality of an inner product one first observes the following lemma:

Lemma 4.1.1 Let EA be a right A-module with A-valued inner product 〈 · , · 〉
A
. Then

〈E, E〉
A

= spanC

{
〈x, y〉

A

∣∣ x, y ∈ E
}
⊆ A (4.1.1)

is a ∗-ideal in A.

Proof: With 〈x, y〉
A
a = 〈x, y · a〉

A
∈ 〈E, E〉

A
it follows immediately that 〈E, E〉

A
is a right ideal.

Moreover, (〈x, y〉
A

)∗ = 〈y, x〉
A
shows that 〈E, E〉

A
is stable under the ∗-involution. Hence it has to be

a ∗-ideal. �

79



80 4. MORITA EQUIVALENCE

One possibility to encode the non-triviality of an inner product is to demand that the ∗-ideal
〈E, E〉

A
coincides with the whole ∗-algebra A. In fact, this will be the crucial condition, thus deserving

its own name:

Definition 4.1.2 (Full inner product) Let EA be a right A-module with A-valued inner product
〈 · , · 〉

A
. Then the inner product is called full if

〈E, E〉
A

= A. (4.1.2)

Together with the non-degeneracy conditions on the inner product and with the symmetric situation
in A and B this constitutes the definition of an equivalence bimodule:

Definition 4.1.3 (Strong and ∗-equivalence bimodule) Let EB A be a (B,A)-bimodule with two
algebra-valued inner products 〈 · , · 〉E

A
and 〈 · , · 〉E

B
. Then the triple ( EB A, 〈·, ·〉

E

B
, 〈 · , · 〉E

A
) is called

∗-equivalence bimodule if the following conditions are fulfilled:
i.) The inner product 〈 · , · 〉E

A
is full, non-degenerate, and compatible with the left B-module struc-

ture.
ii.) The inner product 〈 · , · 〉E

B
is full, non-degenerate, and compatible with the right A-module

structure.
iii.) The bimodule E is strongly non-degenerate both as right A-module and as left B-module, i.e.

B · E = E = E · A. (4.1.3)

iv.) For all x, y, z ∈ E one has
x · 〈y, z〉E

A
= 〈x, y〉E

B
· z. (4.1.4)

If in addition both inner products are completely positive then ( EB A, 〈 · , · 〉
E

B
, 〈 · , · 〉E

A
) is called a strong

equivalence bimodule.

We remark that the notion of strong equivalence bimodules for C∗-algebras is due to Rieffel [96–98], see
also e.g. [81,95] for textbooks on the C∗-algebraic version of strong Morita equivalence. Ara discussed
∗-equivalences bimodules for general rings with involution [1, 2]. Our ∗-algebras are a particular case
of this slightly more general situation. Nevertheless, as we will aim for strong Morita equivalence of
∗-algebras anyway, we have presented Ara’s definition only in this context. Finally, the extension of
the notion of strong equivalence bimodules to ∗-algebras over rings of the form C = R(i) is due to
Bursztyn and Waldmann [26,29]. In the C∗-algebraic case, Rieffel considered additional completeness
conditions which in the end turn out to be easy to get. For a strong equivalence bimodule as above
one has certain automatic continuity properties which allow for an immediate completion: two C∗-
algebras are strongly Morita equivalent in Rieffel’s original sense iff their minimal dense ideals, i.e.
their Pedersen ideals, are ∗-Morita equivalent in Ara’s sense or strongly Morita equivalent in the
above sense, see [2] and [25, Lem. 3.1]. Taking the Pedersen ideals and building the completion can
be extended to bimodules and yields good functorial behaviour discussed in [29, Sect. 6B].

If the context is clear we shall drop the explicit reference to the inner products and simply call
EB A a ∗-equivalence or strong equivalence bimodule. Note that the B-valued inner product 〈 · , · 〉E

B

is C-linear and left B-linear in the first argument, according to our considerations in Section 2.1.2.
The existence of an equivalence bimodule of either one of the above flavours gives now the (pre-

liminary) definition of Morita equivalence:

Definition 4.1.4 (Strong and ∗-Morita equivalence) Let A and B be ∗-algebras over C = R(i).
i.) The ∗-algebras A and B are called ∗-Morita equivalent if there exists a ∗-equivalence bimodule

EB A.
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4.1. Strong and ∗-Morita Equivalence 81

ii.) The ∗-algebras A and B are called strongly Morita equivalent if there exists a strong equivalence
bimodule EB A.

The first task is to justify the notion “equivalence”. Thus we have to show that ∗-Morita equivalence
as well as strong Morita equivalence yield relations which are reflexive, symmetric and transitive. We
start with the following lemma:

Lemma 4.1.5 The (A,A)-bimodule AA A with the canonical inner products

〈a, b〉
A

= ab∗ and 〈a, b〉
A

= a∗b (4.1.5)

is a strong equivalence bimodule if and only if the algebra A is idempotent and non-degenerate.

Proof: It is straightforward to see that not only 〈 · , · 〉
A
but also 〈 · , · 〉

A
is an A-valued inner product

compatible with the left respectively right A-module structure. Moreover, 〈a, b〉
A

c = ab∗c = a〈b, c〉
A

shows the compatibility (4.1.4) of the two inner products. Now the algebra is idempotent if and only
if 〈 · , · 〉

A
is full in which case also 〈 · , · 〉

A
is full. The condition A · AA A = AA A = AA A · A is also

equivalent to A being idempotent. Finally, the inner products are non-degenerate if and only if A
is non-degenerate. The complete positivity of the inner product has already been shown for 〈 · , · 〉

A
.

For 〈 · , · 〉
A

it follows analogously. �

In the following we do not just require reflexivity but we want AA A to be an equivalence bimodule
directly. Thus we shall restrict to idempotent and non-degenerate ∗-algebras in the sequel. Taking a
closer look at representation theory and Morita theory shows that ∗-algebras which are non-idempotent
or degenerate behave rather pathological. Excluding them from our considerations is thus welcomed.
In any case, the restriction is not very severe as e.g. unital ∗-algebras are idempotent and non-
degenerate anyway, see also Proposition 2.2.6 and Exercise 2.4.12 for further non-unital examples.

The next lemma shows that complex conjugation turns equivalence bimodules into equivalence
bimodules:

Lemma 4.1.6 Let ( EB A, 〈 · , · 〉
E

B
, 〈 · , · 〉E

A
) be a ∗-equivalence (strong equivalence) bimodule. Then

( EA B, 〈 · , · 〉
E

A
, 〈 · , · 〉E

B
) is a ∗-equivalence (strong equivalence) bimodule as well where the bimodule

structure and the inner products are defined according to Proposition 2.1.2.

Proof: The proof consists in a simple verification of the required properties. Let E 3 x 7→ x ∈ E be
the canonical map. Then clearly a · x = x · a∗ and x · b = b∗ · x define the (A,B)-bimodule structure.
We have A · E = E = E ·B. Moreover, the definitions

〈x, y〉E
A

= 〈x, y〉E
A

and 〈x, y〉E
B

= 〈x, y〉E
B

yield algebra-valued inner products with the correct linearity properties. Clearly, they are still full and
non-degenerate. If the original inner products are completely positive then also the inner products
〈 · , · 〉E

A
and 〈 · , · 〉E

B
are completely positive, see Exercise 2.4.9. We have

〈x · b, y〉E
A

= 〈b∗ · x, y〉E
A

= 〈b∗ · x, y〉E
A

= 〈x, b · y〉E
A

= 〈x, b · y〉E
A

= 〈x, y · b∗〉E
A

,

showing that 〈 · , · 〉E
A

is compatible with the right B-module structure. Analogously, one shows the
compatibility of 〈 · , · 〉E

B
with the left A-module structure. For the compatibility of the inner products

we compute

x · 〈y, z〉E
B

=
(
〈y, z〉E

B

)∗ · x
=
(
〈y, z〉E

B

)∗ · x
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82 4. MORITA EQUIVALENCE

= 〈z, y〉E
B

· x

= z · 〈y, x〉E
A

= z ·
(
〈x, y〉E

A

)∗
= 〈x, y〉E

A
· z

for all x, y, z ∈ E. This completes the proof. �

The next lemma uses the non-degeneracy of the ∗-algebra as well as the fullness of the inner
product:

Lemma 4.1.7 Let EA be a right A-module with full A-valued inner product. If A is non-degenerate
then the map

A 3 a 7→ (x 7→ x · a) ∈ EndC(EA) (4.1.6)

is injective. The analogous statement holds for left modules.

Proof: Let a ∈ A with x · a = 0 for all x ∈ E be given. Then 0 = 〈y, x · a〉
A

= 〈y, x〉
A
a and hence

〈E, E〉
A
a = 0. Since by assumption 〈E, E〉

A
= A we conclude Aa = 0 which is only possible for a = 0

as A is non-degenerate. �

The associativity property of the inner products according to Definition 4.1.3, iv.), is responsible
for the following result which allows to get rid of possible degeneracy spaces:

Lemma 4.1.8 Let ( EB A, 〈 · , · 〉
E

B
, 〈 · , · 〉E

A
) be a (B,A)-bimodule with algebra-valued inner products

satisfying all requirements of a ∗-equivalence bimodule except that the inner products may be degenerate.
Moreover, assume A and B are non-degenerate ∗-algebras.

i.) We have E⊥B A = E⊥B A for the two degeneracy spaces

E⊥B A =
{
x ∈ EB A

∣∣ 〈x, · 〉E
A

= 0
}

and E⊥B A =
{
x ∈ EB A

∣∣ 〈 · , x〉E
B

= 0
}
. (4.1.7)

ii.) The quotient bimodule EB A

/
E⊥B A with the induced inner products is a ∗-equivalence bimodule.

iii.) If both inner products 〈 · , · 〉E
B

and 〈 · , · 〉E
A
are in addition completely positive then the quotient

bimodule is even a strong equivalence bimodule.

Proof: For the first part we consider x ∈ E⊥B A and y, z arbitrary. Then we have

〈y, x〉E
B

· z = y · 〈x, z〉E
A

= 0

for all z implying 〈y, x〉E
B

= 0 by Lemma 4.1.7. Since this holds for all y we conclude x ∈ E⊥B A. The
opposite inclusion follows analogously. Then the second part is clear as the two quotients EB A

/
E⊥B A =

EB A

/
E⊥B A simply coincide. The first variant inherits the A-valued inner product, the second the B-

valued inner product by Proposition 2.1.3. Thus overall we have both inner products well-defined
on the quotient, now being both non-degenerate. The other properties stay valid and hence we end
up with a ∗-equivalence bimodule. The third part follows as well since the complete positivity is
preserved when passing to the quotient. �

For two ∗-equivalence bimodules FC B and EB A we can form the B-tensor product FC B ⊗B EB A.
As we already know from Section 3.1, it is endowed with a canonically given A-valued inner product
〈 · , · 〉F⊗E

A
. With the same construction we also obtain a C-valued inner product, now C-linear and

left C-linear in the first argument, by setting〈
y ⊗ x, y′ ⊗ x′

〉F⊗E

C
=

〈
y · 〈x, x′〉E

B
, y′
〉F

C
(4.1.8)

on elementary tensors y⊗ x, y′⊗ x′ ∈ F⊗B E and extending this C-sesquilinearly to the whole tensor
product. Analogous arguments as in Section 3.1.1 show that this is indeed well-defined and gives a
C-valued inner product compatible with the right A-module structure.
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Lemma 4.1.9 Let A, B, C be ∗-algebras and let FC B and EB A be ∗-equivalence bimodules. Then
FC B ⊗B EB A together with the inner products 〈 · , · 〉F⊗E

C
and 〈 · , · 〉F⊗E

A
fulfills all requirements of a

∗-equivalence bimodule except that the inner products might be degenerate.

Proof: The compatibility of the inner products with the module structures has already been dis-
cussed. Next, it is clear that C · (F ⊗B E) = F ⊗B E = (F ⊗B E) · A. This follows directly from
C ·F = F and E · A = E. We show that 〈 · , · 〉F⊗E

A
is full, the proof for the fullness of 〈 · , · 〉F⊗E

C

is analogous. Let a ∈ A then we find xi, x
′
i ∈ E with a =

∑
i 〈xi, x′i〉

E

A
since 〈 · , · 〉E

A
is full. Since

B · E = E we find bij ∈ B and x′′ij ∈ E with x′i =
∑

j bij · x′′ij . Since also 〈 · , · 〉F
B

is full we find
yijk, y

′
ijk ∈ F with bij =

∑
k 〈yijk, y′ijk〉

F

B
. Now we compute∑

i,j,k

〈
yijk ⊗ xi, y′ijk ⊗ x′′ij

〉F⊗E

A
=
∑

i

〈
xi,
∑

j,k

〈
yijk, y

′
ijk

〉F

B
· x′′ij

〉E

A

=
∑

i

〈
xi,
∑

j
bij · x′′ij

〉E

A

=
∑

i
〈xi, x′i〉

E

A

= a,

which proves fullness. The analogous argument works for 〈 · , · 〉F⊗E

C
as well. It remains to show the

compatibility of the two inner products. As usual it suffices to consider factorizing tensors. Thus let
y ⊗ x, y′ ⊗ x′ and y′′ ⊗ x′′ ∈ F⊗B E be given. Then

〈y ⊗ x, y′ ⊗ x′〉F⊗E

C
· (y′′ ⊗ x′′) =

( 〈
y · 〈x, x′〉E

B
, y′
〉F

C
· y′′
)
⊗ x′′

=
( 〈

y, y′ ·
(
〈x, x′〉E

B

)∗〉F

C
· y′′
)
⊗ x′′

=
(
y ·
〈
y′ ·
(
〈x, x′〉E

B

)∗
, y′′
〉F

B

)
⊗ x′′

= y ⊗
(〈
y′ ·
(
〈x, x′〉E

B

)∗
, y′′
〉F

B
· x′′
)

= y ⊗
((
〈x, x′〉E

B
〈y′, y′′〉F

B

)
· x′′
)

= y ⊗
( 〈

x,
(
〈y′, y′′〉F

B

)∗ · x′〉E

B
· x′′
)

= y ⊗
(
x ·
〈(
〈y′, y′′〉F

B

)∗ · x′, x′′〉E

A

)
= (y ⊗ x) · 〈x′, 〈y′, y′′〉F

B
· x′′〉E

A

= (y ⊗ x) · 〈y′ ⊗ x′, y′′ ⊗ x′′〉F⊗E

A

shows that the inner products are compatible and the proof is finished. �

A priori it does not seem to be possible to guarantee that the inner products on F⊗B E are non-
degenerate. Thus we have to pass to the quotient by the degeneracy space which, by Lemma 4.1.8,
is the same for both inner products. This way, we obtain a ∗-equivalence bimodule including both
inner products. In order to emphasize the fact that we have two inner products to take care of, we
use a different symbol

FC B ⊗̃B EB A = FC B ⊗B EB A

/
( FC B ⊗B EB A)⊥ (4.1.9)

for this tensor product of ∗-equivalence bimodules as for the internal tensor product ⊗̂B. We shall
refer to ⊗̃ as the internal tensor product of ∗-equivalence bimodules. Later, we will see that under
certain assumptions the inner products on FC B⊗B EB A for ∗-equivalence bimodules are automatically
non-degenerate, and hence the quotient is not necessary in these cases.

Using the previous lemmas we can now show the main result of this section [1, 29]:
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Theorem 4.1.10 (∗-Morita and strong Morita equivalence) For the class of idempotent and
non-degenerate ∗-algebras over C the notions of ∗-Morita equivalence as well as strong Morita equiva-
lence are equivalence relations.

Proof: Indeed, reflexivity is obtained from the strong equivalence bimodule AA A as in Lemma 4.1.5,
symmetry follows via the complex conjugate bimodule according to Lemma 4.1.6. Finally, transitivity
is obtained by taking the ⊗̃-tensor product of equivalence bimodules. Clearly, all constructions are
not only possible for ∗-equivalence bimodules but also for strong equivalence bimodules since complete
positivity of inner products is preserved by complex conjugation and by ⊗̃. �

4.1.2 First Examples of Strong Morita Equivalences

We now face the fundamental question which ∗-algebras are ∗-Morita or strongly Morita equivalent.
Here we consider the following situation. Denote by Iso∗(B,A) the (possibly empty) set of all ∗-
isomorphisms from A to B. For later use we set Aut∗(A) = Iso∗(A,A). Assume that A and
B are ∗-isomorphic and let Φ: A −→ B be a ∗-isomorphism. Then we can consider the following
(B,A)-bimodule BΦ

B A : we endow B with the usual left B-module structure and let A act on B via

b ·Φ a = bΦ(a) (4.1.10)

for b ∈ B and a ∈ A. Clearly, this way B becomes a right A-module. For the inner products we use
the canonical B-valued one

〈b, b′〉B
Φ

B = b(b′)∗, (4.1.11)

and for the A-valued inner product we use

〈b, b′〉B
Φ

A = Φ−1(b∗b′), (4.1.12)

where b, b′ ∈ B. Using this bimodule we obtain the following theorem:

Theorem 4.1.11 (∗-Isomorphism and strong Morita equivalence) If A and B are ∗-isomorphic
non-degenerate and idempotent ∗-algebras then A and B are strongly Morita equivalent. In particular,
for any Φ ∈ Iso∗(B,A) the bimodule BΦ

B A with the inner products 〈 · , · 〉B
Φ

B and 〈 · , · 〉B
Φ

A is a strong
equivalence bimodule.

Proof: Since A (and hence necessarily also B) is idempotent and non-degenerate and since Φ is a
∗-isomorphism, the A-valued inner product 〈 · , · 〉B

Φ

A is full, non-degenerate, and compatible with the
left B-action. Clearly, 〈 · , · 〉B

Φ

B is full and non-degenerate as well and compatible with the right
A-action. Here we have to use again that Φ is a ∗-isomorphism. The remaining properties are checked
easily. �

Thus ∗-isomorphic ∗-algebras (always within our class of idempotent and non-degenerate ones) are
strongly Morita equivalent. The reverse is not true in general as the following simple example shows:

Theorem 4.1.12 (Morita equivalence of A and Mn(A)) Let A be non-degenerate and idempo-
tent. Then An

Mn(A) A, endowed with the usual A-valued inner product and the canonical bimodule
structure together with the Mn(A)-valued inner product

〈x, y〉A
n

Mn(A) = (xiy
∗
j ) = Θx,y (4.1.13)

for x, y ∈ An, is a strong Morita equivalence bimodule.
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Proof: Again, this is a simple verification. First we note that Mn(A) is again non-degenerate and
idempotent if A has these properties, see Exercise 2.4.5. Hence we stay in the correct framework. Next
it is clear that An

Mn(A) A is a (Mn(A),A)-bimodule with Mn(A) ·An = An = An ·A. Here we use that
A is idempotent. Moreover, the canonical A-valued inner product 〈 · , · 〉

A
is clearly non-degenerate,

full, and completely positive. The compatibility with the left Mn(A)-module structure is obvious as
the ∗-involution of Mn(A) is defined precisely this way. Now let A = (aij) ∈ Mn(A) be given. Then
we find bijk, cijk ∈ A with aij =

∑
k bijkc

∗
ijk since A is idempotent. Now let xijk, yijk ∈ An be the

vectors with bijk and cijk, respectively, at the i-th position and zeros elsewhere. Then Θxijk,yijk is the
matrix with bijkc

∗
ijk at the (i, j)-th position and zeros elsewhere. Thus A =

∑
i,j,k Θxijk,yijk shows

fullness. The compatibility of the two inner products is tautological as this is precisely the definition
of the rank one operator Θx,y(z) = x · 〈y, z〉

A
. Let x ∈ An and assume that Θx,y = 0 for all y. Then

Θx,y(z) = x · 〈y, z〉
A

= 0 for all y, z. Since 〈 · , · 〉
A
is full and An ·A = An it follows immediately that

x = 0. Thus the Mn(A)-valued inner product is non-degenerate. Finally, let x1, . . . , xN ∈ An then
the matrix (

Θxα,xβ
)

=
(
xαi
(
xβj
)∗) ∈ MnN (A)+ = MN (Mn(A))+

is positive by Lemma 2.1.12, i.). This shows the complete positivity of the Mn(A)-valued inner
product. �

Remark 4.1.13 (Commutativity) In particular, C and Mn(C) are strongly Morita equivalent via
the strong equivalence bimodule Cn. Thus it follows that commutativity is not preserved by strong
Morita equivalence. Moreover, the above theorem gives many examples of ∗-algebras which are
strongly Morita equivalent but not ∗-isomorphic.

4.1.3 First Functorial Aspects

Later on, it will not only be of interest to decided whether two ∗-algebras are strongly Morita equivalent
but also in how many ways: thus we consider the classes of equivalence bimodules between two given
∗-algebras and turn them into categories with appropriate morphisms: A morphism of ∗-equivalence
bimodules T : EB A −→ E′B A is, as usual, a structure preserving map. In this case we require T to be
adjointable with respect to both inner products, i.e. there is one map T ∗ : E′B A −→ EB A with

〈T (x), y′〉E
′

A = 〈x, T ∗(y′)〉E
A

and 〈T (x), y′〉E
′

B = 〈x, T ∗(y′)〉E
B

(4.1.14)

for all x ∈ E and y′ ∈ E′. From the non-degeneracy of the inner products it follows at once that T
and T ∗ are necessarily bimodule morphisms. Clearly, this way we obtain a good notion of morphisms
allowing to state the following definition:

Definition 4.1.14 (Category of equivalence bimodules) The category of ∗-equivalence bimod-
ules from A to B is denoted by Pic∗(B,A). The category of strong equivalence bimodules is denoted
by Picstr(B,A).

Of course it may well be that the category Pic∗(B,A) or Picstr(B,A) is empty, i.e. there is no
equivalence bimodule between A and B. Indeed, we shall see that the existence of a ∗-equivalence
or even a strong equivalence bimodule is a highly non-trivial condition. The notation Pic∗ and Picstr

will become clear when we introduce the Picard groupoids in Chapter 5.
We conclude this section with some functorial aspects of the tensor product ⊗̃ and the complex

conjugation of equivalence bimodules.

Proposition 4.1.15 Let A, B, C be non-degenerate and idempotent ∗-algebras.
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i.) The complex conjugation gives an equivalence (in fact: an isomorphism) of categories

: Pic∗(B,A) −→ Pic∗(A,B) (4.1.15)

and
: Picstr(B,A) −→ Picstr(A,B), (4.1.16)

where for a morphism T : EB A −→ E′B A one sets

T : EA B 3 x 7→ T (x) = T (x) ∈ E
′

A B. (4.1.17)

The inverse of complex conjugation is again the complex conjugation and we have

T ∗ = T
∗
. (4.1.18)

ii.) The internal tensor product ⊗̃ yields functors

⊗̃B : Pic∗( C,B)× Pic∗(B,A) −→ Pic∗( C,A) (4.1.19)

and
⊗̃B : Picstr( C,B)× Picstr(B,A) −→ Picstr( C,A), (4.1.20)

where ⊗̃B is defined in the usual way on morphisms. We have

(S ⊗̃B T )∗ = S∗ ⊗̃B T
∗. (4.1.21)

Proof: For the first part we have to show that the complex conjugation is functorial. Here we can
rely on Exercise 2.4.10 and modify those arguments slightly to incorporate both inner products. Thus
let T : EB A −→ E′B A be an adjointable bimodule morphism with adjoint T ∗ with respect to both inner
products. Then we have

a · T (x) = a · T (x) = T (x) · a∗ = T (x · a∗) = T (x · a∗) = T (a · x)

as well as
T (x) · b = T (x) · b = b∗ · T (x) = T (b∗ · x) = T (b∗ · x) = T (x · b)

for all a ∈ A, b ∈ B and x ∈ E. Thus T is indeed a bimodule morphism. Moreover, we have〈
x, T (y)

〉E

B
=
〈
x, T (y)

〉E

B
= 〈x, T (y)〉E

B
= 〈T ∗(x), y〉E

B
=
〈
T ∗(x), y

〉E

B
=
〈
T ∗(x), y

〉E

B

for all x, y ∈ E and analogously for 〈 · , · 〉E
A

. Hence T is adjointable with adjoint given as in (4.1.18).
This shows that T is indeed a morphism in Pic∗(A,B) or Picstr(A,B), respectively. The functoriality
idE = idE and S ◦ T = S ◦ T is obvious from the definition. Clearly, we can exchange the role of A
and B to see that the inverse functor (now really an inverse) of the complex conjugation is again
the complex conjugation. Thus we have here an isomorphism of categories. For the second part we
have to consider two morphisms T : EB A −→ E′B A and S : FC B −→ F′C B. Then we have to show that
S ⊗B T is well-defined on the internal tensor product FC B ⊗̃B EB A. It follows from Lemma 3.1.6 that
S ⊗̃B T coincides with S ⊗̂B T if we just take the A-valued inner product into account. Thus S ⊗̃B T
is adjointable again by Lemma 3.1.6 with adjoint given by S∗ ⊗̂ T ∗. The argument for the C-valued
inner product is analogous. Since both degeneracy spaces coincide by Lemma 4.1.8 the tensor product
S ⊗̃B T is well-defined on the quotient indeed and the two adjoints coincide. Then the functoriality
is easy to see. �

As already for the internal tensor product ⊗̂ we shall also simply write ⊗̃ for ⊗̃B as soon as the
algebra is clear from the context.
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4.2 The Structure of Equivalence Bimodules

We shall now examine the structure of equivalence bimodules more closely. It will turn out that the
fundamental example An

Mn(A) A contains already most of the relevant features.

4.2.1 Ara’s Theorem on ∗-Equivalence Bimodules

We start with the following theorem on ∗-Morita equivalence slightly adapted to our framework of
∗-algebras over C = R(i), see Ara’s work [1]:

Theorem 4.2.1 (Ara) Let A be a non-degenerate and idempotent ∗-algebra over C.
i.) If EA is a right A-module with full and non-degenerate A-valued inner product such that EA ·A =

EA, then EFA(EA) A is a ∗-equivalence bimodule via the canonical FA(EA)-valued inner product

〈x, y〉FA(EA) = Θx,y. (4.2.1)

Moreover, FA(EA) is idempotent and non-degenerate.
ii.) Conversely, if EB A is a ∗-equivalence bimodule then the left action

B 3 b 7→ (x 7→ b · x) ∈ FA(EA) (4.2.2)

yields a ∗-isomorphism if B is non-degenerate. In this case, B is necessarily idempotent. Under
this ∗-isomorphism, 〈 · , · 〉

B
corresponds to Θ · , · .

Proof: Let EA be an inner-product module over A with E · A = E and a full inner product 〈 · , · 〉
A
.

Clearly, EBA(EA) A is an inner-product bimodule. Since FA(EA) ⊆ BA(EA), also FA(EA) acts canoni-
cally from the left in a way compatible with 〈 · , · 〉

A
. Moreover, the definition (4.2.1) is automatically

an FA(EA)-valued inner product which has the correct sesquilinearity properties. Indeed, this fol-
lows from the computations in the proof of Lemma 2.1.7. Finally, we have Θx·a,y = Θx,y·a∗ by a
simple computation. The compatibility of the inner products 〈 · , · 〉FA(EA) and 〈 · , · 〉

A
is precisely

the definition of Θ · , · . Next we observe that Θ · , · is full by the very definition of the finite-rank
operators. Note that this is the reason that we have to take FA(EA) instead of BA(EA) in general.
To show that Θ · , · is a non-degenerate inner product, let y ∈ EA such that Θx,y = 0 for all x. Then
0 = 〈w,Θx,y(z)〉A = 〈w, x · 〈y, z〉

A
〉

A
= 〈w, x〉

A
〈y, z〉

A
for all x, z, w ∈ E. Since 〈 · , · 〉

A
is full, we

conclude that a〈y, z〉
A

= 0 for all a ∈ A. Since A is non-degenerate this implies 〈y, z〉
A

= 0. Thus
y = 0 follows from the non-degeneracy of 〈 · , · 〉

A
which implies that Θ · , · is non-degenerate, too. Let

now z ∈ EA be given. Then we find ai ∈ A and xi ∈ EA with z =
∑

i xi · ai by the assumption
E · A = E. Since 〈 · , · 〉

A
is full, we can write ai =

∑
j 〈yij , zij〉A with suitably chosen yij , zij ∈ E.

Thus
z =

∑
i
xi · 〈yij , zij〉A =

∑
i,j

Θxi,yij (zij),

which proves FA(EA) · E = E. Hence EFA(EA) A is indeed a ∗-equivalence bimodule. Next we show that
FA(EA) is necessarily non-degenerate and idempotent, generalizing the results of Exercise 2.4.5. Let
x, y ∈ EA be given. Then we write y =

∑
i Θxi,yi(zi) = xi · 〈yi, zi〉A with appropriate xi, yi, zi ∈ EA.

For all z we have

Θx,y(z) = x · 〈y, z〉
A

=
∑

i
x · 〈xi · 〈yi, zi〉A, z〉A

=
∑

i
x · (〈yi, zi〉A)∗ · 〈xi, z〉A

=
∑

i
x · (〈zi, yi〉A〈xi, z〉A)
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=
∑

i
x · 〈zi, yi · 〈xi, z〉A〉A

=
∑

i
Θx,zi(Θyi,xi(z)),

showing Θx,y =
∑

i Θx,zi ◦Θyi,xi . This implies that FA(EA) is idempotent. Now let A ∈ FA(EA) with
BA = 0 for all B ∈ FA(EA). Then we have 0 = Θx,y(A(z)) = Θx,A∗y(z) for all x, y, z ∈ EA. Since
this holds for all x we conclude A∗y = 0 as Θ · , · is non-degenerate. Thus A = 0 which implies that
FA(EA) is non-degenerate. This finally proves the first part. So, let EB A be a ∗-equivalence bimodule.
We first have to show that the left multiplication with b ∈ B is a finite-rank operator. Thus let b ∈ B
be given and choose xi, yi ∈ E with b =

∑
i 〈xi, yi〉B

by fullness of 〈 · , · 〉
B

. Thus

b · z =
∑

i
〈xi, yi〉B

· z =
∑

i
xi · 〈yi, z〉A =

∑
i
Θxi,yi(z),

shows that z 7→ b ·z is in FA(EA). Clearly, (4.2.2) is a ∗-homomorphism as the left B-module structure
is compatible with the A-valued inner product. Now let b = 〈x, y〉

B
then

b · z = 〈x, y〉
B

· z = x · 〈y, z〉
A

= Θx,y(z)

shows that the homomorphism (4.2.2) maps the B-valued inner product to Θ · , · . With the linearity
of (4.2.2), this immediately shows the surjectivity of (4.2.2). Under the condition that B is non-
degenerate, (4.2.2) is also injective by Lemma 4.1.7, applied to left modules instead of right modules.
Hence, we obtain a ∗-isomorphism. Since by the first part, FA(EA) is idempotent, B is necessarily
idempotent, too. �

Corollary 4.2.2 Within the class of non-degenerate ∗-algebras over C = R(i), idempotency is pre-
served under ∗-Morita equivalence.

In particular, this shows that the choice of restricting to idempotent ∗-algebras was a good choice a
posteriori.

Example 4.2.3 The property of having a unit is not preserved under ∗-Morita equivalence: The
simplest example is the ∗-equivalence bimodule C

(∞)
C : the inner product is clearly full and hence

F(C(∞)) ∼= M∞(C) is ∗-Morita equivalent to C. However, F(C(∞)) does not have a unit element and
F(C(∞)) 6= B(C(∞)).

The general strategy to find ∗-Morita equivalent ∗-algebras for a given ∗-algebra A consist now in
finding right A-modules with a full non-degenerate A-valued inner product. In this case, the ∗-algebra
FA(EA) will be ∗-Morita equivalent and, up to ∗-isomorphism, all ∗-Morita equivalent ∗-algebras arise
this way.

For strong Morita equivalence, the situation is more complicated: Even if (EA, 〈 · , · 〉A) is a right
A-module with a full, non-degenerate and completely positive inner product we only know that A is
∗-Morita equivalent to FA(EA). For strong Morita equivalence we still have to show that the FA(EA)-
valued inner product Θ · , · is completely positive, too. Under particular circumstances, one can show
this, in general the situation is unclear. We mention that for C∗-algebras the (complete) positivity of
〈 · , · 〉

A
implies the (complete) positivity of Θ · , · , see e.g. [79, Lem. 4.1] as well as Exercise 3.3.5. We

will come back to this question later.

4.2.2 The Case of Unital ∗-Algebras

The whole situation simplifies drastically for unital ∗-algebras.
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Proposition 4.2.4 Let A, B be unital ∗-algebras and let EB A be a ∗-equivalence bimodule. Then

BA(EA) = EndA(EA) ∼= B and BB( EB ) = EndB( EB ) ∼= A (4.2.3)

via the left and right multiplications, respectively.

Proof: We know from Theorem 4.2.1 that B ∼= FA(EA) via the left multiplications. Since B has a
unit, it follows from B · E = E that 1B · x = x, showing idE ∈ FA(EA). Since FA(EA) is a ∗-ideal in
BA(EA) we conclude BA(EA) = FA(EA). Since FA(EA) is a left ideal in EndA(EA) by Lemma 2.1.7,
we can still conclude that FA(EA) = EndA(EA), proving the first statement. The second follows from
symmetry in A and B. �

Corollary 4.2.5 Let A,B be unital ∗-algebras and let EB A be a ∗-equivalence bimodule. Then EA as
well as EB are finitely generated projective modules over A and B, respectively. Moreover, both inner
products are strongly non-degenerate and allow Hermitian dual bases.

Proof: This is now clear from Proposition 4.2.4 and Proposition 2.3.12. �

Remark 4.2.6 The last corollary shows that for a unital ∗-algebra A we have to search for ∗-
equivalence bimodules inside Proj∗(A) which we used as starting point for the construction of
the K∗0-theory of the corresponding ∗-algebras. Thus ∗-equivalence bimodules correspond to par-
ticular elements in Proj∗(A) and strong equivalence bimodules come from Projstr(A), respectively.
In general, however, not every EA ∈ Proj∗(A) will give a ∗-equivalence bimodule between A and
BA(EA) = FA(EA) since in addition we need a full A-valued inner product.

The next proposition shows that the usual quotient procedure in the internal tensor product is
unnecessary once we have Hermitian dual bases. In particular, this applies for ∗-equivalence bimodules
between unital ∗-algebras:

Proposition 4.2.7 Let A and B be ∗-algebras and FB and EB A be inner-product (bi-) modules such
that as right modules FB and EA have finite Hermitian dual bases. Then the inner product 〈 · , · 〉F⊗E

A

on FB⊗B EB A allows for a finite Hermitian dual basis, too. In particular, the inner product 〈 · , · 〉F⊗E

A

is strongly non-degenerate and FB ⊗B EB A is a finitely generated and projective right A-module.

Proof: Let φα, ψα ∈ FB and xi, yi ∈ EB A be the finite Hermitian dual bases, i.e. we have

φ =
∑
α

φα · 〈ψα, φ〉B and x =
∑
i

xi · 〈yi, x〉A

for all φ ∈ FB and x ∈ EB A. This allows to compute∑
α,i

(φα ⊗ xi) · 〈ψα ⊗ yi, φ⊗ x〉F⊗E

A
=
∑

α,i
φα ⊗

(
xi ·

〈
yi, 〈ψα, φ〉FB · x

〉E

A

)
=
∑

α
φα ⊗

(
〈ψα, φ〉FB · x

)
=
∑

α

(
φα · 〈ψα, φ〉FB

)
⊗ x

= φ⊗ x.

Since the elementary tensors φ ⊗ x span the tensor product, we see that the set {φα ⊗ xi, ψα ⊗ yi}
constitutes a finite Hermitian dual basis for FB ⊗B EB A with respect to the inner product 〈 · , · 〉F⊗E

A
.

By Proposition 2.3.12 the inner product 〈 · , · 〉F⊗E

A
is strongly non-degenerate and FB⊗B EB A is finitely

generated and projective. �
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Note that the above proof gives an explicit Hermitian dual basis if the Hermitian dual bases of
FB and EA are known. In this case, the internal tensor product ⊗̂ does not require the quotient
procedure as in Definition 3.1.3 since the inner product is already non-degenerate.

Corollary 4.2.8 Let A, B, C be unital ∗-algebras and let FC B and EB A be ∗-equivalence bimodules.
Then the inner products on FC B ⊗B EB A are already non-degenerate and hence

FC B ⊗B EB A = FC B ⊗̃B EB A. (4.2.4)

Proof: This follows now from Corollary 4.2.5 and Proposition 4.2.7. �

Since for unital ∗-algebras, a ∗-equivalence bimodule EB A is of the form EA
∼= eAn for some

idempotent e = e2 ∈ Mn(A), it raises the question which strongly non-degenerate inner products on
eAn exist and which of them are full. The first question was already discussed and is encoded in the
semi-group morphisms

Proj∗(A) −→ Proj(A) and Projstr(A) −→ Proj(A), (4.2.5)

respectively. This suggests to formulate the second question about fullness also in term of the idem-
potent e alone. Note that the (by assumption unital) ∗-algebra B is uniquely determined to be
FA(EA) = BA(EA) up to ∗-isomorphism by Theorem 4.2.1. We recall the following definition:

Definition 4.2.9 (Full idempotent) An idempotent element e = e2 ∈ Mn(A) is called full if the
two-sided ideal AeA in A generated from the coefficients eij of e coincides with A.

In case where e = P is even a projection we have the following characterization of fullness:

Proposition 4.2.10 Let A be a unital ∗-algebra and P = P 2 = P ∗ ∈ Mn(A).
i.) The subset PMn(A)P consisting of elements PAP with A ∈ Mn(A) is a ∗-subalgebra of Mn(A)

with unit P .
ii.) One has EndA(PAn) = BA(PAn) = FA(PAn) ∼= PMn(A)P .
iii.) The canonical inner product on PAn is full if and only if the projection P is full. In this case,

PMn(A)P and A are ∗-Morita equivalent via the ∗-equivalence bimodule PAn.

Proof: The first part is a simple verification. Since PAn has a finite Hermitian dual basis, namely
{Pei, P ei}i=1,...,n, we have FA(PAn) = BA(PAn) by Proposition 2.3.12. With the same argument
as in the proof of Proposition 4.2.4, we have FA(PAn) = EndA(PAn). Now we want to establish
the isomorphism to PMn(A)P . Suppose A ∈ EndA(PAn) is given. Then we can extend A to an
endomorphism of An by setting A equal to zero on (1−P )An thanks to the direct sum decomposition
An = PAn⊕ (1−P )An. Thus we can identify A with an element in Mn(A). By construction of this
identification we have A = PAP . Conversely, let A = PAP ∈ PMn(A)P be given. Viewing A as
endomorphism of An we have A

∣∣
(1−P )An

= 0. Hence the restriction of A to PAn is an injective map
PMn(A)P −→ EndA(PAn). It is clearly the inverse of the extension described before and an algebra
isomorphism. We have to show that this is even a ∗-isomorphism. Thus let A = PAP ∈ PMn(A)P .
We have A∗ = PA∗P since P ∗ = P . From this it follows immediately, that A∗ is indeed the adjoint
with respect to the inner product of PAn as this is just the restriction of the canonical one on An.
This shows the second part. For the third we assume that 〈 · , · 〉, restricted to PAn, is still a full
inner product. Then we find xα, yα ∈ PAn with

1A =
∑

α
〈xα, yα〉 =

∑
α
〈xα, Pyα〉 =

∑
α,i,j

x∗αiPijyαj ,
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where xαi and yαj are the components of xα and yα, respectively. Thus 1A is contained in the two-
sided ideal generated by P and hence P is full. Conversely, let P be full and let xαi, yαj ∈ A be given
such that 1A =

∑
α,i x

∗
αiPijyα,j . Without restriction, we can assume that the index α runs over the

same index set for every i = 1, . . . , n. This defines xα, yα ∈ An via their components xα,i and yα,i.
Note that in general xα, yα are not in PAn. Nevertheless, we have

1A =
∑

α
〈xα, Pyα〉 =

∑
α
〈Pxα, Pyα〉,

since P 2 = P = P ∗. Thus 〈 · , · 〉, restricted to PAn, is still full. By Theorem 4.2.1 the statement on
∗-Morita equivalence follows. �

The fullness property of an idempotent element e ∈ Mn(A) depends only on its equivalence class
in Proj(A):

Lemma 4.2.11 Let e, f ∈ M∞(A) be idempotent and equivalent in the sense of Proposition 2.3.5.
Then e is full if and only if f is full.

Proof: More generally, we show that the ideals AeA and AfA coincide whenever e and f are
equivalent. By assumption and Proposition 2.3.5 we have e, f ∈ Mn(A) for a suitable n ∈ N such
that e = V fV −1 with some invertible V ∈ Mn(A). Thus eij =

∑
k,` Vikfk`(V

−1)`j ∈ AfA. This
implies AeA ⊆ AfA. By exchanging e and f we finally obtain AeA = AfA. �

In particular, this lemma allows us to say that a finitely generated projective module EA is full
if one and hence all idempotents e ∈ Mn(A) with EA

∼= eAn are full. Thus we see that the question
whether or not eAn yields a ∗-equivalence bimodule only depends on the class of e in Proj(A), but
not on the choice of e itself.

4.2.3 Strong Morita Equivalence with (K) and (H)

Let now A and B be ∗-Morita equivalent unital ∗-algebras with a ∗-equivalence bimodule EB A. Then
we know that EA

∼= eAn as right A-modules for some idempotent e ∈ Mn(A) and B ∼= EndA(eAn)
as associative algebras via the left multiplications. In general,

EndA(eAn) ∼= eMn(A)e, (4.2.6)

which follows analogously to Proposition 4.2.10, ii.), ignoring the ∗-involution. Without further
assumptions, eAn may admit many non-isometric full inner products which will determine the ∗-
involution of B via the compatibility between the B-valued and the A-valued inner product. Without
further knowledge about these possibilities the analysis stops here and we can not make proper use
of Proposition 4.2.10. However, the situation simplifies further, if only one A-valued inner product is
possible [29, Thm. 7.3]. This situation is guaranteed by the properties (K) and (H−):

Theorem 4.2.12 (Equivalence bimodules with (K) and (H)) Let A and B be unital ∗-algebras
such that A fulfills (K) and (H−). Moreover, let ( EB A, 〈 · , · 〉

E

A
, 〈 · , · 〉E

B
) be a ∗-equivalence bimodule

such that 〈 · , · 〉E
A
is completely positive. Then we have:

i.) There exists a projection P = P 2 = P ∗ ∈ Mn(A) such that (EA, 〈 · , · 〉
E

A
) is isometrically

isomorphic to (PAn, 〈 · , · 〉
A

) as pre-Hilbert module over A.
ii.) The algebra B is ∗-isomorphic to PMn(A)P via the left multiplications of B on EA

∼= PAn.
iii.) Under this isomorphism, 〈 · , · 〉E

B
corresponds to the canonical PMn(A)P -valued inner product

Θ · , · on PAn.
iv.) The inner product 〈 · , · 〉E

B
is completely positive and hence EB A is even a strong Morita equiv-

alence bimodule.
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v.) Conversely, if P ∈ Mn(A) is a full projection then PAn with the canonical inner products is a
strong (PMn(A)P,A)-equivalence bimodule.

Proof: Since EA is a finitely generated and projective module by Corollary 4.2.5, we find a projection
P = P ∗ = P 2 with EA

∼= PAn as right A-modules by Theorem 2.3.16. By Corollary 4.2.5 the
inner product 〈 · , · 〉

A
is strongly non-degenerate and by Proposition 2.3.23 isometrically isomorphic

to the canonical inner product on PAn. This shows the first part. We can assume EA = PAn

and 〈 · , · 〉E
A

= 〈 · , · 〉
A

from now on. Then B is ∗-isomorphic to FA(PAn) by Theorem 4.2.1 via
the left multiplications. By Proposition 4.2.10 we have FA(PAn) ∼= PMn(A)P and hence B is
∗-isomorphic to PMn(A)P yielding the second part. The compatibility of 〈 · , · 〉E

B
and 〈 · , · 〉E

A
=

〈 · , · 〉
A
fixes 〈 · , · 〉E

B
uniquely, hence it corresponds to Θ · , · , thereby showing the third part. For

the fourth part it is sufficient to show that Θ · , · is completely positive. Since 〈 · , · 〉
A
is full, we find

Px1, . . . , Pxk, Py1, . . . , Pyk with

1A =
k∑
r=1

〈Pxr, Pyr〉A =
k∑
r=1

〈Pyr, Pxr〉A,

since 1∗A = 1A. Note however, that the single terms in the sum are not necessarily Hermitian. We
obtain
k∑
r=1

〈Pxr +Pyr, Pxr +Pyr〉A = 1A +1A +

k∑
r=1

〈Pxr, Pxr〉A +
k∑
r=1

〈Pyr, Pyr〉A = 1A +
∑
α

a∗αaα, (∗)

with certain aα ∈ A which can be computed from the coefficients of Pxr and Pyr. Lemma 2.3.20
shows that (∗) is invertible. Moreover, since (∗) is algebraically positive we can apply the property
(H−) in order to find an invertible u ∈ A with

k∑
r=1

〈Pxr + Pyr, Pxr + Pyr〉A = u∗u.

With Pzr = P (xr + yr)u
−1 ∈ PAn we find

k∑
r=1

〈Pzr, P zr〉A = 1A.

We claim that this feature implies the complete positivity of the canonical FA(PAn)-valued inner
product Θ · , · . Indeed, let Px1, . . . , PxN ∈ PAn be given. Then we have(

ΘPxα,Pxβ

)
=
(
ΘPxα·1A ,Pxβ

)
=

k∑
r=1

(
ΘPxα·〈Pzr,P zr〉A ,Pyβ

)
=

k∑
r=1

(
ΘΘPxα,Pzr (Pzr),Pxβ

)
=

k∑
r=1

(
ΘPxα,P zrΘPzr,Pxβ

)
=

k∑
r=1

(
Θ∗Pzr,PxαΘPzr,Pxβ

)
∈ MN (FA(PAn))++,

by Lemma 2.1.12, i.). This shows the complete positivity of Θ · , · and hence the fourth part. The
fifth part follows from this as well. �
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4.2. The Structure of Equivalence Bimodules 93

Since the properties (K) and (H−) play such a central role both for Hermitian K0-theory and for
strong Morita theory it is interesting to investigate their behaviour under Morita equivalence: The
following proposition will provide us a first result when we restrict ourselves to (H) or (H+), see also
the discussion in [29, Prop. 7.4].

Proposition 4.2.13 The properties (K) and (H+) together as well as the properties (K) and (H)
together are invariant under strong Morita equivalence.

Proof: Assume A and B are unital ∗-algebras and A satisfies (K) and (H+) or (K) and (H), re-
spectively. Moreover, assume that A and B are strongly Morita equivalent and hence B ∼= PMn(A)P
for some full projection P = P 2 = P ∗ ∈ Mn(A) thanks to Theorem 4.2.12. Thus we only have to
consider B = PMn(A)P . Note that P ∈ PMn(A)P is the unit element of B. Thus let B ∈ MN (B)
be given. We have to show that 1MN (B) + B∗B = P (N) + B∗B is invertible in MN (B) where P (N)

is the N × N matrix in MN (Mn(A)) with P ’s on the diagonal. Since MN (B) ⊆ MN (Mn(A)) we
consider first 1MN (B) + B∗B + (1 − P (N)) = 1 + B∗B which is invertible in MN (Mn(A)) by (K)

for A. Since B∗B ∈ MN (PMn(A)P ) = P (N)MN (Mn(A))P (N) commutes with P (N), the inverse of
1+B∗B commutes with P (N), too. Thus we consider P (N)(1+B∗B)−1P (N) ∈ MN (B) and compute

P (N)(1+B∗B)−1P (N)
(
P (N) +B∗B

)
= P (N)(1+B∗B)−1P (N)

(
P (N) + (1− P (N)) +B∗B

)
= P (N)(1+B∗B)−1(1+B∗B)P (N)

= P (N),

since P (N)(1−P (N)) = 0. This shows that 1MN (B) +B∗B is invertible in MN (B) with inverse given
by P (N)(1+B∗B)−1P (N). Hence B satisfies (K), too.

Now let H ∈ MN (B)+ be a positive and invertible matrix. Since B = PMn(A)P ⊆ Mn(A)
is a ∗-subalgebra, also MN (B) ⊆ MN (Mn(A)) is a ∗-subalgebra. It follows that H viewed as an
element of MN (Mn(A)) is still positive by Remark 1.1.13, iii.). However, H is no longer invertible,
but H + (1−P (N)) is invertible. In fact, if H−1 is the inverse of H in MN (B) then H−1 + (1−P (N))
is the inverse of H + (1 − P (N)) in MN (Mn(A)) since H(1 − P (N)) = 0 = (1 − P (N))H. Since
1− P (N) = (1− P (N))∗(1− P (N)) is even algebraically positive, the matrix H + (1− P (N)) is still a
positive and now invertible matrix in MN (Mn(A)).

So assume that A satisfies (H+). Then we find an invertible matrix V ∈ MN (Mn(A)) with
H + 1− P (N) = V ∗V and V commutes with any projection which commutes with H + 1− P (N). In
particular, V commutes with P (N). Define U = P (N)V P (N) ∈ MN (B) then H = U∗U . Moreover,
U is invertible in MN (B) with inverse given by U−1 = P (N)V −1P (N). Indeed, this is a simple
computation using the fact that V commutes with P (N). Now let Q = Q∗ = Q2 ∈ MN (B) be a
projection with [H,Q] = 0. Viewing Q as element in MN (Mn(A)) we have QP (N) = Q = P (N)Q and
hence [H +1−P (N), Q] = 0. By (H+) for A, the matrix V commutes with Q. But this immediately
implies that U also commutes with Q. Thus B satisfies the property (H+), too.

Alternatively, let us assume that A satisfies only (H). Then, let {Qα}α=1,...,k be a finite orthogonal
partition of unity in MN (B) with [Qα, H] = 0. Viewing the Qα as elements in MN (Mn(A)), we have
QαP

(N) = Qα = P (N)Qα and
∑

αQα = P (N). It follows that together with Q0 = 1−P (N) we obtain
an orthogonal partition of unity {Qα}α=0,...,k for MN (Mn(A)). Clearly, we have [H+1−P (N), Qα] = 0
for all α = 0, . . . , k. Thus we can use (H) for A and find an invertible V ∈ MN (Mn(A)) with
H + 1− P (N) = V ∗V and [V,Qα] = 0 for k = 0, . . . , k. Analogously to the case of (H+) we can use
U = P (N)V P (N) and conclude that B satisfies (H), too. �

Note that the property (H−) seems to be more difficult to discuss in this context. Nevertheless
the combinations (K) & (H+) or (K) & (H) are very adapted to strong Morita equivalence since we
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94 4. MORITA EQUIVALENCE

will not leave the class of such ∗-algebras when passing to strongly Morita equivalent ones. From the
proof we note that the property (K) is already invariant under the slightly weaker notion of ∗-Morita
equivalence:

Corollary 4.2.14 The property (K) is invariant under ∗-Morita equivalence.

4.3 The Bicategory Approach

In this section we shall embed the question of Morita equivalence into some bigger context: we want
to find categories in which the notion of isomorphism coincides with the notion of Morita equivalence
for each of our flavours of Morita equivalence: ring-theoretic, ∗-equivalence, and strong equivalence.
We will present essentially two ways of achieving this goal by either constructing an honest category
or a category with relaxed “associativity” for the composition of morphisms, i.e. a bicategory.

4.3.1 The Category Bimod

As warming up, we consider the ring-theoretic framework first without inner products at all, in order
to simplify things. Let Ring denote the category of associative unital rings: the objects are associative
and unital rings while the morphisms are the usual unital ring homomorphisms.

The main idea is now to enlarge the category Ring drastically by keeping the objects while extend-
ing the notion of morphisms. For A,B ∈ Obj(Ring) we consider as new morphisms from A to B all
bimodules MB A to construct a new category. Here we always use strongly non-degenerate bimodules
with respect to both rings, i.e. we require x ·1A = x = 1B ·x for all x ∈ MB A. Now we have to justify
in which sense this can be understood as a category: we need to define a composition of morphisms
and a unit morphism for every object. As composition of MB A and NC B we use the tensor product
over the ring in the middle, i.e. NC B ⊗B MB A is the composition. As unit morphism for the ring A
we use the canonical bimodule AA A. With this definition one obtains almost a category, since

i.) the tensor product as composition is not associative but only associative up to the usual iso-
morphism,

ii.) the tensor product MB A ⊗A AA A is not equal to MB A but only isomorphic to MB A via the
usual isomorphism. The same holds for tensoring with BB B from the left.

There are now two possible ways out of this difficulty: on one hand one can use isomorphism classes
of bimodules instead of the bimodules directly. Then ⊗ is indeed associative and the class of AA A is
indeed the identity morphism. On the other hand, one can simply ask “so what?” and enlarge the
concept of categories to bicategories. We shall present both options here, starting with the simpler
one.

Definition 4.3.1 (The category Bimod) The category Bimod consists of unital rings as objects
and isomorphism classes of strongly non-degenerate bimodules as morphisms. The composition of
morphisms is the tensor product

[ NC B] ◦ [ MB A] = [ NC B ⊗B MB A] (4.3.1)

and the unit morphisms are [ AA A].

Theorem 4.3.2 (The category Bimod) Bimod is a category.

Proof: There is a small subtlety here concerning the notion of a category which we have ignored
so far: strictly speaking, one should first fix a Grothendieck universe and consider only algebras and
bimodules inside this universe to form the equivalence classes needed for the category Bimod. We
refer to [72] for a detailed discussion on the set-theoretic aspects of this: in conclusion, we will not
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4.3. The Bicategory Approach 95

mention these considerations in the following anymore. Beside this difficulty we have to show the
usual properties: first it is clear that the composition is well-defined. Indeed, isomorphic bimodules
yield isomorphic tensor products. This is just the functoriality of the tensor product. But then the
associativity of ◦ is clear. Moreover, the class of AA A becomes a true identity with respect to ◦ since
MB A⊗A AA A is isomorphic to MB A via the bimodule map x⊗a 7→ x ·a having the inverse x 7→ x⊗1A.

For the multiplication with [ BB B] from the left one argues analogously. Here we need the assumption
that the bimodules are strongly non-degenerate. �

For a unital ring homomorphism Φ: A −→ B we can construct a (B,A)-bimodule BΦ
B A as we

did this already in the more particular situation of ∗-algebras in Section 4.1.2. On B we consider
the usual left B-module structure and set b ·Φ a = bΦ(a) to get a right A-module structure. Clearly,
this will give us a bimodule. Since we require Φ to be unital, it is clear that BΦ

B A is a strongly
non-degenerate bimodule and hence defines a morphism [ BΦ

B A ] from A to B in Bimod which we shall
denote by

`(Φ) = [ BΦ
B A ]. (4.3.2)

Taking `(A) = A on objects, this gives a functor from Ring to Bimod:

Proposition 4.3.3 The map ` gives a functor

` : Ring −→ Bimod . (4.3.3)

Proof: We already noted that `(Φ) is a valid morphism in Bimod. Hence we only have to check
functoriality. First, `(idA) = [ AA A] is the identity at A in Bimod. For unital ring homomorphisms
Φ: A −→ B and Ψ: B −→ C we have a bimodule homomorphism

CΨ
C B ⊗B BΦ

B A 3 c⊗ b 7→ cΨ(b) ∈ CΨ◦Φ
C A . (∗)

Indeed, it is easily verified that this is well-defined over the tensor product over B and gives a ( C,A)-
bimodule homomorphism. Moreover, since we are in a unital situation, the map c 7→ c⊗ 1B gives the
inverse bimodule morphism. Thus (∗) is a bimodule isomorphism showing that `(Ψ)◦`(Φ) = `(Ψ◦Φ).�

As a first application we can now define the ring-theoretic notion of Morita equivalence. The
following is not the original way of defining Morita equivalence but probably the most clean one:

Definition 4.3.4 (Ring-theoretic Morita equivalence) Two unital rings A and B are called
Morita equivalent if they are isomorphic in Bimod.

From this definition it is immediately clear, that Morita equivalence is indeed an equivalence relation.
More explicitly, Morita equivalence means that we find an “invertible” bimodule [ MB A], i.e. there
exists a class [ M′

A B] of bimodules with

[ MB A] ◦ [ M′
A B] = [ BB B] and [ M′

A B] ◦ [ MB A] = [ AA A]. (4.3.4)

As usual for inverses in categories, the class of [ M′
A B] is uniquely determined by [ MB A] and hence

M′
A B is uniquely determined up to a bimodule isomorphism. Clearly, (4.3.4) is equivalent to the
existence of a bimodule M′

A B and isomorphisms

MB A ⊗A M′
A B

∼= BB B and M′
A B ⊗B MB A

∼= AA A. (4.3.5)

The structure of such bimodules MB A is clarified by the following classical theorem of Morita [88]:

Theorem 4.3.5 (Morita) Let A, B be unital rings and let MB A be a strongly non-degenerate bi-
module. Then the following statements are equivalent:

c© Stefan Waldmann 2019-01-25 15:18:20 +0100 Hash: 13717b6



96 4. MORITA EQUIVALENCE

i.) There exists a strongly non-degenerate bimodule M′
A B with

MB A ⊗A M′
A B

∼= BB B and M′
A B ⊗B MB A

∼= AA A, (4.3.6)

i.e. A and B are Morita equivalent.
ii.) The right A-module MA is finitely generated, projective, and full, and one has

B ∼= EndA(MA) (4.3.7)

via the left multiplications.
In this case, M′

A B = HomA( MB A, AA) is an inverse bimodule to MB A and the isomorphisms in
(4.3.6) are the canonical ones.

Here, HomA(MA, AA) is viewed as a (A,EndA(MA))-bimodule via

(a · ϕ ·B)(x) = aϕ(B(x)) (4.3.8)

for B ∈ EndA(MA), a ∈ A, x ∈ MA and ϕ ∈ HomA(MA, AA). Moreover, we use the canonical
bimodule maps

HomA(MA, AA)⊗EndA(MA) MA 3 ϕ⊗ x 7→ ϕ(x) ∈ AA A (4.3.9)

and
MA ⊗A HomA(MA, AA) 3 x⊗ ϕ 7→ (y 7→ x · ϕ(y)) ∈ EndA(MA) (4.3.10)

from Exercise 4.4.5 to implement the isomorphisms (4.3.6). The proof of this theorem is omitted here
but can be found in many algebra textbooks, see e.g. [78, §18C]. Later, we will present an analogous
but more complicated theorem including a detailed proof for ∗-Morita and strong Morita equivalence
from which the above statement can easily be deduced, see also Exercise 4.4.2.

4.3.2 The Bicategory Bimod

After this brief introduction to ring-theoretic Morita theory we come to the second option of enlarging
the category Ring. We want to consider all bimodules and relax the axioms of a category in such a
way that associativity of morphisms and the properties of the identity morphisms do not have to hold
strictly. To construct the bicategory Bimod we first use the same objects as before, i.e.

Obj(Bimod) = Obj(Ring). (4.3.11)

For two given unital rings A and B we consider the category Bimod(B,A) of all strongly non-
degenerate (B,A)-bimodules with the usual bimodule morphisms as morphisms. We will view the
bimodules as arrows from A to B: note that we have reversed our notation in order to match with
the usual bimodule notation.

For two such bimodules MB A ∈ Bimod(B,A) and NC B ∈ Bimod( C,B) the usual tensor product
NC B ⊗B MB A ∈ Bimod( C,A) gives a functor

⊗B : Bimod( C,B)× Bimod(B,A) −→ Bimod( C,A). (4.3.12)

For the following it will be crucial that the tensor product is really functorial in both arguments: not
only the bimodules can be tensored but also the bimodule morphisms. The bimodules MB A will now
be the morphisms from the object A to the object B. The bimodule morphisms T : MB A −→ M′

B A

are morphisms between morphisms. Alternatively one calls the morphisms 1-morphisms and the
morphisms between morphisms are called 2-morphisms. We denote this sometimes by

Bimod1(B,A) = 1-Morph(B,A) = {strongly non-degenerate (B,A)-bimodules} (4.3.13)
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Bimod2

(
M′

B A, MB A

)
= 2-Morph

(
M′

B A, MB A

)
=
{
bimodule morphisms T : MB A −→ M′

B A

}
.

(4.3.14)
Consequently, the objects are sometimes called 0-morphisms of Bimod. For any object A we have also
a canonical 1-morphism IdA = AA A ∈ 1-Morph(A,A) which will be called the identity 1-morphism.
Between ⊗ and the identity morphism we have the following compatibilities which make the “up to
isomorphism” statements as in Theorem 4.3.2 more precise. To formulate this properly, we introduce
some more notation: with 1 we denote the category consisting of only one object with one morphism
(the identity for this object). Given any other category C and an object c ∈ C we have a unique
functor c : 1 −→ C sending the object of 1 to c. Finally, we note that there is a unique identification
functor

i : 1× C −→ C. (4.3.15)

Using this notation we can state the following proposition:

Proposition 4.3.6 Let A, B, C, and D be unital rings.
i.) There is a natural isomorphism, called the associativity,

assoD CBA : ⊗B ◦ (⊗C × id) −→ ⊗C ◦ (id×⊗B) (4.3.16)

between the functors ⊗B ◦ (⊗C × id) and ⊗C ◦ (id×⊗B) from the Cartesian product category
Bimod(D, C)× Bimod( C,B)× Bimod(B,A) to Bimod(D,A) visualized by

Bimod(D, C)× Bimod( C,B)× Bimod(B,A) Bimod(D,A).

⊗B ◦ (⊗C × id)

⊗C ◦ (id×⊗B)

assoD CBA

(4.3.17)
ii.) There is a natural isomorphism, called the left identity,

leftBA : ⊗B ◦ (IdB × id) −→ i (4.3.18)

between the functors

i and ⊗B ◦ (IdB × id) : 1× Bimod(B,A) −→ Bimod(B,A), (4.3.19)

visualized by

1× Bimod(B,A) Bimod(B,A).

i

⊗B ◦ (IdB × id)

leftBA
(4.3.20)

iii.) Analogously, there is a natural isomorphism, called the right identity,

rightBA : ⊗A ◦ (id×IdA) −→ i (4.3.21)

between the functors

i and ⊗A ◦ (id×IdA) : Bimod(B,A)× 1 −→ Bimod(B,A) (4.3.22)
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visualized by

Bimod(B,A)× 1 Bimod(B,A).

i

⊗A ◦ (id×IdA)

rightBA
(4.3.23)

Proof: The main point of this proof is to re-formulate well-known statements on the tensor product
of bimodules in the language of natural transformations. The first part of the proposition makes the
statement about the associativity up to isomorphism more precise. Applying the functors⊗B◦(⊗C×id)
and ⊗C ◦ (id×⊗B) to objects in Bimod(B,A), i.e. 1-morphisms in Bimod, gives

(⊗B ◦ (⊗C × id))( OD C, NC B, MB A) = (O⊗C N)⊗B M

and
(⊗C ◦ (id×⊗B))( OD C, NC B, MB A) = O⊗C (N ⊗B M).

On morphisms S : M −→ M′, T : N −→ N ′, and U : O −→ O′ in Bimod(B,A), i.e. 2-morphism in
Bimod, we have

(⊗B ◦ (⊗C × id))(U, T, S) = (U ⊗C T )⊗B S and (⊗C ◦ (id×⊗B))(U, T, S) = U ⊗C (T ⊗B S).

For the natural transformation assoD CBA we use the isomorphism determined by

assoD CBA(O,N ,M) : (O⊗C N)⊗B M 3 (z ⊗ y)⊗ x 7→ z ⊗ (y ⊗ x) ∈ O⊗C (N ⊗B M). (4.3.24)

It is clear that assoD CBA(O,N ,M) is a well-defined isomorphism of (D,A)-bimodules. We have to
show that it is also natural, i.e. compatible with the bimodule morphisms T , S, and U . A simple
evaluation on elementary tensors yields

(U ⊗C (T ⊗B S)) ◦ assoD CBA(O,N ,M) = assoD CBA(O′,N ′,M′) ◦ ((U ⊗C T )⊗B S),

which shows that assoD CBA is natural. For the second part, we have to show that tensoring with
IdB from the left reproduces the module up to a natural isomorphism. Let MB A ∈ Bimod(B,A)
then ⊗B ◦ (IdB × id)(1, MB A) = IdB ⊗B MB A while i(1, MB A) = MB A. For a bimodule morphism
T : MB A −→ M′

B A and the unique morphism id1 ∈ Morph(1, 1) in 1 we have ⊗B ◦ (IdB× id)(id1, T ) =
idB⊗BT and i(id1, T ) = T . For the natural transformation leftBA( MB A) we use the additive extension
of

leftBA( MB A) : IdB ⊗B MB A 3 b⊗ x 7→ b · x ∈ MB A. (4.3.25)

Clearly, leftBA( MB A) is a bimodule isomorphism with inverse determined by x 7→ 1B ⊗ x. We have(
leftBA( M′

B A) ◦ (id⊗BT )
)
(b⊗ x) = leftBA( M′

B A)(b⊗ T (x)) = b · T (x),

while on the other hand

(T ◦ leftBA( MB A))(b⊗ x) = T (b · x) = b · T (x),

since T is a bimodule morphism. This proves

leftBA( M′
B A) ◦

(
(⊗B ◦ (IdB × id))(id1, T )

)
= (i(id1, T )) ◦ leftBA( MB A),

which means that leftBA is natural. Finally, the third part follows analogously to the second part
where now we use the natural isomorphism

rightBA( MB A) : MB A ⊗A IdA 3 x⊗ a 7→ x · a ∈ MB A (4.3.26)

with inverse x 7→ x⊗ 1A. �
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Remark 4.3.7 The proposition makes precise in which sense the tensor product is associative and
in which sense the tensoring with the canonical bimodule behaves like a unit element. The main
emphasize lies on the word natural as of course one could e.g. rescale assoD CBA(O,N ,M) in a way
which depends on the particular choices of O, N , and M and thereby spoiling the compatibility with
the morphisms U , T , and S.

In the following we shall drop the subscripts in assoD CBA, leftBA, and rightBA, and write simply
asso, left and right, respectively, whenever the context is clear. The natural isomorphisms satisfy now
the following compatibility condition:

Proposition 4.3.8 In Bimod, the associativity and identity isomorphisms asso, left, and right satisfy
the following coherence conditions:

i.) The associativity coherence for asso: the hexagon diagram

((P⊗D O)⊗C N)⊗B M (P⊗D (O⊗C N))⊗B M

(P⊗D O)⊗C (N ⊗B M) P⊗D ((O⊗C N)⊗B M)

P⊗D (O⊗C (N ⊗B M))

asso(P,O,N)⊗Bid

as
so

(P
⊗

D
O
,N
,M

)

asso(P
,O
,N
⊗

B
M

)

asso
(P
,O⊗

C N
,M

)

id
⊗ D

as
so

(O
,N
,M

)

(4.3.27)

commutes for all bimodules PE D, OD C, NC B, and MB A.
ii.) The identity coherence for asso, left, and right: the diagram

(N ⊗B IdB)⊗B M N ⊗B (IdB ⊗B M)

N ⊗B M

asso(N,IdB,M)

right(N)⊗
B id id

⊗B
lef
t(M

) (4.3.28)

commutes for all bimodules NC B and MB A.

Proof: Behind these diagrams there are rather trivial properties and computations. Let p ∈ P,
o ∈ O, n ∈ N , and m ∈M. Then on one hand(

(id⊗D asso(O,N ,M)) ◦ asso(P,O⊗C N ,M) ◦ (asso(P,O,N)⊗B id)
)
(((p⊗ o)⊗ n)⊗ m)

=
(
(id⊗D asso(O,N ,M)) ◦ asso(P,O⊗C N ,M)

)
((p⊗ (o⊗ n))⊗ m)

= (id⊗D asso(O,N ,M))(p⊗ ((o⊗ n)⊗ m))
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= p⊗ (o⊗ (n⊗ m)).

On the other hand we have(
asso(P,O,N ⊗B M) ◦ asso(P⊗D O,N ,M)

)
(((p⊗ o)⊗ n)⊗ m)

= asso(P,O,N ⊗B M)((p⊗ o)⊗ (n⊗ m))

= p⊗ (o⊗ (n⊗ m)),

which proves (4.3.27) since every tensor is a sum of such elementary tensors. Analogously, we have
for n ∈ N , b ∈ B, and m ∈M(

(id⊗B left(M)) ◦ asso(N ,B,M)
)
((n⊗ b)⊗ m) = (id⊗B left(M))(n⊗ (b⊗ m)) = n⊗ (b ·m),

and on the other hand
(right(N)⊗B id)((n⊗ b)⊗ m) = (n · b)⊗ m.

Since the tensor product is formed over B, the two sides coincide and (4.3.28) follows. �

We take now Bimod as a motivating example for the following definition of a bicategory as intro-
duced by Benabou in [7]:

Definition 4.3.9 (Bicategory) A bicategory B consists of the following data:
i.) A class B0, the objects of B.
ii.) For each two objects a, b ∈ B0 a category B(b, a). The objects B1(b, a) = Obj(B(b, a)) of this

category are called 1-morphisms from a to b. The morphisms T : M −→M ′ for two 1-morphisms
M,M ′ ∈ B1(b, a) are called 2-morphisms from M to M ′. The set of these 2-morphisms is
denoted by B2(M,M ′).

iii.) For each triple of objects a, b, c ∈ B0 a functor

⊗b : B(c, b)×B(b, a) −→ B(c, a), (4.3.29)

called the composition of 1-morphisms or the tensor product. If the context is clear we simply
write ⊗ instead of ⊗b.

iv.) For each object a ∈ B0 a 1-morphism Ida ∈ B1(a, a), called the identity at a.
v.) For each quadruple of objects a, b, c, d ∈ B0 a natural isomorphism

assodcba : ⊗b ◦ (⊗c × id) −→ ⊗c ◦ (id×⊗b), (4.3.30)

called the associativity. If the context is clear, we simply write asso instead of assodcba.
vi.) For each pair of objects a, b ∈ B0 two natural isomorphisms

leftba : ⊗b ◦ (Idb × id) −→ id (4.3.31)

and

rightba : ⊗a ◦ (id×Ida) −→ id, (4.3.32)

called the left and right identity, respectively. Again, we write left and right if the context is
clear.

These data are required to fulfill the following coherence conditions:
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i.) Associativity coherence: the pentagon diagram

((P ⊗d O)⊗c N)⊗B M (P ⊗d (O ⊗c N))⊗bM

(P ⊗d O)⊗c (N ⊗bM) P ⊗d ((O ⊗c N)⊗bM)

P ⊗d (O ⊗c (N ⊗bM))

asso(P,O,N)⊗bid

as
so

(P
⊗ d
O
,N
,M

)

asso(P,O,N⊗
bM

)

asso
(P
,O
⊗
c N
,M

)

id
⊗d

ass
o(O

,N
,M

)

(4.3.33)
commutes for all P ∈ B1(e, d), O ∈ B1(d, c), N ∈ B1(c, b), and M ∈ B1b, a).

ii.) Identity coherence: the diagram

(N ⊗b Idb)⊗bM N ⊗b (Idb ⊗bM)

N ⊗bM

asso(N,Idb,M)

right(N
)⊗
b id id

⊗b
lef
t(M

) (4.3.34)

commutes for all 1-morphisms N ∈ B1(c, b) and M ∈ B1(b, a).

Corollary 4.3.10 The unital rings as objects, the bimodules between them as 1-morphisms and bi-
module morphisms as 2-morphisms yield a bicategory Bimod with respect to the tensor product of
bimodules and the natural isomorphisms asso, left and right.

Remark 4.3.11 The coherence conditions are eventually responsible for the fact that the successive
use of the functor ⊗ and the natural transformations asso, left, and right does not produce new
natural isomorphisms. This is part of the statement that “every diagram in a bicategory commutes”
provided it is build out of the data of the bicategory, see e.g. [83, Sect. 1.5] for a discussion.

Example 4.3.12 (2-Category) A 2-category B consists of the same data i.) – iv.) as for a bicat-
egory with the following difference: the associativity isomorphism and the identity isomorphism are
required to be the identity, i.e. one has

⊗b ◦ (⊗c × id) = ⊗c ◦ (id×⊗b) (4.3.35)
as well as

⊗b ◦ (Idb × id) = id = ⊗a ◦ (id×Ida). (4.3.36)

In this case, the coherence conditions i.) and ii.) are automatically fulfilled. For this reason, a
bicategory is also called a weak 2-category, see also [83] for additional information and references.
However, note also that the newer conventions in the literature refer to a 2-category in the above
sense as strict 2-category while a bicategory is now called 2-category without the attribute weak.
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Remark 4.3.13 (Monoidal categories) If a bicategory B has only one object ∗, then one has a
category B = B(∗, ∗) where one has a functorial tensor product for the objects of B. This is the
structure usually called a tensor category or monoidal category. If the bicategory is even a 2-category
then the monoidal category is called strict. More details on monoidal categories can be found in
e.g. [73, Chap. XI].

4.3.3 The Bicategories Bimod∗ and Bimodstr

We are now in the position to formulate the main result of this section: we can construct for the class
of idempotent and non-degenerate ∗-algebras over C the bicategory of pre-Hilbert bimodules Bimodstr

and the bicategory of inner product bimodules Bimod∗, respectively. The class of objects are in both
cases the idempotent and non-degenerate ∗-algebras over C. For two such ∗-algebras we define the
1-morphisms to be

Bimod∗1(B,A) =
{

EB A ∈ -Mod∗
A(B)

∣∣ E · A = E
}

(4.3.37)
and

Bimodstr
1 (B,A) =

{
EB A ∈ -Rep∗

A(B)
∣∣ E · A = E

}
⊆ Bimod∗1(B,A), (4.3.38)

respectively. Note that for EB A ∈ -Mod∗
A(B) we already require the strong non-degeneracy B ·E = E

concerning the algebra B but now we also need it with respect to the algebra A.
Recall that according to our convention every bimodule EB A is also a C-module such that all

structure maps are C-(anti-)multilinear. The 2-morphisms are in both cases the adjointable bimodule
morphisms, i.e. the intertwiners, as already in -Mod∗

A(B) and -Rep∗
A(B), respectively. For the

composition of 1-morphisms, i.e. the tensor product functor we use the internal tensor product ⊗̂:
for an idempotent and non-degenerate ∗-algebra B we set

⊗̂B : Bimod∗( C,B)× Bimod∗(B,A) −→ Bimod∗( C,A) (4.3.39)
and

⊗̂B : Bimodstr( C,B)× Bimodstr(B,A) −→ Bimodstr( C,A), (4.3.40)

respectively. Note that the property E · A = E is clearly preserved by the internal tensor product.
Moreover, by Corollary 3.1.9 and Corollary 3.1.12 the internal tensor product is indeed a functor
as required. For the natural isomorphism asso as required by Definition 4.3.9 we can rely on the
already shown associativity of the internal tensor product according to Proposition 3.1.5. The only
point which remains to be shown is the naturalness of asso. We prove this in a slightly more general
context:

Lemma 4.3.14 Let G, G′ ∈ -Mod∗
C(D), F,F′ ∈ -Mod∗

B( C), and E, E′ ∈ -Mod∗
A(B) be given.

Moreover, let U : G −→ G′, T : F −→ F′, and S : E −→ E′ be intertwiners. Then we have

asso( G′,F′, E′) ◦
(
(U ⊗̂ T ) ⊗̂ S

)
=
(
U ⊗̂ (T ⊗̂ S)

)
◦ asso( G,F, E), (4.3.41)

showing that asso is a natural transformation.

Proof: Let z ∈ G, y ∈ F, and x ∈ E. Then we consider [[z ⊗ y]⊗ x] ∈ ( G ⊗̂F) ⊗̂ E and compute(
asso( G′,F′, E′) ◦ ((U ⊗̂ T ) ⊗̂ S)

)(
[[z ⊗ y]⊗ x]

)
= asso( G′,F′, E′)

(
[[U(z)⊗ T (y)]⊗ S(x)]

)
= [U(z)⊗ [T (y)⊗ S(x)]]

=
(
(U ⊗̂ (T ⊗̂ S)) ◦ asso( G,F, E)

)(
[[z ⊗ y]⊗ x]

)
.

Since such classes of elementary tensors span the whole internal tensor product, the claim follows.�
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Together with the already shown property that asso( G,F, E) is isometric we obtain a natural
isomorphism consisting of unitary intertwiners. For the identity 1-morphisms we use the canonical
bimodules

IdA = AA A, (4.3.42)

equipped with the canonical inner product 〈a, b〉
A

= a∗b. Under our assumptions on A we have
AA A ∈ -Rep∗

A(A) and AA A · A = AA A. Thus AA A ∈ Bimodstr
1 (A,A) as wanted. For the left and

right identity transformations we use the bimodule morphisms arising from

leftBA( EB A) : IdB ⊗̂ EB A 3 [b⊗ x] 7→ b · x ∈ EB A (4.3.43)
and

rightBA( EB A) : EB A ⊗̂ IdA 3 [x⊗ a] 7→ x · a ∈ EB A. (4.3.44)

They turn out to be indeed the required identity isomorphisms. Note that for this to be true for
right we need the additional requirement in the definitions (4.3.37) and (4.3.38): for -Mod∗

A(B) or
-Rep∗

A(B) the following lemma would only be true for left but not for right.

Lemma 4.3.15 Let EB A, E′B A ∈ Bimod∗1(B,A) and let T : EB A −→ E′B A be a 2-morphism. Then

leftBA( EB A) : IdB ⊗̂ EB A −→ EB A and rightBA( EB A) : EB A ⊗̂ IdA −→ EB A (4.3.45)

are unitary intertwiners with

T ◦ leftBA( EB A) = leftBA( E′B A) ◦ (id ⊗̂T ) and T ◦ rightBA( EB A) = rightBA( E′B A) ◦ (T ⊗̂ id). (4.3.46)

Proof: First we have to show that left : B ⊗̂ E −→ E is well-defined. To this end we compute

〈b⊗ x, b′ ⊗ y〉B⊗E

A
=
〈
x, 〈b, b′〉

B
· y
〉E

A
= 〈x, (b∗b′) · y〉E

A
= 〈b · x, b′ · y〉E

A
.

Since elementary tensors span everything, left is isometric on the level of ⊗B. Thus it passes to
an isometric and hence injective map on the quotient B ⊗̂ E. The surjectivity of left is clear from
E ∈ -Mod∗

A(B) since by definition B · E = E. Thus left is bijective and isometric, hence adjointable
and unitary. It follows that left is right A-linear, too, which can also be seen directly. Moreover, left
is clearly left B-linear showing that left is indeed a unitary intertwiner. For elementary tensors we
obtain

T (left(E)(b⊗ x)) = T (b · x) = b · T (x) = left(E′)(b⊗ T (x)),

which proves (4.3.46) for left. Using E · A = E, which is granted by E ∈ Bimod∗1(B,A), the case of
right is treated analogously. �

To obtain a bicategory we finally have to show the associativity and identity coherence. This
is easy and can be done exactly the same way as for the bicategory Bimod in Proposition 4.3.8 by
considering (equivalence classes of) elementary tensors, see Exercise 4.4.6. Thus we can summarize
the results of our discussion:

Theorem 4.3.16 (The bicategories Bimod∗ and Bimodstr) The inner-product bimodules Bimod∗

over idempotent and non-degenerate ∗-algebras form a bicategory with respect to the internal tensor
product ⊗̂, the identity bimodules IdA, and asso, left, and right as above. The pre-Hilbert bimodules
Bimodstr over idempotent and non-degenerate ∗-algebras form a sub-bicategory of Bimod∗.

The bicategories Bimod∗ and Bimodstr have an additional structure: for two given 1-morphisms
EB A, E′B A ∈ Bimod∗1(B,A) the corresponding 2-morphisms Bimod∗2( E′B A, EB A) form a C-module.

This is clear since C-linear combinations of intertwiners are again intertwiners. Moreover, we have
the adjoint T 7→ T ∗ of an intertwiner T ∈ Bimod∗2( E′B A, EB A) yielding again an intertwiner T ∗ ∈
Bimod∗2( EB A, E′B A) in the opposite direction. This ∗-involution allows to speak of unitary intertwin-
ers, i.e. of 2-isomorphisms which fulfill T−1 = T ∗ in addition. We take these features as motivation
to define a ∗-bicategory over C:
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104 4. MORITA EQUIVALENCE

Definition 4.3.17 (∗-Bicategory over C) A bicategory B is called ∗-bicategory over C if for any
two objects a, b ∈ B0 and two 1-morphisms M,M ′ ∈ B1(b, a) the 2-morphisms B2(M ′,M) are a
C-module and if there is a map

∗ : B2(M ′,M) −→ B2(M,M ′), (4.3.47)

called the ∗-involution, such that the following properties are fulfilled:
i.) The composition of 2-morphisms is C-bilinear.
ii.) The ∗-involution ∗ is C-antilinear, involutive, and

(T ◦ S)∗ = S∗ ◦ T ∗ (4.3.48)

for S ∈ B2(M ′,M) and T ∈ B2(M ′′,M ′).
iii.) The tensor product ⊗ of 2-morphisms is C-bilinear.
iv.) For S ∈ B2(N ′, N) and T ∈ B2(M ′,M) with N,N ′ ∈ B1(c, b) and M,M ′ ∈ B1(b, a) we have

(S ⊗ T )∗ = S∗ ⊗ T ∗. (4.3.49)

v.) The natural isomorphisms asso(O,N,M) as well as left(M) and right(M) are unitary for all
O ∈ B1(d, c), N ∈ B1(c, b), and M ∈ B1(b, a), i.e. one has

asso(O,N,M)∗ = asso(O,N,M)−1 (4.3.50)

left(M)∗ = left(M)−1 (4.3.51)
and

right(M)∗ = right(M)−1. (4.3.52)

Remark 4.3.18 (∗-Bicategory over C) It follows immediately that for a ∗-bicategory B over C
the 2-endomorphisms 2-End(M) = B2(M,M) of a 1-morphism M ∈ B1(b, a) are a unital ∗-algebra
over C with unit element 1 = idM . Indeed, the composition of 2-endomorphisms is associative and C-
bilinear and idM is the unit element for this composition. The ∗-involution of B gives the ∗-involution
of the algebra 2-End(M). In particular,

id∗M = idM (4.3.53)

follows for any ∗-bicategory over C and any 1-morphism M .

Analogously to Definition 4.3.17 one can also define a ∗-category over C as a category C such that
for any two objects a, b ∈ Obj(C) the morphisms Morph(b, a) are a C-module and such that there is
a map

∗ : Morph(b, a) −→ Morph(a, b) (4.3.54)

with the properties that the composition of morphisms is C-bilinear and ∗ has the properties of a
∗-involution, i.e. ∗ is C-antilinear, involutive, and (T ◦ S)∗ = S∗ ◦ T ∗. For two such ∗-categories
C and D over C one defines a ∗-functor to be a functor F : C −→ D such that for any two objects
a, b ∈ Obj(C) the corresponding map

F : Morph(b, a) −→ Morph(F(b),F(a)) (4.3.55)

is C-linear and satisfies F(T ∗) = F(T )∗ for all T ∈ Morph(b, a). Finally, for two ∗-categories C and D
and two ∗-functors F,G : C −→ D a natural unitary equivalence from F to G is a natural transformation

u : F −→ G, (4.3.56)
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such that for all objects c ∈ C the morphism u(c) : F(c) −→ G(c) is unitary in the sense of the ∗-
categoryD. Two ∗-categories C andD are called unitarily equivalent if there are ∗-functors F : C −→ D
and G : D −→ C such that F ◦ G and G ◦ F are naturally unitarily equivalent to the identity functors.
If s, t : F −→ G are arbitrary natural transformation then we can define new natural transformations

zs + wt : F −→ G (4.3.57)

for z, w ∈ C and
s∗ : G −→ F (4.3.58)

by using the C-module structure and the ∗-involution for the morphism spaces of D, see also Exer-
cise 4.4.7.

Example 4.3.19 (∗-Categories and ∗-functors) The category -mod∗
A(B) is a ∗-category for all

∗-algebras A and B, where we use the fact that the intertwiners T : EB A −→ E′B A between ∗-
representations of B on inner-product modules over A form a C-module, see Remark 2.1.22. This
additional structure was the ultimate reason for the choice of adjointable intertwiners as morphisms
in the representation theories. Then -rep∗

A(B), -Mod∗
A(B), and -Rep∗

A(B) are ∗-subcategories of
-mod∗

A(B). The Rieffel induction functor RE : -mod∗
D(A) −→ -mod∗

D(B) for a bimodule EB A ∈
-mod∗

A(B) and an auxiliary ∗-algebra D is then an example of a ∗-functor, see also Exercise 4.4.8.

With these notions we can re-interpret the definition of a ∗-bicategory B as follows: for any two
objects a, b ∈ B0 the category B(b, a) is a ∗-category over C, the tensor product ⊗ is a ∗-functor, and
the natural equivalences asso, left, and right are unitary equivalences.

Theorem 4.3.20 (Bimod∗ and Bimodstr are ∗-bicategories) With respect to the usual C-module
structure of intertwiners and the adjoint as ∗-involution the bicategories Bimod∗ and Bimodstr are
∗-bicategories over C.

Remark 4.3.21 (Isomorphisms in ∗-bicategories) Let B be a bicategory. Two 1-morphisms
M,M ′ ∈ B1(b, a) are called equivalent if there is a 2-isomorphism T : M −→ M ′. Two objects
a, b ∈ B0 are called isomorphic if there are 1-morphisms M ∈ B1(b, a) and M ′ ∈ B1(a, b) such that
M⊗M ′ is equivalent to Idb andM ′⊗M is equivalent to Ida. This is the general idea behind the usage
of bicategories. If B is now even a ∗-bicategory over C, we can refine the notion of equivalence and
isomorphism: Two 1-morphisms M,M ′ ∈ B1(b, a) are called unitarily equivalent if there is a unitary
2-isomorphism T : M −→ M ′. This gives also two notions of isomorphism for the objects: We can
either use the bicategory version or we can demand that M ⊗M ′ and M ′ ⊗M , are unitarily equiv-
alent to Idb and Ida, respectively. In general, the second implies the first but not vice versa. In the
following we shall exclusively use the second notion of isomorphism based on unitary equivalence for a
∗-bicategory over C. Sometimes we will emphasize this by calling the isomorphic objects ∗-isomorphic
in this case.

We conclude this section with a general construction which brings us from a bicategory back to
an ordinary category by passing to isomorphism classes of 1-morphisms [7]:

Theorem 4.3.22 (Classifying category) Let B be a bicategory. Then a category B, the classifying
category of B, is obtained as follows:

i.) The objects of B are the objects of B.
ii.) For a, b ∈ Obj(B) one defines the morphisms

Morph(b, a) =
{

[M ]
∣∣M ∈ 1-Morph(b, a)

}
, (4.3.59)

where [M ] denotes the equivalence class of M with respect to the 2-morphisms of B.

c© Stefan Waldmann 2019-01-25 15:18:20 +0100 Hash: 13717b6



106 4. MORITA EQUIVALENCE

iii.) The composition of morphisms and the identity morphisms are defined by

[N ] ◦ [M ] = [N ⊗M ] and ida = [Ida]. (4.3.60)

Proof: First we have to show that the composition (4.3.60) is well-defined. Since ⊗ is functorial
it follows that for two 2-isomorphisms T : M −→ M ′ and S : N −→ N ′ also S ⊗ T : N ⊗ M −→
N ′ ⊗M ′ is a 2-isomorphism. Thus (4.3.60) is well-defined. The associativity of ◦ follows now from
the associativity of ⊗ up to asso. For the same reason, ida is the unit element since Ida is the unit
up to the natural isomorphisms coming from left and right. �

Remark 4.3.23 (Classifying category of a ∗-bicategory) For a ∗-bicategory over C we use in-
stead of equivalence classes of 1-morphisms the stronger version of unitary equivalence classes of
1-morphisms according to our convention in Remark 4.3.21. Clearly, an analogous argument shows
that also in this case we obtain a category, the classifying category of a ∗-bicategory over C.

Example 4.3.24 (Classifying category)
i.) The category Bimod from Definition 4.3.1 is by construction the classifying category of the

bicategory Bimod.
ii.) Analogously, one obtains the classifying categories Bimod∗ and Bimodstr for the ∗-bicategories

Bimod∗ and Bimodstr, respectively. Here the objects are idempotent and non-degenerate ∗-
algebras over C and the morphisms are the unitary isomorphism classes of inner-product bimod-
ules and pre-Hilbert bimodules, respectively, according to Remark 4.3.23. Now Bimodstr is a
sub-category of Bimod∗ with the same objects but less morphisms.

4.3.4 Invertible Bimodules in Bimod∗ and Bimodstr

Having the bicategories Bimod∗ and Bimodstr we want to understand the notions of isomorphism
arising from them. In particular, we shall derive an analogous statement to Theorem 4.3.5 in this
context. Thus, let EB A ∈ Bimod∗1(B,A) be an invertible bimodule. According to our convention in
Remark 4.3.21, EB A is invertible if there is a E′A B ∈ Bimod∗1(A,B) such that there exist bimodule
isomorphisms

φ : E′A B ⊗̂B EB A −→ AA A = IdA (4.3.61)

ψ : EB A ⊗̂A E′A B −→ BB B = IdB, (4.3.62)

which are in addition isometric. This is the notion of unitary equivalence which we agreed to use for
∗-bicategories. The following proposition gives a first example of such pairs of bimodules:

Proposition 4.3.25 Let EB A ∈ Pic∗(B,A) be a ∗-equivalence bimodule.
i.) The maps

φcan : EA B ⊗̃B EB A 3 x⊗ y 7→ 〈x, y〉E
A
∈ AA A (4.3.63)

ψcan : EB A ⊗̃A EA B 3 x⊗ y 7→ 〈x, y〉E
B

∈ BB B (4.3.64)

are isometric bimodule isomorphisms, even with respect to both inner products on the ∗-equivalence
bimodules.

ii.) We have EB A ∈ Bimod∗1(B,A) and EB A is invertible.
iii.) One has the compatibility

ψcan(x⊗ y) · z = x · φcan(y ⊗ z). (4.3.65)
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Proof: Clearly, EB A ∈ Bimod∗1(B,A) since E · A = E by definition of a ∗-equivalence bimodule.
Observe that we have written ⊗̃ instead of ⊗̂ in (4.3.63) and (4.3.64) emphasizing that these isomor-
phisms are isometric for both inner products. First it is clear that φcan is well-defined over ⊗B since
x · b⊗ y = b∗ · x⊗ y 7→ 〈b∗ · x, y〉E

A
= 〈x, b · y〉E

A
for all x, y ∈ E and b ∈ B. Moreover, φcan is isometric

with respect to the right-linear inner products since〈
x⊗ y, x′ ⊗ y′

〉E⊗E

A
=
〈
y, 〈x, x′〉E

B
· y′
〉E

A

=
〈
y, 〈x, x′〉E

B
· y′
〉E

A

=
〈
y, x · 〈x′, y′〉E

A

〉E

A

= 〈y, x〉E
A
〈x′, y′〉E

A

=
(
〈x, y〉E

A

)∗〈x′, y′〉E
A

=
〈
φcan(x⊗ y), φcan(x′ ⊗ y′)

〉
A

for all x, x′, y, y′ ∈ E. Similarly, an explicit computation shows that φcan is also isometric with respect
to the left-linear inner products. Thus φcan is well-defined over ⊗̃B, too, where it becomes injective,
since now all inner products are non-degenerate. The surjectivity of φcan follows at once from the
fullness of 〈 · , · 〉E

A
. This shows that φcan is bijective and isometric, hence unitary and adjointable (for

both inner products). Hence we proved the first part since the statement for ψcan is obtained from
symmetry: we have to exchange the roles of A and B as well as EB A and EA B. The compatibility
(4.3.65) follows from the definition of a ∗-equivalence bimodule, proving the last part. �

We will now show that these are indeed the only invertible bimodules. To this end we need some
more technical lemmas. The first shows that already under slightly milder assumptions the inner
products turn out to be full:

Lemma 4.3.26 Let EB A ∈ -mod∗
A(B) and E′A B ∈ -mod∗

B(A) such that there is a isometric isomor-
phism

φ : E′A B ⊗̂B EB A −→ AA A. (4.3.66)

Then 〈 · , · 〉E
A
is full.

Proof: Let a ∈ A be given. Since A is idempotent we find bi, ci ∈ A with a =
∑

i b
∗
i ci =

∑
i 〈bi, ci〉A.

Since φ is surjective, we have xij , yij ∈ EB A and x′ij , y
′
ij ∈ E′A B with bi = φ(

∑
j x
′
ij ⊗ xij) and

ci = φ(
∑

k y
′
ik ⊗ yik). Since φ is isometric we compute

a =
∑

i
〈bi, ci〉A

=
∑

i,j,k

〈
φ(x′ij ⊗ xij), φ(y′ik ⊗ yik)

〉
A

=
∑

i,j,k

〈
x′ij ⊗ xij , y′ik ⊗ yik

〉E′⊗E

A

=
∑

i,j,k

〈
xij , 〈x′ij , y′ik〉

E′

B · yik
〉E

A
,

which shows that 〈 · , · 〉E
A
is full. �

The proof of the lemma only uses the surjectivity and isometry of φ. However, since A is assumed
to be non-degenerate throughout this section, the canonical inner products are non-degenerate and
hence an isometric map is necessarily injective.

The next lemma generalizes the result of Lemma 4.3.15 to arbitrary inner-product modules:
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Lemma 4.3.27 Let EA be an inner-product right A-module. Then the restriction of 〈 · , · 〉E
A
to the

submodule E · A ⊆ E is non-degenerate and the linear extension of

E ⊗̂ A 3 [x⊗ a] 7→ x · a ∈ E · A (4.3.67)

is an isometric isomorphism of inner-product modules over A.

Proof: First note that E · A ⊆ E is a sub-module of E which now satisfies (E · A) · A = E · A
since A is idempotent. Let φ ∈ E · A be such that 〈φ, x · a〉E

A
= 0 for all x · a ∈ E · A. Since

0 = 〈φ, x · a〉E
A

= 〈φ, x〉E
A
a and since A is assumed to be non-degenerate it follows that 〈φ, x〉E

A
= 0 for

all x ∈ E implying φ = 0. Thus the restriction of 〈 · , · 〉E
A
to the sub-module is still non-degenerate.

Now, (4.3.67) is clearly well-defined over ⊗A and surjective. Moreover,

〈x⊗ a, y ⊗ b〉E⊗A
A =

〈
a, 〈x, y〉E

A
· b
〉

A
= a∗〈x, y〉E

A
b = 〈x · a, y · b〉E

A

shows that (4.3.67) is isometric. Thus, (4.3.67) is well-defined over ⊗̂A and becomes injective after
passing to the quotient possibly needed for ⊗̂A. �

Lemma 4.3.28 Let EB A ∈ -mod∗
A(B). Then B · E ∈ -Mod∗

A(B) and the linear extension of

B ⊗̂B E 3 [b⊗ x] 7→ b · x ∈ B · E (4.3.68)

is a unitary intertwiner.

Proof: Here the argumentation is slightly different. First it is clear that B · E is a sub-bimodule
which now satisfies B · (B · E) = B · E since B is idempotent. Moreover, (4.3.68) is well-defined over
⊗B and surjective. Next we compute

〈b⊗ x, c⊗ y〉B⊗E
A =

〈
x, 〈b, c〉

B
· y
〉E

A
=
〈
x, (b∗c) · y

〉E

A
= 〈b · x, c · y〉E

A
,

which means that (4.3.68) is isometric. Thus it is also well-defined on the quotient (4.3.68). Since
now the inner product on B ⊗̂B E is non-degenerate, it follows that (4.3.68) is injective (whether the
inner product on the target side is non-degenerate or not). Thus we have an isometric and bijective
map which implies that the inner product on the target B · E is non-degenerate, too. �

For the invertibility of a 1-morphism in a bicategory one has the following general result. We
formulate this for the case of a ∗-bicategory, the case of a bicategory can be deduced easily.

Proposition 4.3.29 Let B be a ∗-bicategory over C.
i.) Let E ∈ B1(b, a) be a 1-morphism from a to b. Then the tensor product with E from the right

defines a ∗-functor
SE : B(c, b) −→ B(c, a) (4.3.69)

for all c where

SE(M) = M ⊗b E and SE(T : M −→M ′) = (T ⊗b idE : M ⊗b E −→M ′ ⊗b E). (4.3.70)

ii.) If E has a right inverse, i.e. a 1-morphism E′ ∈ B1(a, b) with a unitary isomorphism ψ : E ⊗a
E′ −→ Ida then the map

SE : B2(M ′,M) −→ B2(M ′ ⊗b E,M ⊗b E) (4.3.71)

is injective for all 1-morphisms M,M ′ ∈ B1(c, b).
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iii.) Let E ∈ B1(b, a) be invertible with inverse E′ ∈ B1(a, b) and unitary isomorphisms

φ : E′ ⊗b E −→ Ida and ψ : E ⊗a E′ −→ Idb. (4.3.72)

Then for a given φ with (4.3.72) there exists a unique ψ with (4.3.72) such that in addition

left(E) ◦ (ψ ⊗b idE) = right(E) ◦ (idE ⊗aφ) ◦ asso(E,E′, E), (4.3.73)

i.e. the diagram

(E ⊗a E′)⊗b E E ⊗a (E′ ⊗b E)

Idb ⊗b E E ⊗a Ida

E

asso(E,E′,E)

ψ
⊗ b

id
E

left(E)

id
E ⊗

a φ

righ
t(E

)

(4.3.74)

commutes.

Proof: First it is clear that M ⊗b E ∈ B1(c, a) and T ⊗b idE ∈ B2(M ′ ⊗b E,M ⊗b E) since ⊗b
is a functor. By the functoriality of ⊗b we have S ◦ T 7→ (S ◦ T ) ⊗b idE = (S ⊗b idE) ◦ (T ⊗b idE)
since idE ◦ idE = idE . Moreover, idM 7→ idM ⊗b idE = idM⊗bE , showing that SE is a functor indeed.
Finally, the C-bilinearity of ⊗b shows that T 7→ T ⊗b idE is C-linear. Together with T ∗ 7→ T ∗⊗b idE =
(T ⊗b idE)∗ this shows that SE is a ∗-functor. For the second part, let E′ be a right inverse to E with
a unitary isomorphism ψ : E ⊗a E′ −→ Idb. Then idM ⊗bψ : M ⊗b (E ⊗a E′) −→ M ⊗b Idb is again a
unitary isomorphism by the functoriality of ⊗b. The computation

right(M) ◦ (idM ⊗bψ) ◦ asso ◦((T ⊗b idE)⊗a idE′) ◦ asso−1 ◦(idM ⊗bψ)−1 ◦ right(M)−1

= right(M) ◦ (idM ⊗bψ) ◦ (T ⊗b (idE ⊗a idE′)) ◦ (idM ⊗bψ)−1 ◦ right(M)−1

= right(M) ◦ (idM ⊗bψ) ◦ (T ⊗b idE⊗aE′) ◦ (idM ⊗bψ)−1 ◦ right(M)−1

= right(M) ◦
(
T ⊗b

(
ψ ◦ idE⊗aE′ ◦ψ−1

))
◦ right(M)−1

= right(M) ◦ (T ⊗b idIdb) ◦ right(M)−1

= T

then shows that T 7→ T ⊗b idE is injective. Here we used the properties of the natural isomorphism
asso and right intensely. For the third part we note that (4.3.73) implies

ψ ⊗b idE = left(E)−1 ◦ right(E) ◦ (idE ⊗aφ) ◦ asso(E,E′, E),

and hence ψ⊗b idE is determined uniquely. By the second part, this determines ψ uniquely. To show
the existence of ψ satisfying the additional requirement (4.3.73) we assume to have an arbitrary ψ̃
with (4.3.72). Then define

Θ = right(E) ◦ (idE ⊗aφ) ◦ asso(E,E′, E) ◦ (ψ̃ ⊗b idE)−1 ◦ left(E)−1,

which is the unitary automorphism Θ: E −→ E obtained from running through the diagram (4.3.74)
clockwise. This is possible since all arrows are unitary isomorphisms by assumption. It allows to
define

ψ = ψ̃ ◦ (Θ⊗a idE′) : E ⊗a E′ −→ Idb,

which is still a unitary isomorphism by ∗-functoriality of ⊗. A similar computation as above then
shows that this new ψ has the property (4.3.73). �
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Back to bimodules, we can assume for invertible bimodules without restrictions that the additional
property (4.3.73) is already fulfilled for the isomorphisms φ and ψ. More explicitly, (4.3.73) reads for
x, y ∈ EB A and x′ ∈ E′A B

ψ(x⊗ x′) · y = x · φ(x′ ⊗ y), (4.3.75)

which reminds already on the compatibility of the inner products for a ∗-equivalence bimodule. In
particular, for a ∗-equivalence bimodule EB A and E′A B = EA B the canonical isomorphisms as in
Proposition 4.3.25 have this property. Note however, that for a given invertible bimodule a priori
there may be non-trivial unitary automorphisms Θ as in the proof of Proposition 4.3.29 which can
be used to spoil the additional requirement (4.3.73).

Example 4.3.30 We consider a non-compact manifold M and the idempotent and non-degenerate
commutative ∗-algebra A = C∞0 (M). Then AA A has non-trivial unitary bimodule automorphisms
like e.g. Θ: f 7→ uf for some function u ∈ C∞(M) with uu = 1. Thus in this case the compatibility
between the morphisms φ and ψ can actually spoiled by introducing such an automorphisms of AA A.

We consider now again the change of the base ring functor from Example 3.1.14, see [29, Lem. 6.4]
and [79, Prop. 4.7] for the C∗-algebraic version:

Lemma 4.3.31 Let FB and F′B be inner-product modules over B with F′B ·B = F′B. Moreover, let
EB A ∈ -mod∗

A(B) have the additional property that the left B-multiplications x 7→ b · x are elements
of FA(EA) for all b ∈ B. Then

SE

(
F(FB,F

′
B)
)
⊆ F

(
FB ⊗̂B EB A,F

′
B ⊗̂B EB A

)
. (4.3.76)

Proof: Since by assumption F′B ·B = F′B, every operator on FB(FB,F
′

B) is a linear combination of
operators of the form Θy′·b,y with y′ ∈ F′B, y ∈ FB and b ∈ B. Thus it suffices to show SE(Θy′·b,y) ∈
FA(FB ⊗̂B EB A,F

′
B ⊗̂B EB A). For a fixed y ∈

FB we consider the right A-linear operator ty : E −→ F ⊗̂ E defined by ty(x) = y⊗ x. This operator
is adjointable since〈

y′ ⊗ x′, ty(x)
〉F⊗E

A
=
〈
y′ ⊗ x′, y ⊗ x

〉F⊗E

A
=
〈
x′, 〈y′, y〉F

B
· x
〉E

A
=
〈
〈y, y′〉F

B
· x′, x

〉E

A
.

Note that it suffices to consider factorizing tensors y′ ⊗ x′ since the right hand side has indeed the
correct B-bilinearity properties in y′ and x′ to make this well-defined on the whole tensor product.
Thus the adjoint is t∗y(y′ ⊗ x′) = 〈y, y′〉F

B
· x′. For x ∈ E and z ∈ F we find

SE(Θy′·b,y)(z ⊗ x) = (Θy′·b,y(z))⊗ x =
(
y′ · (b〈y, z〉F

B
)
)
⊗ x = y′ ⊗

(
b〈y, z〉F

B

)
· x = ty′

(
b · t∗y(z ⊗ x)

)
.

Since the left multiplication x 7→ b · x is a finite rank operator by assumption, the claim follows from
the ideal properties (2.1.11). �

We are now in the position to formulate the following result characterizing the invertible bimodules
completely [29, Thm. 6.1], see also [82,106] for the particular case of C∗-algebras:

Theorem 4.3.32 (Invertible bimodules in Bimod∗ and Bimodstr) A bimodule EB A ∈ Bimod∗1(B,A)
(or EB A ∈ Bimodstr

1 (B,A), respectively) is invertible in Bimod∗ (or in Bimodstr, respectively) if and
only if there exists a B-valued inner product 〈 · , · 〉E

B
on EB A such that with this inner product EB A

becomes a ∗-equivalence (or strong equivalence, respectively) bimodule. The B-valued inner product is
uniquely determined by this requirement.
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Proof: That an equivalence bimodule is invertible in the sense of Bimod∗ or Bimodstr, respectively,
was already shown in Proposition 4.3.25, an inverse bimodule is given by the complex conjugate. Thus
consider an invertible EB A ∈ Bimod∗1(B,A) with E′A B ∈ Bimod∗1(A,B) being an inverse bimodule.
Moreover, let φ and ψ be the isometric isomorphisms as in (4.3.61) and (4.3.62). After choosing φ we
can assume that ψ is the unique isomorphism with the additional requirement

ψ(x⊗ x′) · y = x · φ(x′ ⊗ y)

according to Proposition 4.3.29. We consider now the change of base ring functor SE applied to
the (C,B)-bimodule BC B ∈ Bimodstr

1 (C,B). Indeed, since all bimodule operations are in addi-
tion C-multilinear, we can view B as such a bimodule. Moreover, the adjointable intertwiners
2-Morph( BC B, BC B) in the sense of Bimodstr or Bimod∗ are just all adjointable endomorphisms
BB(BB). By Proposition 4.3.29, the functor SE gives an injective ∗-homomorphism

SE : BB(BB) −→ BA

(
BB ⊗̂B EB A

)
,

where again BA(BB ⊗̂B EB A) = 2-Morph( BC B ⊗̂B EB A, BC B ⊗̂B EB A) in the bicategory sense of
Bimod∗ or Bimodstr, respectively. Viewing EA as (C,A)-bimodule we obtain analogously an injective
∗-homomorphism

SE′ : BA(EA) −→ BB(EA ⊗̂A E′A B).

Moreover, we consider the unitary isomorphisms left(E) : BB ⊗̂B EB A −→ EB A and ψ : EB A ⊗̂A E′A B −→
IdB which induce ∗-isomorphisms for the corresponding ∗-algebras of adjointable operators on these
modules by conjugation. Composing things, we eventually obtain ∗-homomorphisms

sE : BB(BB) 3 T 7→ left(E) ◦ (T ⊗̂ idE) ◦ left(E)−1 ∈ BA(EA)

as well as
sE′ : BA(EA) 3 A 7→ ψ ◦ (A ⊗̂ idE′) ◦ ψ−1 ∈ BB(BB).

Exchanging the role of A and B, as well as the role of E and E′ we obtain analogously the ∗-
homomorphisms

tE′ : BA(AA) 3 T 7→ left(E′) ◦ (T ⊗̂ idE′) ◦ left(E′)−1 ∈ BB(E′B)

as well as
tE : BB(E′B) 3 B 7→ φ ◦ (B ⊗̂ idE) ◦ φ−1 ∈ BA(AA).

In a first step, we want to show that sE and sE′ are inverse to each other (and hence by symmetry
also for tE and tE′).

Thus let T ∈ BB(BB) be given. Since E = B · E and since ψ is surjective, we can write every
element in B as linear combination of elements of the form ψ(b · x ⊗ x′). On these elements we
compute

((sE′ ◦ sE)(T ))(ψ(b · x⊗ x′)) = ψ
(
(sE(T )(b · x))⊗ x′)

)
= ψ

(((
left(E) ◦ (T ⊗ idE) ◦ left(E)−1

)
(b · x)

)
⊗ x′

)
= ψ

(
(T (b) · x)⊗ x′

)
= T (b)ψ(x⊗ x′)
= T (bψ(x⊗ x′))
= T (ψ((b · x)⊗ x′)),

showing (sE′ ◦ sE)(T ) = T . Conversely, let A ∈ BA(EA) be given. Moreover, let Θ ∈ 2-End( EB A) be
the unitary automorphism as in the proof of Proposition 4.3.29, i.e. Θ(ψ(x ⊗ x′) · y) = x · φ(x′ ⊗ y)
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for all x, y ∈ E and x′ ∈ E′. We know that we can choose ψ in such a way that Θ = id. However, we
shall not make use of this at the moment. Again, we write every element of E as linear combination
of elements of the form ψ(x⊗ x′) · y. Using this, we compute

((sE ◦ sE′)(A))(ψ(x⊗ x′) · y) =
(
left(E) ◦ (sE′(A)⊗ idE) ◦ left(E)−1

)
(ψ(x⊗ x′) · y)

=
(
left(E) ◦

((
ψ ◦ (A⊗ idE′) ◦ ψ−1

)
⊗ idE

))
(ψ(x⊗ x′)⊗ y)

= left(E)
(
ψ
(
A(x)⊗ x′

)
⊗ y
)

= ψ(A(x)⊗ x′) · y
= Θ−1

(
A(x) · φ(x′ ⊗ y)

)
= Θ−1

(
A(x · φ(x′ ⊗ y))

)
= Θ−1

(
A
(
Θ(ψ(x⊗ x′) · y)

))
= (Θ−1 ◦A ◦Θ)(ψ(x⊗ x′) · y),

and thus
(sE ◦ sE′)(A) = Θ−1AΘ.

This shows that sE and also sE′ are bijective. Since the inverse is unique we conclude that Θ−1AΘ = A
for all A ∈ BA(EA). This shows that Θ is necessarily a central element in all adjointable endomor-
phisms of EA. By Proposition 4.3.29 we know that we can achieve Θ = id, which would simplify the
above computation slightly. In any case, sE and sE′ are inverse to each other.

In a second step we recall that FB(BB) ∼= B via the left multiplications. Indeed, this follows from
the fact that BB B is a strong equivalence bimodule, see Lemma 4.1.5, and Theorem 4.2.1. We want
to determine the image of FB(BB) under the ∗-isomorphism sE and similar for FA(EA). To this end
we compute for b ∈ B, x, y, z ∈ E, and x′ ∈ E′

(SE′(Θb·x,y))(z ⊗ x′) = Θb·x,y(z)⊗ x′

=
(
b · x · 〈y, z〉E

A

)
⊗ x′

= (b ·Θx,y(z))⊗ x′

= (b · SE′(Θx,y))(z ⊗ x′),

yielding SE′(Θb·x,y) = b · SE′(Θx,y). Applying the bimodule morphism ψ gives

sE′(Θb·x,y) = ψ ◦ (b · SE′(Θx,y)) ◦ ψ−1 = b ·
(
ψ ◦ SE′(Θx,y) ◦ ψ−1

)
= b · sE′(Θx,y) ∈ FB(BB),

since the left multiplication with b is in FB(BB) and the finite-rank operators are a ∗-ideal. Since
finally B · E = E we conclude that the rank one operators Θb·x,y span all finite rank operators and
hence

sE′ : FA(EA) −→ FB(BB) ∼= B. (∗)

In a third step, we want to show that sE′ , restricted to FA(EA), is surjective onto FB(BB). To this
end we use (∗) to turn B into a (FA(EA),B)-bimodule. By symmetry we see that

tE : FB(E′B) −→ FA(AA) ∼= A, (∗∗)

which allows to turn A into a (FB(E′B),A)-bimodule. Note that these bimodules are even ∗-repre-
sentations of the finite-rank operators since sE and sE′ are ∗-homomorphisms. By Lemma 4.3.26 and
Theorem 4.2.1 it follows that the bimodules E′

FB(E′B) B
as well as EFA(EA) A are ∗-equivalence bimodules

if one uses the canonical inner product Θ · , · . Thus we know that the complex conjugate bimodule
provides an inverse. In particular, we have

BB B
∼= E

′
B FB(E′B) ⊗̂FB(E′B) E′

FB(E′B) B
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via the isometric isomorphism ψcan from Proposition 4.3.25. Collecting these results yields the follow-
ing isometric isomorphisms (in the sense of Bimod∗)

EB A
∼= BB B ⊗̂B EB A

∼=
(

E
′

B FB(E′B) ⊗̂FB(E′B) E′
FB(E′B) B

)
⊗̂B EB A

∼= E
′

B FB(E′B) ⊗̂FB(E′B)

(
E′

FB(E′B) B ⊗̂B EB A

)
∼= E

′
B FB(E′B) ⊗̂FB(E′B) A

FB(E′B) A, (?)

where we first use left(E), then Proposition 4.3.25, after that the associativity asso(E
′
, E′, E), and

finally the isomorphism φ turning A into a (FB(E′B),A)-bimodule: indeed, transporting the left
module structure of E′

FB(E′B) B
⊗̂B EB A to A via φ gives precisely the left module structure induced by

tE according to (∗∗). This follows from the explicit definition of tE. Since E
′

B FB(E′B) is a ∗-equivalence
bimodule we know that via the left multiplications we have

B ∼= FFB(E′B)

(
E
′
FB(E′B)

)
, (??)

according the Theorem 4.2.1. Moreover, we know that E
′
FB(E′B) = E

′
FB(E′B) · FB(E′B). Furthermore,

since via (∗∗) the finite-rank operators FB(E′B) act on AA via finite-rank operators, we can apply
Lemma 4.3.31 for E

′
FB(E′B) and A

FB(E′B) A
. This gives that the change of base ring functor SA preserves

the finite-rank operators, i.e.

SA : FFB(E′B)

(
E
′
FB(E′B)

)
−→ FA

(
E
′
FB(E′B) ⊗̂FB(E′B) A

FB(E′B) A

)
.

On the other hand we know that the tensor product on the right hand side is isometrically isomorphic
to EA according to (?) while the finite-rank operators on the left hand side are ∗-isomorphic to B via
the left multiplications according to (??). This yields eventually the chain of isomorphisms

B ∼= FFB(E′B)

(
E
′
FB(E′B)

)
SA−→ FA

(
E
′
FB(E′B) ⊗̂FB(E′B) A

FB(E′B) A

)
∼= FA(EA).

Since the first and the last isomorphisms are implemented by the left multiplications we see that this
chain of isomorphisms is the left multiplication of B on EA since SA is a bimodule morphism. So
finally we have the desired surjectivity and hence the ∗-isomorphism

B ∼= FA(EA) (,)

via sE′ .
By Lemma 4.3.26 and Theorem 4.2.1 we know that EFA(EA) A is a ∗-equivalence bimodule. So pulling

back the canonical inner product Θ · , · to B via (,) shows the existence of a compatible B-valued
inner product making EB A a ∗-equivalence bimodule. This shows the first part of the theorem.

Now assume in addition that EB A and E′A B are equipped with completely positive inner products.
Since inverses in Bimod∗ of 1-morphisms are again unique up to isometric isomorphisms we conclude
that (

E′B, 〈 · , · 〉
′
B

) ∼= (EB, 〈 · , · 〉
E
B

)
,

where 〈 · , · 〉EB is the canonical inner product Θ · , · under the ∗-isomorphism (,). But since the inner
product on the left hand side is completely positive, the inner product 〈 · , · 〉EB is completely positive,
too. But then also the B-valued inner product on EB A is completely positive, as this notion behaves
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well with respect to complex conjugating the module, see Exercise 2.4.9. This shows that EB A carries
the structure of a strong equivalence bimodule in this case.

Finally, the uniqueness of the B-valued inner product is easy: this follows directly from Theo-
rem 4.2.1 once we know that EB A is a ∗-equivalence bimodule. �

Remark 4.3.33 The above technical proof simplifies drastically if one considers unital ∗-algebras
only. In this case BA(EA) = FA(EA) and hence most of the above proof becomes trivial. Form this
case one also deduces easily the proof of Theorem 4.3.5, see also Exercise 4.4.10.

4.4 Exercises
Exercise 4.4.1 (Full idempotents) Show that a finitely generated projective module MA over a
unital ring A is full iff the span of elements of the form ϕ(x) ∈ A is the whole ring A, where
ϕ ∈ HomA(MA,A) is from the dual module and x ∈MA. With other words, fullness is a measure on
how non-trivial the dual module is.
Hint: Show first that for module MAthe elements of the form ϕ(x) constitute a two-sided ideal in A. If now MA = eAn

with an idempotent e ∈ Mn(A) it is easy to see, using Exercise 2.4.15, that 1 belongs to this ideal iff e is full.

Exercise 4.4.2 (Morita’s Theorem) A rather down-to-earth proof of Theorem 4.3.5 can be ob-
tained as follows. Let A and B be unital rings and let MB A and M′

A B be bimodules satisfying (4.3.5)
with bimodule isomorphisms ψ : MB A ⊗A M′

A B −→ BB B and φ : M′
A B ⊗B MB A −→ AA A.

i.) Show that MB A 3 x 7→ 1⊗ x ∈ B⊗B MB A and ψ ⊗ id : MB A ⊗A M′
A B ⊗B MB A −→ MB A are

(B,A)-bimodule isomorphisms. Give explicit formulas for their inverses.
ii.) Show that for a given choice of φ there is a (unique) choice of ψ such that the diagram

MB A ⊗A M′
A B ⊗B MB A

B⊗B MB A MB A ⊗A A

MB A

ψ ⊗ id id⊗φ

(4.4.1)

commutes. In the following we assume to have made such a choice.
iii.) Let y ∈ M′

A B be fixed. Show that the map x 7→ φ(y ⊗ x) is right A-linear.
iv.) Show that there is a k ∈ N and yi ∈ M′

A B and xi ∈ MB A for i = 1, . . . , k such that 1B =∑
i ψ(xi ⊗ yi). Conclude that

x =

k∑
i=1

xi · φ(yi ⊗ x) (4.4.2)

holds for all x ∈ MB A. This gives a dual basis for MA.
v.) Prove that the map M′

A B 3 y 7→ (x 7→ φ(y ⊗ x)) ∈ HomA( MB A,A) is a left A-linear isomor-
phism between M′

A B and the dual module of MA.
Hint: Use the above dual basis to show that this map is surjective. For the injectivity, suppose φ(y ⊗ x) = 0
and hence y ⊗ x = 0 for all x ∈ MA since φ is an isomorphism. Exchanging the roles of MB A and M′

A B gives
an analogous diagram to (4.4.1). Use this to conclude that y = 0.

vi.) Now let B ∈ EndA(MA) be a right A-linear endomorphism. Show that there exists a unique
b ∈ B with B(x) = b · x.
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Hint: Use the dual basis to write B(x) =
∑
i xi · φ(yi ⊗ B(x)). Since x 7→ φ(yi ⊗ B(x)) is right A-linear there

exists a (unique) zi ∈ M′
A B with φ(yi ⊗ B(x)) = φ(zi ⊗ x). From this one can deduce the existence of b. For

uniqueness, suppose b · x = 0 for all x ∈ MB A. Then also
∑
i b · xi ⊗ yi = 0. Apply now ψ.

vii.) Show that MA is full.
Hint: Exercise 4.4.1.

This clarifies the more complicated direction in Theorem 4.3.5. If one has a finitely generated, pro-
jective and full right A-module, it is fairly easy to verify that this gives an equivalence bimodule
between A and EndA(MA) by using a dual basis.

Exercise 4.4.3 (Full projections of C∞(M)) Consider a connected smooth manifold M and a
projection P ∈ Mn( C∞(M)). Show that P 6= 0 iff P is full using the pointwise trace. How does the
situation look like in the non-connected case? Generalize this to continuous functions on a reasonable
topological space.

Exercise 4.4.4 (Complete positivity of Θ · , · ) Let A be a unital ∗-algebra and let EA be an inner-
product right A-module. Suppose that there exist vectors x1, . . . , xN ∈ EA with

1A =
N∑
r=1

〈xr, xr〉A. (4.4.3)

Show that the canonical FA(EA)-valued inner product Θ · , · is completely positive.

Exercise 4.4.5 (The bimodule structure of HomA(MA, AA)) Let A be a unital ring and let MA

be a right A-module.
i.) Show that the dual module HomA(MA, AA) becomes a (A,EndA(MA))-bimodule via (4.3.8)

which is always strongly non-degenerate for both module structures.
ii.) Show that the maps (4.3.9) and (4.3.10) are well-defined bimodule morphisms.

Exercise 4.4.6 (Coherence in Bimod∗ and Bimodstr) Formulate and prove the coherence proper-
ties to show that Bimod∗ and Bimodstr are bicategories.

Exercise 4.4.7 (Linear combinations of natural transformations) Let C and D be ∗-catego-
ries over C with two ∗-functors F,G : C −→ D. Show that for natural transformations s, t : F −→ G
the linear combination zs+wt with z, w ∈ C as well as the adjoint s∗ are again natural transformations.

Exercise 4.4.8 (Rieffel induction is a ∗-functor) Let A and B be ∗-algebras over C. Verify in
detail that the Rieffel induction RE : -mod∗

D(A) −→ -mod∗
D(B) for a bimodule EB A ∈ -mod∗

A(B)
and an auxiliary ∗-algebra D is indeed a ∗-functor.

Exercise 4.4.9 (Passing to strongly non-degenerate ∗-representations) Let B be an idem-
potent and non-degenerate ∗-algebra and let A be an arbitrary ∗-algebra over C = R(i). Let EB A and
E′B A ∈ -mod∗

A(B) and let T : EB A −→ E′B A be an intertwiner. Define

NonDeg( EB A) = B ⊗̂B EB A and NonDeg(T ) = idB ⊗̂BT. (4.4.4)

Show that this defines a functor NonDeg : -mod∗
A(B) −→ -Mod∗

A(B). Is this functor an equivalence
of categories?

Exercise 4.4.10 (Invertible bimodules: unital case) Suppose that A and B are unital ∗-algebras
over C = R(i). Give a more direct proof of Theorem 4.3.32 under this simplifying assumption along
the same lines as for the classical Morita theorem.
Hint: Exercise 4.4.2 gives enough inspiration.
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Chapter 5

The Picard Groupoids and Morita
Invariants

We come back to our original goal to compare the representation theories of two given ∗-algebras A
and B. Using Rieffel induction with respect to a bimodule E ∈ -Rep∗

A(B) we have a functor

RE : -Rep∗
D(A) −→ -Rep∗

D(B) (5.0.1)

for any auxiliary ∗-algebra D, in particular for D = C. This gives us a very powerful tool for comparing
the representation theories. We want to understand under which conditions on the bimodule E we
obtain an “inverse” functor to RE. Of course, we can ask the same question for -Rep∗ being replaced
by -Mod∗ or Mod in the purely ring-theoretic situation.

First we recall that for categories the good notion of isomorphism is equivalence: Two categories C
and D are called equivalent if there exist functors F : C −→ D and G : D −→ C such that G◦F : C −→ C
and F ◦G : D −→ D are naturally isomorphic to the identity functors idC and idD, respectively. Note
that in general this is a weaker condition than having isomorphisms, i.e. G ◦ F = idC and F ◦G = idD.
The notion of isomorphism in category theory is usually rather pointless and occurs typically only in
rare situations.

Thus we are looking for a functor which is inverse to RE only up to a natural isomorphism. With
our present machinery on equivalence bimodules it is now fairly easy to see that a strong equivalence
bimodule EB A ∈ Pic∗(B,A) will provide an equivalence of the categories -Rep∗

D(A) and -Rep∗
D(B)

via RE with the “inverse” functor given by the Rieffel induction with the complex conjugate EA B.
Similarly, ∗-equivalence bimodules implement an equivalence between -Mod∗

D(A) and -Mod∗
D(B)

while the ring-theoretic equivalence bimodules give an equivalence of ModD(A) and ModD(B). In
this sense, the representation theories become Morita invariants. While this can be done directly
and very explicitly, we postpone the proof and obtain it as a corollary of a much more detailed
construction. This provides additional insights beyond the mere equivalence of the representations.

In order to uncover this additional structure of the representation theories (and many other Morita
invariants), we take a little excursion into the realm of (bi-) groupoids and (bi-) groupoid actions:
the invertible bimodules form a groupoid, the so-called Picard groupoid, for which we have several
flavours as usual. We will investigate this groupoid and the corresponding isotropy groups, the Picard
groups. It will turn out that a Morita invariant is always equipped with a group action of the Picard
group which is also part of the invariant.

5.1 The Picard Bigroupoids

In order to define the Picard (bi-) groupoids we first remind on some basic notions about groupoids
and bigroupoids. Then the Picard bigroupoids will be the bigroupoids of invertible 1-morphisms in
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118 5. THE PICARD GROUPOIDS AND MORITA INVARIANTS

the bicategories Bimod, Bimod∗, and Bimodstr, respectively.

5.1.1 Groupoids and Bigroupoids

First we recall the definition of a groupoid:

Definition 5.1.1 (Groupoid) A groupoid G is a category where all morphisms are invertible.

To visualize a groupoid, one identifies the objects a ∈ Obj(G) of G with the local unit elements
ida ∈ Morph(a, a) and views the morphisms g : a −→ b as arrows from a to b. One calls a = source(g)
the source of g while b = target(g) is the target. For every arrow g : a −→ b there is an inverse arrow
inv(g) = g−1 : b −→ a with source(g−1) = target(g) and target(g−1) = source(g). The composition of
arrows g and h is denoted as usual by h◦g provided we can compose at all, i.e. target(g) = source(h).
Thus a groupoid is determined by the local unit elements G0, the arrows G1 as well as the structure
maps target, source : G1 −→ G0, inv : G1 −→ G1, id : G0 −→ G1. Usually, the composable arrows are
denoted by

G(2) =
{

(h, g) ∈ G1 ×G1

∣∣ source(h) = target(g)
}
⊆ G1 ×G1, (5.1.1)

such that the composition is a map ◦ : G(2) −→ G1. All the structure maps can be combined in one
picture

G0 G1 G1 G(2).id

source

target

inv ◦ (5.1.2)

The following simple example of a groupoid is of fundamental importance:

Proposition 5.1.2 (Isomorphism groupoid) Let C be a category. Then the invertible morphisms
of C constitute a groupoid, the isomorphism groupoid Iso(C) of C.

The proof is trivial and a simple consequence of the axioms of a category, see Exercise 5.4.1.

Example 5.1.3 The isomorphism groupoid of the category of ∗-algebras over C consists of all ∗-
algebras over C as objects and the ∗-isomorphisms Φ: A −→ B as morphisms Iso∗(B,A) from A to B.
Note that for unital ∗-algebras a ∗-isomorphism satisfies necessarily Φ(1A) = 1B. Thus the difference
in the definition of morphisms in -alg∗ and -Alg∗ disappears on the level of isomorphisms. This gives
a subgroupoid Iso( -Alg∗ ) ⊆ Iso( -alg∗ ). For this special situation we denote the isomorphism groupoid
also simply by Iso∗. Analogously, one has the isomorphism groupoid Iso(Ring) of the category Ring
consisting of the ring isomorphisms, simply denoted by Iso if there is no possibility of confusion.

Proposition 5.1.4 Let G be a groupoid.
i.) For every object a ∈ G0 the set

G(a) = {g : a −→ a} = Morph(a, a) (5.1.3)

is a group with respect to the unit element ida and the composition ◦.
ii.) If Morph(b, a) 6= ∅ then G(a) ∼= G(b) and every morphism g : a −→ b yields a group isomorphism

G(a) 3 h 7→ ghg−1 ∈ G(b). (5.1.4)

iii.) If Morph(b, a) 6= ∅ then the map

G(a) 3 g 7→ hg ∈ Morph(b, a) (5.1.5)

is a bijection for every fixed choice of h ∈ Morph(b, a).
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5.1. The Picard Bigroupoids 119

Again, the statements are simple consequences of the definition of a groupoid, see Exercise 5.4.2.
Nevertheless, we listed them here as they will have important applications later on. The group G(a)
is called the isotropy group of a and the class

G · a =
{
b ∈ Obj(G)

∣∣ Morph(b, a) 6= ∅
}

(5.1.6)

is called the orbit of a in G. Obviously, we have b ∈ G ·a if and only if a ∈ G ·b which is the case if and
only if there is a morphism between a and b. Along an orbit, all the isotropy groups are isomorphic.
In particular, a groupoid with one object is just a group.

We come now to the more interesting notion of a bigroupoid. As already for a bicategory, we want
to relax the associativity as well as the invertibility of 1-morphisms, described in a controlled way by
2-morphisms. This is accomplished with the following definition:

Definition 5.1.5 (Bigroupoid) A bigroupoid G is a bicategory such that all 1-morphisms are in-
vertible in the sense of a bicategory.

Let us unwind the definition: for every 1-morphism E ∈ G1(b, a) from a to b there is a 1-morphism
E′ ∈ G1(a, b) from b to a together with 2-isomorphisms

φ : E′ ⊗b E −→ Ida and ψ : E ⊗b E′ −→ Idb, (5.1.7)

where E′ is uniquely determined up to 2-isomorphisms. The 2-isomorphisms φ and ψ with (5.1.7) are
not unique in general, only there existence is required. In general, there is no unique map to construct
E′ from E, we only require the existence of E′. Note, however, that the definition of a bigroupoid
varies in the literature: sometimes it is required that there is a functor

inv : G(a, b) −→ G(b, a), (5.1.8)

with the obvious properties such that E′ = inv(E) is an inverse to E. Though we do not require this
from the beginning, in our examples we always have such an inversion functor. Moreover, sometimes
it is also required that the 2-morphisms in a bigroupoid are always isomorphisms. From the point of
view of Morita theory this requirement seems to be unnecessarily strong, hence we do not follow this
convention.

We note the following general result which can be obtained immediately from the definitions:

Proposition 5.1.6 Let B be a bicategory.
i.) The invertible 1-morphisms in B constitute a bigroupoid, called the isomorphism bigroupoid of B,

where as objects one takes the same objects as of B, as 1-morphisms the invertible 1-morphisms
of B, and as 2-morphisms all corresponding 2-morphisms of B.

ii.) The classifying category of a bigroupoid G is a groupoid G, called the classifying groupoid of G.
iii.) The isomorphism groupoid of the classifying category of B is the classifying groupoid of the

isomorphism bigroupoid of G.

In case of a ∗-bicategory over C we have of course an analogous construction of a classifying
category: now we base the notion of isomorphic 1-morphisms on the unitary 2-morphisms as before.

5.1.2 The Definition of the Picard Bigroupoids

After this general discussion on (bi-) groupoids we come now to our main example of the Picard (bi-)
groupoids in various flavours. To this end, we start with the following lemma:

Lemma 5.1.7 Let EB A, E′B A ∈ Bimod∗(B,A) be invertible.
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120 5. THE PICARD GROUPOIDS AND MORITA INVARIANTS

i.) Every morphism T : EB A −→ E′B A in the sense of Pic∗(B,A) is a 2-morphism T : EB A −→ E′B A

in the sense of Bimod∗.
ii.) An isometric 2-isomorphism T : EB A −→ E′B A in the sense of Bimod∗ is an isomorphism

T : EB A −→ E′B A in the sense of Pic∗(B,A).
iii.) Every 2-endomorphism T : EB A −→ EB A in the sense of Bimod∗ is an endomorphism T : EB A −→

EB A in the sense of Pic∗(B,A).

Proof: The subtleties of this lemma arise from the fact that in Pic∗ we have to take care of both
inner products while in Bimod∗ only one inner product is part of the structure. Then the first part
is clear, as in Pic∗(B,A) one requires additionally that T ∗ is also the adjoint of T with respect to
the B-valued inner product. For the second part we consider a unitary T . Then T ∗ = T−1 where the
adjoint refers to the A-valued inner products. Now for x, y ∈ E and z′, u′ ∈ E′ we have〈

〈Tx, Ty〉E
′

B
· z′, u′

〉E′

A
=
〈
(Tx) · 〈Ty, z′〉E

′

A
, u′
〉E′

A

=
〈
(Tx) · 〈y, T ∗z′〉E

′

A
, u′
〉E′

A

=
〈
T
(
x · 〈y, T ∗z′〉E

A

)
, u′
〉E′

A

=
〈
x · 〈y, T ∗z′〉E

A
, T ∗u′

〉E

A

=
〈
〈x, y〉E

B
· T ∗z′, T ∗u′

〉E

A

=
〈
T ∗
(
〈x, y〉E

B
· z′
)
, T ∗u′

〉E

A

=
〈
〈x, y〉E

B
· z′, u′

〉E′

A
,

where we used the left B-linearity of T ∗ = T−1 as well as the right A-linearity of T together with
the unitarity of T with respect to the A-valued inner products. Since all inner products are non-
degenerate and b 7→ (x′ 7→ b · x′) is injective, we conclude that T is also isometric for the B-valued
inner product. As T is invertible, this means that T is also adjointable with respect to the B-valued
inner product and both adjoints coincide since they are simply given by T−1, proving the second part.
For the third part, let T : EB A −→ EB A be an endomorphism, then we have

〈x, Ty〉E
B

· z = x · 〈Ty, z〉E
A

= x · 〈y, T ∗z〉E
A

= Θx,y(T
∗z)

= T ∗(Θx,y(z))

= ΘT ∗x,y(z)

= 〈T ∗x, y〉E
B

· z,

as T ∗ is left B-linear and Θx,y is a left multiplication with some element in B. Note that the above
computation does not work for a morphism T : EB A −→ E′B A in general as then Θx,y′ is not necessarily
given by the left multiplication of an element in B. �

The consequence of the lemma is now that despite the difficulties for general morphisms, the two
notions of isomorphisms coincide.

Definition 5.1.8 (∗-Picard and strong Picard (bi-) groupoids) For a given ordered ring R with
C = R(i) one defines:
i.) The ∗-Picard groupoid Pic∗ is the groupoid of invertible morphisms of Bimod∗. The isotropy

groups are called the ∗-Picard groups.
ii.) The ∗-Picard bigroupoid Pic∗ is the bigroupoid of ∗-invertible 1-morphisms of Bimod∗.
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5.1. The Picard Bigroupoids 121

iii.) The strong Picard groupoid Picstr is the groupoid of invertible morphisms in Bimodstr. The
isotropy groups are called the strong Picard groups.

iv.) The strong Picard bigroupoid Picstr is the bigroupoid of invertible 1-morphisms in Bimodstr.

Note that the notion of ∗-Picard groupoids and strong Picard groupoids depends implicitly on the
chosen ring C = R(i) of scalars. As long as we consider this ring to be fixed, we shall not indicate
this dependence in our notation. Nevertheless, when we come to deformation theory in Chapter 7,
we will have to be more careful as then the relation between the Picard groupoids for C and CJλK will
be investigated, see e.g. Section 7.1.1.

Remark 5.1.9 (Picard groupoids)
i.) In Definition 4.1.14 we defined the morphisms of Pic∗(B,A) (as well as those in Picstr(B,A))

to be those bimodule morphisms T : EB A −→ E′B A which are adjointable with respect to both
inner products and for which the two adjoints agree. By Lemma 5.1.7 this needs not to be
consistent with the definition of the Picard bigroupoid as above: However, for isomorphisms
and endomorphisms both definitions agree. In particular, the classifying groupoids do not
depend on this subtleties. At the present stage there seems to be no true reason to prefer one
definition over the other, therefore we shall no longer take these subtleties into account and
postpone a final decision.

ii.) The classifying groupoid of Pic∗ is Pic∗ and the classifying groupoid of Picstr is Picstr. This
follows immediately from the definition and Proposition 5.1.6. From the same Proposition 5.1.6
it also follows that Pic∗ and Picstr are bigroupoids while Pic∗ and Picstr are groupoids by
Proposition 5.1.2.

iii.) With Theorem 4.3.32 we obtain the following interpretation of Morita equivalence: two ∗-
algebras (idempotent and non-degenerate as usual) are strongly Morita equivalent or ∗-Morita
equivalent, respectively, if and only if they are in the same Picstr-orbit or Pic∗-orbit, respectively.

iv.) From Proposition 4.1.15 it follows that not only the composition ⊗̃ in Pic∗ and Picstr is functorial
but we also have inversion functors

inv : Pic∗(B,A) −→ Pic∗(A,B) (5.1.9)
as well as

inv : Picstr(B,A) −→ Picstr(A,B), (5.1.10)

explicitly given by complex conjugation of the bimodule as well as the corresponding bimodule
morphisms, see also Exercise 5.4.4. In particular, this proposition could also be used to construct
the Picard bigroupoids directly, without using the ambient bicategories Bimod∗ and Bimodstr,
respectively. Then, however, the bimodules loose their interpretation of being the invertible
ones among general bimodules.

In the ring-theoretic version of Morita theory there is of course also a Picard groupoid Pic as well
as a corresponding Picard bigroupoid Pic:

Definition 5.1.10 (Picard (bi-)groupoid) The bigroupoid of invertible 1-morphisms in Bimod is
called the Picard bigroupoid Pic and the groupoid of invertible morphisms in Bimod is called the Picard
groupoid Pic. The isotropy groups of Pic are called the Picard groups.

Remark 5.1.11 Note that the objects of Pic are rings with unit while the objects of Pic∗ and Picstr

are idempotent and non-degenerate ∗-algebras over C. On one hand this is more particular due to
the ∗-algebra structure. On the other hand, we do not necessarily require units. Thus a meaningful
comparison between the various Picard groupoids is only possible after restricting to unital ∗-algebras
over C as objects. When comparing the different Picard groupoids we shall always implicitly assume
that this restriction has been done.
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As a first application of our general considerations on groupoids in Proposition 5.1.4 we obtain
another Morita invariant:

Corollary 5.1.12 (Morita invariance of the Picard groups) Let C = R(i).
i.) If A and B are Morita equivalent unital rings then

Pic(A) ∼= Pic(B). (5.1.11)

ii.) If A and B are ∗-Morita equivalent idempotent and non-degenerate ∗-algebras over C then

Pic∗(A) ∼= Pic∗(B). (5.1.12)

iii.) If A and B are strongly Morita equivalent idempotent and non-degenerate ∗-algebras over C
then

Picstr(A) ∼= Picstr(B). (5.1.13)

In all three cases any equivalence bimodule implements a group isomorphism according to (5.1.4).

Remark 5.1.13 (Morita theory) The whole Morita theory is now encoded in the corresponding
Picard (bi-) groupoids. The objects encode which type of ∗-algebras (rings) are under consideration.
The orbits encode which ∗-algebras are Morita equivalent. Finally, the Picard groups encode how
many “self-equivalences” an object has. Moreover, the Picard groups yield also information in how
many “different” ways two ∗-algebras can be Morita equivalent, by Proposition 5.1.4, iii.). Thus for
Morita theory we obtain the following two basic tasks:
i.) Determine the orbits of the Picard groupoid.
ii.) Determine the Picard groups.

The additional structure of the bigroupoid approach is not necessary to understand the above two
questions. However, we will meet situations where the Picard bigroupoid approach is advantageous
for formulating certain Morita invariants.

5.2 The Structure of the Picard Groupoids

In this section we shall discuss some general properties of the Picard groupoids Pic, Pic∗, and Picstr

and the corresponding Picard groups. The bigroupoid aspects will not be needed here. The statements
on the ring-theoretic version are classical, see e.g. the monograph of Bass [4, Chap. 2, §5]. Nevertheless,
we will recall them together with the ∗-version and the strong versions which can be found in [29].

5.2.1 The Canonical Groupoid Morphisms between the Picard Groupoids

The main tool in studying the strong and ∗-Picard groupoids will be to relate them to the underlying
ring-theoretic Picard groupoid: there are canonical groupoid morphisms relating the three Picard
groupoids whose images and kernels will contain the relevant information how the strong and ∗-
equivalence differs from the purely ring-theoretic Morita equivalence.

First we remind on the definition of a groupoid morphism:

Definition 5.2.1 (Groupoid morphism) A groupoid morphism Φ: G −→ H is a covariant func-
tor.

Indeed, this generalizes the notion of a group morphism in the following sense: If G = G and
H = H are groupoids with just one object, i.e. their morphism spaces are just groups, then a functor
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Φ: G −→ H maps the unique object of G to the unique object of H and is a group morphism on the
level of morphisms of G and H, i.e.

Φ(g ◦ g′) = Φ(g) ◦ Φ(g′) and Φ(idG) = idH . (5.2.1)

In the general groupoid case we obtain from a groupoid morphism the group morphisms

Φ: G(a) −→ H(Φ(a)) (5.2.2)

for each object a ∈ G. Moreover, Φ maps the orbit G · a into (but not necessarily onto) the orbit
H · Φ(a).

Back to the Picard groupoids we have the first example of a groupoid morphism: By forgetting
the complete positivity of the inner products we obtain a groupoid morphism

Picstr −→ Pic∗, (5.2.3)

which is the identity on the objects. Moreover, on morphisms it is injective since in Picstr and Pic∗

we have the same 2-morphisms and hence the notions of isomorphism between 1-morphisms of Picstr,
viewed as 1-morphism of Pic∗ coincides. Clearly, forgetting the complete positivity is compatible
with taking the internal tensor products as in the quotient procedure needed for ⊗̂ we only have to
take care of the degeneracy space, a notion which does not refer to positivity. Thus (5.2.3) is indeed
functorial. As we shall see, the groupoid morphism (5.2.3) is not surjective in general.

For unital ∗-algebras we can forget the inner products completely. Then, for equivalence bimodules
we know from Corollary 4.2.8 that we do not need the quotient for the construction of ⊗̂. Finally,
isometrically isomorphic equivalence bimodules are in particular isomorphic as bimodules and thus
the isomorphism classes of bimodules in Picstr or Pic∗ are mapped to isomorphism classes in Pic in
a well-defined way. This shows that we obtain groupoid morphisms

Picstr −→ Pic and Pic∗ −→ Pic . (5.2.4)

On objects both are again the identity. However, in general, both of them are neither surjective
nor injective: On a ring-theoretic equivalence bimodule in Pic there might be more than one inner
product up to isometry or even none. This problematic parallels very much the situation in K0-theory
as indicated in (2.3.11). We summarize the results of this discussion as follows:

Theorem 5.2.2 (Canonical forgetful functors) Over the class of unital ∗-algebras, we have canon-
ical forgetful groupoid morphisms such that the diagram

Picstr Pic∗

Pic

(5.2.5)

commutes.

In the following we shall mainly study the groupoid morphism Picstr −→ Pic and discuss its kernel
and image.

Remark 5.2.3 Note that since in general the internal tensor product ⊗̂ requires a non-trivial quotient
procedure, there is no forgetful functor Bimodstr −→ Bimod: the tensor products simply do not match.
This is only true for equivalence bimodules. However, forgetting complete positivity is still possible
leading to a functor

Bimodstr −→ Bimod∗ . (5.2.6)

From this, we recover the groupoid morphism (5.2.3) by restricting to invertible arrows.
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5.2.2 Isomorphisms and Equivalences

Beside relating the different types of the Picard groupoids we can also relate the notion of Morita
equivalence to the notion of isomorphism: since Bimod generalizes the category Ring by means of
the functor ` from Proposition 4.3.3, we can compare the corresponding isomorphism groupoids. For
Ring, the groupoid of isomorphisms is just Iso, consisting of arrows which are the usual unital ring
isomorphisms. Since ` is a functor, it restricts to a functor

` : Iso −→ Pic, (5.2.7)

i.e. a groupoid morphism between the isomorphism groupoid of unital rings and the ring-theoretic
Picard groupoid.

For ∗-algebras we can not expect to have an analog of the functor ` from -alg∗ or -Alg∗ to Bimod∗

or Bimodstr: the reason is that if the ∗-homomorphism Φ: A −→ B is not invertible, then there is
no hope to construct a reasonable A-valued inner product on the (B,A)-bimodule BΦ

B A . Thus we
have to proceed differently when we want to find an analog of (5.2.7) in the ∗-algebra case: we have
to consider ∗-isomorphisms only.

In Theorem 4.1.11 we have constructed a strong equivalence bimodule out of a ∗-isomorphism
Φ: A −→ B. Indeed, on BB we considered the right A-module structure defined by b ·Φ a = bΦ(a)
together with the canonical B-valued inner product 〈 · , · 〉

B
as well as the A-valued inner product

〈b, b′〉B
Φ

A = Φ−1(b)∗Φ−1(b′). Alternatively, one can endow AA with a left B-module structure via

b ·Φ a = Φ−1(b)a. (5.2.8)

Together with the canonical A-valued inner product and the B-valued inner product

〈a, a′〉Φ
A B = Φ(a)Φ(a′)∗ (5.2.9)

the resulting (B,A)-bimodule AΦ
B A is again a strong equivalence bimodule. This follows analogously

to Theorem 4.1.11. Note that for either way, the existence of the inverse of Φ is crucial to obtain an
inner-product bimodule.

More generally, for a ∗-equivalence ( C,B)-bimodule FC B we can construct a ∗-equivalence ( C,A)-
bimodule FΦ

C A as follows. On F we keep the left C-module structure and the C-valued inner product.
Then we set

x ·Φ a = x · Φ(a) and 〈x, y〉F
Φ

A = Φ−1
(
〈x, y〉F

B

)
, (5.2.10)

for x, y ∈ F and a ∈ A. Analogously, for a ∗-isomorphism Ψ: B −→ C and a ∗-equivalence bimodule
EB A we construct EΨ

C A by keeping the right A-module structure and the A-valued inner product and
setting

c ·Ψ x = Ψ−1(c) · x and 〈x, y〉
ΨE

C = Ψ
(
〈x, y〉E

B

)
. (5.2.11)

Obviously, this generalizes the construction of BΦ
B A and AΦ

B A. The properties of this construction
are summarized in the following theorem:

Theorem 5.2.4 (The groupoid morphism `) Let Φ ∈ Iso∗(B,A) and Ψ ∈ Iso∗( C,B) and let
EB A and FC B be strong equivalence bimodules.
i.) The map Φ−1 : BΦ

B A −→ AΦ
B A is an isometric isomorphism of strong equivalence bimodules.

ii.) We have EΨ
C A, FΦ

C A ∈ Picstr( C,A).
iii.) The maps

FC B ⊗̃B BΦ
B A 3 x⊗ b 7→ x · b ∈ FΦ

C A (5.2.12)

and
CΨ

C B ⊗̃B EB A 3 c⊗ x 7→ c ·Ψ x = Ψ−1(c) · x ∈ EΨ
C A (5.2.13)

are isometric isomorphisms.
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iv.) The map `(A) = A for objects and

`(Φ) =
[

BΦ
B A

]
∈ Picstr(B,A) (5.2.14)

for ∗-isomorphisms Φ: A −→ B yields a groupoid morphism

` : Iso∗ −→ Picstr . (5.2.15)

Proof: First it is clear that Φ−1 yields a (B,A)-bimodule morphism since Φ−1(b · b′) = Φ−1(b) ·
Φ−1(b′) = b ·Φ Φ−1(b′) and Φ−1(b′ ·Φ a) = Φ−1(b′Φ(a)) = Φ−1(b′)a. Moreover,〈

Φ−1(b),Φ−1(b′)
〉ΦA

A
= Φ−1(b)∗Φ−1(b′) = Φ−1(b∗b′) =

〈
b, b′
〉BΦ

A

shows that Φ−1 is isometric. Since Φ−1 is clearly bijective, we have a bijective isometric bimodule
isomorphism, hence an adjointable and unitary one, with respect to the A-valued inner products. By
Lemma 5.1.7, iii.), it follows that Φ−1 is isometric with respect to the B-valued inner products, too.
Of course, this can also be seen in a more elementary way. This shows the first part. For the second
part, the required properties of the bimodules are easily checked. For the third part, we show that
(5.2.12) is isometric, since 〈

x⊗ b, x′ ⊗ b′
〉F⊗BΦ

A
=
〈
b, 〈x, x′〉F

B
· b′
〉BΦ

A

= Φ−1
(
b∗〈x, x′〉F

B
b′
)

= Φ−1
(
〈x · b, x′ · b′〉F

B

)
=
〈
x · b, x′ · b′

〉FΦ

A
.

Now (5.2.12) is clearly a bimodule morphism which is surjective by F ·B = B and isometric, hence
on the quotient F ⊗̃B B it is also injective. Thus (5.2.12) is bijective and isometric hence adjointable
with respect to the A-valued inner product. Thanks to Lemma 5.1.7, i.), or again by an elementary
computation we conclude that (5.2.12) is also adjointable with respect to the C-valued inner product.
The case of (5.2.13) is treated the same. For the fourth part, we first observe `(idA) = [ AA A] and
hence ` preserves the units. Moreover,

CΨ
C B ⊗̃B BΦ

B A 3 c⊗ b 7→ cΨ(b) ∈ CΨ◦Φ
C A

is an isometric isomorphism as a simple computation confirms. From this, `(Ψ ◦ Φ) = `(Ψ) ⊗̃ `(Φ)
follows immediately. �

Remark 5.2.5 Analogous statements hold for ∗-equivalence bimodules and the ∗-Picard groupoid
Pic∗ instead. In fact, the corresponding groupoid morphism ` : Iso∗ −→ Pic∗ is just the composition
of ` as in (5.2.15) and the canonical groupoid morphism (5.2.3). Moreover, Theorem 5.2.4 has a well-
known ring-theoretic analog: for unital rings instead of ∗-algebras as well as for Pic instead of Picstr

or Pic∗ we obtain that twisting the equivalence bimodule with an automorphism yields a groupoid
morphism

` : Iso −→ Pic, (5.2.16)

see e.g. [4, Chap. 2, §5]. In fact, here ` is just the restriction of the functor ` : Ring −→ Bimod as we
have already mentioned. Moreover, ` is clearly compatible with the inclusion Iso∗ −→ Iso.

In general, ` is neither injective nor surjective. The lack of surjectivity is clear since there are
∗-algebras which are strongly or ∗-Morita equivalent without being ∗-isomorphic, see the example from
Theorem 4.1.12. Thus Pic∗(B,A) or Picstr(B,A) may be non-empty while Iso∗(B,A) is empty. But
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even for B = A, the strong Picard group Picstr(A) may contain elements which are not of the simple
form `(Φ) as we shall see later in examples. Thus the non-surjectivity encodes where strong Morita
equivalence goes beyond the notion of ∗-isomorphism. For Pic∗(A) there is always a trivial reason
as we can replace a completely positive inner product by the corresponding completely negative one
which are certainly not isometric. Thus we expect Pic∗(A) to be “at least” Picstr(A)×Z2. However,
we will see examples where Pic∗(A) is strictly larger than Picstr(A) × Z2, see Remark 5.2.16, ii.).
Finally, the same lack of surjectivity is expected in the ring-theoretic situation as well.

The lack of injectivity can be explained as follows: for particular ∗-isomorphisms Φ 6= Ψ the bi-
modules BΦ

B A and BΨ
B A are different but may still be isomorphic. To investigate the (non-) injectivity

we first note that for isomorphic rings the question of injectivity of

` : Iso∗(B,A) −→ Picstr(B,A) (5.2.17)

is equivalent to the question of injectivity of the group morphism

` : Aut∗(A) −→ Picstr(A). (5.2.18)

Indeed, this follows immediately from the groupoid structure and is true for every morphism between
groupoids. Replacing Picstr by Pic∗ does not yield anything new here, as (5.2.3) is injective. In
particular, we have the injective group homomorphism

Picstr(A) −→ Pic∗(A). (5.2.19)

Restricting to the unital situation and replacing Iso∗ by Iso and Picstr by Pic gives again an expected
non-injectivity for the same reasons.

To actually compute the kernel of ` restricted to the isotropy group Aut∗(A) of Iso∗ at A, i.e.
the ∗-automorphism group, we consider unital ∗-algebras from now on. This will allow to proceed
analogously to the ring-theoretic situation.

Definition 5.2.6 (Inner ∗-automorphisms) For a unital ∗-algebra A over C = R(i) we define the
inner ∗-automorphisms to be

InnAut∗(A) =
{

Φ ∈ Aut∗(A)
∣∣ Φ(a) = uau∗ with some u−1 = u∗ ∈ A

}
. (5.2.20)

Note that in general this is a proper subgroup of InnAut(A) ∩ Aut∗(A) as we explicitly require that
Φ is the conjugation with some unitary element u of A. Clearly, InnAut∗(A) is a normal subgroup
of Aut∗(A), see also Exercise 5.4.5. Thus we can define the group of outer ∗-automorphisms to be

OutAut∗(A) =
Aut∗(A)

InnAut∗(A)
(5.2.21)

in analogy to the group of outer automorphisms OutAut(A) = Aut(A)
/

InnAut(A) as usual.
For unital ∗-algebras we have the following general result, where we only have to take care of the

strong Picard group thanks to the injective inclusion (5.2.19).

Theorem 5.2.7 (Strong Picard group) Let A and B be unital ∗-algebras over C = R(i).
i.) For Φ ∈ Aut∗(B) and EB A ∈ Picstr(B,A) one has [ EΦ

B A] = [ EB A] if and only if Φ ∈ InnAut∗(B).
ii.) The sequence of group morphisms

1 −→ InnAut∗(A) −→ Aut∗(A)
`−→ Picstr(A) (5.2.22)

is exact.
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Analogously, in the ring-theoretic framework we have the exact sequence of groups

1 −→ InnAut(A) −→ Aut(A)
`−→ Pic(A). (5.2.23)

Proof: The ring-theoretic version can be found in [4, Chap. 2, §5] and serves as motivation for
the ∗-algebra framework: assume that U : EΦ

B A −→ EB A is an isometric isomorphism. Then we have
U(x · a) = U(x) · a and hence U ∈ EndA(EA). Since in the unital case

B ∼= FA(EA) = EndA(EA) = BA(EA)

via the left action according to Proposition 4.2.4, there is a unique invertible u ∈ B with U(x) = u ·x
and hence U−1(x) = u−1 · x. Since U is also left B-linear we obtain for b ∈ B

(bu) · x = b · (u · x) = b · U(x) = U(b ·Φ x) = U(Φ−1(b) · x) = (uΦ−1(b)) · x.

As the map b 7→ (x 7→ b · x) is injective for an equivalence bimodule we conclude bu = uΦ−1(b) and
thus Φ(b) = ubu−1. This shows Φ ∈ InnAut(B). Since U is also isometric we have

u 〈x, y〉E
B

u∗ = 〈u · x, u · y〉E
B

= 〈U(x), U(y)〉E
B

= 〈x, y〉
ΦE

B
= Φ

(
〈x, y〉E

B

)
.

Since 〈 · , · 〉E
B

is full we conclude that Φ(b) = ubu∗ for all b ∈ B, implying u−1 = u∗. Thus
Φ ∈ InnAut∗(B) as desired. Conversely, let Φ(b) = ubu−1 with some unitary u ∈ B. Then it is
an easy computation that U(x) = u · x provides the isometric isomorphism U : EΦ

B A −→ EB A. This
shows the first part. For the second part we consider B = A and the two equivalence bimodules AA A

and AΦ−1

A A. The kernel of the group morphism ` consist of those Φ ∈ Aut∗(A) for which these two
bimodules are isometrically isomorphic. By the first part, we get (5.2.22). Note that in the proof the
positivity was never needed. �

Remark 5.2.8 (Outer automorphisms and the Picard group) In the particular case of a com-
mutative unital ∗-algebra (or ring, respectively) A we have InnAut(A) = {id} = InnAut∗(A). Hence

` : Aut∗(A) −→ Picstr(A) (5.2.24)

in the ∗-algebra case as well as
` : Aut(A) −→ Pic(A) (5.2.25)

in the ring case are injective. Thus the automorphism group becomes a subgroup of the Picard
group. In the general case, one can use (5.2.22) and (5.2.23), respectively, to embed the outer ∗-
automorphisms into the strong Picard group and the outer automorphisms into the Picard group,
respectively. Thus we obtain injective group morphisms

` : OutAut∗(A) −→ Picstr(A) and ` : OutAut(A) −→ Pic(A), (5.2.26)

respectively. In both cases, the interesting part of the Picard groups is the “rest”, not reached by the
outer automorphisms.

5.2.3 The Role of the Center

To clarify the structure of the Picard groups further we consider the following construction. Let

Z(A) =
{
a ∈ A

∣∣ [a, b] = 0 for all b ∈ A
}

(5.2.27)

be the center of A. Clearly, Z(A) is a ∗-subalgebra of A, see also Exercise 5.4.6, i.).
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Proposition 5.2.9 Let A, B, and C be unital ∗-algebras over C = R(i) and let EB A and FC B be
∗-equivalence bimodules.
i.) For every a ∈ Z(A) there exists a unique hE(a) ∈ Z(B) such that for all x ∈ EB A

hE(a) · x = x · a. (5.2.28)

ii.) The map hE : Z(A) −→ Z(B) is a ∗-isomorphism.
iii.) We have

hA = idZ(A) and hF ◦ hE = hF⊗̃E. (5.2.29)

iv.) The map hE only depends on the isometric isomorphism class [ EB A] of EB A.

Proof: Let a ∈ Z(A) then x 7→ x ·a is clearly right A-linear. By Proposition 4.2.4 there is a unique
hE(a) ∈ B with (5.2.28) for all x ∈ EB A. Now let b ∈ B be arbitrary then

(bhE(a)) · x = b · (hE(a) · x) = b · (x · a) = (b · x) · a = hE(a) · (b · x) = (hE(a)b) · x

for all x ∈ EB A and a ∈ Z(A). This shows that hE(a) is central. For the second part we first observe
that hE : Z(A) −→ Z(B) is clearly linear. For a, a′ ∈ Z(A) we have

hE(aa′) · x = x · (aa′) = (x · a) · a′ = hE(a′) · (hE(a) · x) = (hE(a′)hE(a)) · x

for all x ∈ EB A. Hence hE(aa′) = hE(a′)hE(a) and since Z(B) is commutative, hE is an algebra
homomorphism. For x, y ∈ EB A we find

〈hE(a∗) · x, y〉E
A

= 〈x · a∗, y〉E
A

= a〈x, y〉E
A

= 〈x, y〉E
A
a = 〈x, y · a〉E

A
= 〈x, hE(a) · y〉E

A
= 〈hE(a)∗ · x, y〉E

A
.

It follows that hE(a∗) = hE(a)∗ meaning that hE is a ∗-homomorphism. Before showing that hE is a
∗-isomorphism we show the third and fourth part. Clearly, hA = idZ(A), and for x ∈ E and y ∈ F we
have for all a ∈ Z(A)

(y ⊗ x) · a = y ⊗ (hE(a) · x) = (y · hE(a))⊗ x = (hF(hE(a))) · (y ⊗ x).

From this we immediately find (5.2.29). Finally, let Φ: EB A −→ E′B A be an isometric isomorphism.
Then for x ∈ E and a ∈ Z(A) we have

hE′(a) · Φ(x) = Φ(x) · a = Φ(x · a) = Φ(hE(a) · x) = hE(a) · Φ(x),

since Φ is a (B,A)-bimodule morphism. Thus hE′ = hE follows. From this we finally conclude
hE ◦ hE = idZ(A) as well as hE ◦ hE = idZ(B) when applying (5.2.29) for F = E. Thus hE is a
∗-isomorphism as claimed in the second part. �

Again, we have an analogous statement for the ring-theoretic situation yielding an isomorphism

hE : Z(A) −→ Z(B) (5.2.30)

for every equivalence bimodule EB A between unital rings A and B. We also have

hA = idZ(A) and hF ◦ hE = hF⊗E, (5.2.31)

and hE depends only on the isomorphism class [E] ∈ Pic(B,A) of E, see again [4, Chap. 2, §5] as well
as Exercise 5.4.8. In both situations we have an important corollary stating that Morita theory is
essentially a “noncommutative theory”, see [1] for the ∗-equivalence version:
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Corollary 5.2.10 Let A and B be two commutative unital ∗-algebras. Then A and B are ∗-Morita
equivalent iff they are ∗-isomorphic in which case they are also strongly Morita equivalent. Analogously,
two commutative unital rings are Morita equivalent iff they are isomorphic.

Proof: This follows from A = Z(A) and B = Z(B) as well as Proposition 5.2.9 and Theo-
rem 4.1.11. �

The above corollary tells us that Morita theory of commutative unital ∗-algebras is non-interesting
in so far, as we do not get new “isomorphic” ∗-algebras in the enlarged context of Bimod∗. Note
however, that a commutative unital ∗-algebra may well be strongly Morita equivalent to a non-
commutative one: A and Mn(A) are basic examples. While the orbits of the Picard groupoid Pic∗

(as well as the ones of Picstr and Pic) along commutative unital algebras are the same as the orbits
of Iso∗ (and Iso, respectively) the isotropy groups may still change: when using Proposition 5.2.9 in
this way, commutative ∗-algebras become interesting again.

To see this, we first consider those ∗-equivalence or equivalence (A,A)-bimodules EA A for which
in addition

a · x = x · a (5.2.32)

for all x ∈ E and a ∈ Z(A). Such a bimodule is called central or static, following a suggestion
of [32, Remark 3.4].

Definition 5.2.11 (Static Picard group) For a unital ring A one defines the static Picard group

SPic(A) =
{

[ EA A] ∈ Pic∗(A)
∣∣ EA A is central

}
, (5.2.33)

and for a unital ∗-algebra A over C = R(i) one defines the static ∗-Picard group

SPic∗(A) =
{

[ EA A] ∈ Pic∗(A)
∣∣ EA A is central

}
(5.2.34)

as well as the static strong Picard group

SPicstr(A) =
{

[ EA A] ∈ Picstr(A)
∣∣ EA A is central

}
. (5.2.35)

The map [E] 7→ hE from Proposition 5.2.9 and from (5.2.30) can now be interpreted as a group
morphism

h : Pic∗(A) −→ Aut∗(Z(A)) and h : Pic(A) −→ Aut(Z(A)), (5.2.36)

respectively. With this interpretation, the central self-equivalences give now the following result:

Proposition 5.2.12 Let A be a unital ring or a unital ∗-algebra over C = R(i), respectively.
i.) The sequences of group morphisms

1 SPic(A) Pic(A) Aut(Z(A)),
h (5.2.37)

1 SPic∗(A) Pic∗(A) Aut∗(Z(A)),
h (5.2.38)

and

1 SPicstr(A) Picstr(A) Aut∗(Z(A))
h (5.2.39)

are exact.
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ii.) If in addition A is commutative then the sequences

1 SPic(A) Pic(A) Aut(A) 1,
h

`
(5.2.40)

1 SPic∗(A) Pic∗(A) Aut∗(A) 1,
h

`
(5.2.41)

and

1 SPicstr(A) Picstr(A) Aut∗(A) 1
h

`
(5.2.42)

are split exact via the group morphism `.
iii.) If A is commutative then one has

Pic(A) = Aut(A) n SPic(A), (5.2.43)
Pic∗(A) = Aut∗(A) n SPic∗(A), (5.2.44)

and
Picstr(A) = Aut∗(A) n SPicstr(A), (5.2.45)

respectively. In the first case, the left action of Aut(A) on Pic(A) is given by [E] 7→ [ EΦ Φ−1
],

while in the second and third case, the induced product structure on the right hand side is
explicitly given by

(Φ, [E]) · (Ψ, [F]) =
(

Φ ◦Ψ,
[
E ⊗̃ FΦ Φ−1

])
, (5.2.46)

where FΦ Φ−1 is the C-module F equipped with the new (A,A)-bimodule structure

a ·Φ x = Φ−1(a) · x and x ·Φ−1 a = x · Φ−1(a) (5.2.47)

and the new A-valued inner products

〈x, y〉ΦA = Φ
(
〈x, y〉FA

)
and 〈x, y〉ΦA = Φ

(
〈x, y〉FA

)
. (5.2.48)

Proof: The ring-theoretic case is discussed in [4, Chap. 2, §5] and can be reconstructed from the
∗-algebra case easily, see Exercise 5.4.8. Note that the strong case is completely covered by the ∗-case.
By the definition of h we have [ EA A] ∈ SPic∗(A) if and only if hE = idZ(A). Since h is a group
morphism the static Picard group SPic∗(A) is precisely the kernel of h. This proves the exactness of
(5.2.38) and analogously the exactness of (5.2.39). If A is commutative and Φ ∈ Aut∗(A) then `(Φ)
is represented by the bimodule AΦ

A A . For this bimodule we have

hAΦ(a) · x = x ·Φ a = x · Φ(a) = Φ(a) · x,

and hence h(`(Φ)) = Φ. Since ` is a group morphism as well, the exact sequence (5.2.41) splits.
The same argument goes through for the strong case (5.2.42). Thus the Picard group Pic∗(A) ∼=
Aut∗(A) n SPic∗(A) is a semi-direct product. Using ` as split, the semi-direct product structure is
explicitly given by (Φ, [E]) · (Ψ, [F]) = (Φ ◦Ψ, [E][AΦ][F][AΦ]−1). Now by Theorem 5.2.4 we have

[E][AΦ][F][AΦ]−1 =
[
E ⊗̃ AΦ ⊗̃F ⊗̃ AΦ−1

]
=
[
E ⊗̃ FΦ Φ−1

]
with the bimodule structure and inner products as in (5.2.47) and (5.2.48). �

In all the three cases, the static Picard group describes the interesting new aspects of Morita
theory compared to automorphisms in the usual sense. We see that even for a commutative unital
∗-algebra or ring the structure of the Picard group can be interesting though the question of Morita
equivalences within the commutative framework is not. Thus a major task will be to determine the
static Picard groups.
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5.2.4 The Picard Groups for C∞(M)

As a first class of examples where the static Picard group can be identified, we consider again the
algebra of smooth functions on a manifold M . As usual, there are several variations of this example
for function spaces on various geometric spaces, which we will not discuss. We start with the following
definition, well-known from complex and algebraic geometry:

Definition 5.2.13 (Geometric Picard group) Let M be a manifold. Then the geometric Picard
group Pic(M) of M is the group of isomorphism classes of complex line bundles. The unit element is
the class of the trivial bundle, the multiplication comes from the tensor product and the inverse comes
from the dual bundle.

Remark 5.2.14 (Geometric Picard group) Here isomorphism of line bundles L ∼= L′ means that
there is a vector bundle isomorphism Φ: L −→ L′ over the identity of M . Then it is well-known that
the tensor product of line bundles is again a line bundle. Moreover, on the level of isomorphism
classes the tensor product is associative, the dual bundle L∗ is an inverse to L with respect to the
tensor product, and the unit element is represented by the trivial line bundle.

We recall the following fact from differential geometry: every automorphism Φ ∈ Aut( C∞(M))
of the complex-valued functions on M is necessarily of the form

Φ(f) = φ∗f (5.2.49)

with some unique diffeomorphism φ : M −→M . Thus we canonically have

Aut( C∞(M)) ∼= Diffeo(M), (5.2.50)

see e.g. the discussion in [58,90]. Since every pull-back commutes with complex conjugation, it follows
that

Aut( C∞(M)) = Aut∗( C∞(M)). (5.2.51)

Using these facts we can now formulate the following theorem:

Theorem 5.2.15 (Picard group of C∞(M)) Let M be a manifold.
i.) Pic( C∞(M)) ∼= Diffeo(M) n Pic(M).
ii.) Picstr( C∞(M)) ∼= Diffeo(M) n Pic(M).

In both cases the diffeomorphisms act on line bundles via pull-back.

Proof: Thanks to Proposition 5.2.12 we have to determine SPic( C∞(M)) and SPicstr( C∞(M)),
respectively, together with the corresponding action of Φ = φ∗ needed for (5.2.43). Let E be a central
equivalence bimodule. Since C∞(M) is unital, by Corollary 4.2.5 and Theorem 4.3.5 the right module
EC∞(M) is a finitely generated and projective module. By the Serre-Swan Theorem 2.3.9 one finds
a vector bundle E −→ M with EC∞(M)

∼= Γ∞(E) C∞(M) as right C∞(M)-modules. Implementing
such an isomorphism of right C∞(M)-modules we can assume that E = Γ∞(E) as right modules.
From Theorem 4.3.5 we know that C∞(M) ∼= End C∞(M)(Γ

∞(E) C∞(M)) via the left action. Since
for any vector bundle it is known that End C∞(M)(Γ

∞(E) C∞(M)) = Γ∞(End(E)) with the usual
pointwise action of the endomorphisms, we conclude that necessarily E = L is a line bundle. Moreover,
since f · s = s · f for a central bimodule, the left action of C∞(M) on Γ∞(L) is the pointwise
multiplication. Hence we determined the bimodule structure completely. If in addition E is a strong
equivalence bimodule then the inner product 〈 · , · 〉C∞(M) is given by a (positive) Hermitian fiber
metric h( · , · ) which is even unique up to isometric isomorphisms. Since for every fiber metric we
have h(f · s, s′) = h(s, f · s′), the fiber metric, the left action, and the complex conjugation are
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automatically compatible. Thus the left action gives even a ∗-isomorphism C∞(M) ∼= Γ∞(End(L))
where the ∗-involution of Γ∞(End(L)) is the one induced by h. From this we conclude that on the
level of isomorphism classes we have injective maps

SPic( C∞(M)) −→ Pic(M) (∗)
and

SPicstr( C∞(M)) −→ Pic(M). (∗∗)

Now let L −→ M be a line bundle. To show surjectivity of (∗) and (∗∗), respectively, we have to
show that Γ∞(L) C∞(M) is a full module. But this is almost trivial via the Serre-Swan Theorem: we
have Γ∞(L) C∞(M)

∼= eC∞(M)N for some idempotent e = e2 ∈ Mn( C∞(M)) = C∞(M,Mn(C)).
This realizes L as a subbundle of the trivial vector bundle M × CN with fiber at x ∈ M given by
Lx = im e(x) ⊆ CN . As dimLx = 1 we see tr(e(x)) = 1 for all x ∈M . This shows tr e = 1 ∈ C∞(M)
and hence 1 ∈ C∞(M) e C∞(M). By definition, this is the fullness of e which we wanted to show
and thus Γ∞(L)C∞(M) C∞(M) is an equivalence bimodule. Since without restriction we can assume e to
be a projection according to Example 2.3.18, ii.), and Theorem 2.3.16, the sections Γ∞(L), equipped
with the canonical inner product inherited from C∞(M)N , turn out to form a strong equivalence
bimodule. This shows that (∗) as well as (∗∗) are surjective. Finally, the (algebraic) tensor product
gives

Γ∞(L)⊗ C∞(M) Γ∞(L′) ∼= Γ∞(L⊗ L′),

again by using the Serre-Swan theorem. From this it immediately follows that (∗) as well as (∗∗) are
group isomorphisms. It remains to identify the action of Diffeo(M) on Pic(M) under the isomorphism
(∗) inherited from (5.2.43). Thus let Φ = φ∗ ∈ Aut( C∞(M)) be given and let L −→ M be a line
bundle. Then for s, s′ ∈ Γ∞(L) and f ∈ C∞(M) we have

f ·Φ s = Φ−1(f)s = φ∗(f)s and s ·Φ−1 f = sΦ−1(f) = sφ∗(f),

where φ∗(f) = f ◦φ−1 denotes the push-forward of f with φ. In case of a strong equivalence bimodule
we have for the inner product

〈s, s′〉ΦC∞(M) = Φ
(
〈s, s′〉C∞(M)

)
= φ∗(h(s, s′)),

where again h denotes the corresponding Hermitian fiber metric. Now consider the pull-back bundle
φ#L −→M . Then for s ∈ Γ∞(L)Φ

C∞(M) we have

φ#(s ·Φ−1 f) = φ#(sφ∗(f)) = (φ#s)φ∗φ∗(f) = φ#(s)f,

and thus
φ# : Γ∞(L)Φ−1

C∞(M) −→ Γ∞(φ#L) (,)

is a morphism of right C∞(M)-modules. Since we consider central bimodules anyway, it is even a
bimodule morphism. Moreover, since φ is a diffeomorphism, (,) is an isomorphism. If in addition h
is the Hermitian fiber metric on L then φ#h defined by

(φ#h)(φ#s, φ#s′) = φ∗(h(s, s′)) = 〈s, s′〉ΦC∞(M)

gives a Hermitian fiber metric on φ#L. These computations show that φ# is an (isometric) isomor-
phism

Γ∞(L)Φ Φ−1

C∞(M) C∞(M)

φ#

−→ Γ∞(φ#L)C∞(M) C∞(M).

Thus the left action of Aut( C∞(M)) on SPic( C∞(M)) used in (5.2.46) translates to the right action
of Diffeo(M) on Pic(M) by pull-backs. �
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Remark 5.2.16 (Static Picard group) Let M be a smooth manifold.
i.) Since SPic(M) ∼= Pic(M) is given by the geometric Picard group of line bundles this motivates

the name “static” in contrast to the “dynamic” diffeomorphisms Diffeo(M). However, also the
term commutative Picard group is common since one finds easily that for central bimodules EA A

and E′A A and a commutative ∗-algebra the canonical flip

EA A ⊗A E′A A 3 x⊗ x′ 7→ x′ ⊗ x ∈ E′A A ⊗A EA A (5.2.52)

yields a bimodule isomorphism. For the inner products we find by a simple computation that〈
x⊗ x′, y ⊗ y′

〉E⊗E′

A
= 〈x′, y′〉E

′

A
〈x, y〉E

A
, (5.2.53)

from which it immediately follows that (5.2.52) is isometric. Thus SPic(A) as well as SPic∗(A)
and SPicstr(A) are commutative whenever A is commutative.

ii.) The ∗-Picard group Pic∗( C∞(M)) can also be determined: a bimodule E yields an element in
SPic∗( C∞(M)) if E ∼= Γ∞(L) as central bimodule and if there is a pseudo Hermitian fiber metric
h for L determining the C∞(M)-valued inner products on Γ∞(L). Now, if M is connected then
for a pseudo Hermitian fiber metric h on a line bundle either h or −h is positive. Since the
tensor product of two negative Hermitian fiber metrics is a positive one, we obtain

SPic∗( C∞(M)) ∼= SPicstr( C∞(M))× Z2
∼= Pic(M)× Z2 (5.2.54)

for the static ∗-Picard group. In general, let n be the number of connected components of M .
Then we can choose the signature of the fiber metric on each connected component separately.
Consequently, we have

SPic∗( C∞(M)) ∼= SPicstr( C∞(M))× (Z2)n ∼= Pic(M)× (Z2)n. (5.2.55)

In particular, the ∗-Picard group can be much larger than the naive expectation Picstr( C∞(M))×
Z2.

iii.) The geometric Picard group Pic(M) can be described alternatively using the second cohomol-
ogy of M . Without entering the details, we remark that the Chern class c1 yields a group
isomorphism

c1 : Pic(M) −→ Ȟ2(M,Z) (5.2.56)

from the geometric Picard group to the second integer Čech cohomology group of M , see e.g.
the discussion in [121, Sect. III.4].

5.2.5 Kernel and Image of Picstr −→ Pic

To conclude this section we shall use Theorem 4.2.12 to investigate the groupoid morphism Picstr −→
Pic for those unital ∗-algebras which satisfy the additional properties (K) and (H). We start with
the following observation:

Theorem 5.2.17 (Injectivity of Picstr −→ Pic) Restricted to the class of unital ∗-algebras with
(K) and (H−), the canonical groupoid morphism Picstr −→ Pic is injective.

Proof: Let A and B be such ∗-algebras and let EB A be a strong equivalence bimodule. Then the
A-valued inner product 〈 · , · 〉E

A
is already fixed by the module structure EA, unique up to isometric

isomorphisms. For a choice within this isometric isomorphism class, the B-valued inner product
〈 · , · 〉E

B
is fixed to be Θ · , · by the compatibility of the inner products. This is the content of

Theorem 4.2.12. It follows that the forgetting of the inner products is injective up to isometric
isomorphisms. This shows that Picstr(B,A) −→ Pic(B,A) is injective. �
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Note that this argument simplifies our previous hands-on proof for the computation of the strong
Picard group Picstr( C∞(M)) in Theorem 5.2.15, see Exercise 5.4.9.

The question of surjectivity is more subtle and will depend more strongly on the type of ∗-algebras
under consideration. A slightly weaker result than surjectivity can be obtained under the following
assumption. We consider a class of unital ∗-algebras with the following additional property [29, Sect. 7]:

Definition 5.2.18 (Property (∗)) A class of unital ∗-algebra has the property (∗) if for any two
∗-algebras A and B in this class and every projection P = P ∗ = P 2 ∈ Mn(A) one has: if B is
isomorphic to PMn(A)P then B is also ∗-isomorphic to PMn(A)P .

Unlike the properties (K) and (H) this property is a feature of a certain class of ∗-algebras and
not just of a single ∗-algebra. Nevertheless, for our two standard classes of ∗-algebras we have the
property (∗):

Example 5.2.19 The class of unital C∗-algebras fulfills (∗). First recall that two C∗-algebras are
∗-isomorphic if and only if they are isomorphic, see e.g. [103, Thm. 4.1.20]. Since for P = P ∗ =
P 2 ∈ Mn(A) the algebra PMn(A)P endowed with the inherited ∗-involution is a C∗-algebra, the
property (∗) follows immediately for the class of unital C∗-algebras. However, there is some caution
in due. A C∗-algebra A can very well have another ∗-involution + such that (A,∗ ) and (A,+ ) are
not ∗-isomorphic. In this case, (A,+ ) is no longer a C∗-algebra, thus not contradicting the above
statement. A simple geometric example is obtained for the continuous functions C(S2) on S2. Instead
of using the pointwise complex conjugation making C(S2) a C∗-algebra one can take f+(x) = f(−x)
where x 7→ −x is the antipode map. This shows that one really has to specify the class of algebras
first and then check whether (∗) is satisfied or not.

Example 5.2.20 Another class of examples are the smooth functions C∞(M) on differentiable man-
ifolds equipped with the complex conjugation as ∗-involution. Note that we have to exclude other ∗-
involutions by hand, for the same reason as for C∗-algebras. Now, if PMn( C∞(M))P ∼= Γ∞(End(E)),
with E = imP , is isomorphic to C∞(M ′) then E is a line bundle and thus PMn( C∞(M))P ∼= C∞(M)
are even ∗-isomorphic. Thanks to (5.2.50), from C∞(M) ∼= C∞(M ′) we conclude that M and M ′ are
diffeomorphic and hence C∞(M) and C∞(M ′) are ∗-isomorphic, too. Thus (∗) is fulfilled.

Another large class will be found when discussing deformation theory in Section ??.
For the next theorem we recall that the automorphism group Aut(B) acts on Pic(B,A) from

the left, provided Pic(B,A) is non-empty. This follows directly from the existence of the canonical
groupoid morphism ` : Iso −→ Pic according to Remark 5.2.5. Together with the canonical groupoid
morphism Picstr −→ Pic we obtain a map

Picstr(B,A) −→ Pic(B,A)
/

Aut(B) (5.2.57)

to the space of Aut(B)-orbits in Pic(B,A). Then we have at least surjectivity on this orbit space [29,
Prop. 7.7]:

Theorem 5.2.21 (Surjectivity of Picstr −→ Pic) For unital ∗-algebras A and B within a class of
∗-algebras satisfying (K), (H−), and (∗) the map

Picstr(B,A) −→ Pic(B,A)
/

Aut(B) (5.2.58)

is surjective (if the left hand side is empty, then the right hand side is empty as well). In particular,
the orbits of Pic and Picstr coincide implying that A and B are strongly Morita equivalent iff they are
Morita equivalent in the ring-theoretic sense.
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Proof: Assume that we are given an equivalence bimodule EB A ∈ Pic(B,A). Then EA
∼= eAn with

a full idempotent e = e2 ∈ Mn(A) by Theorem 4.3.5 and B ∼= eMn(A)e via the left action on eAn as
associative algebras. Using (K) and (H), by Theorem 4.2.12 we can assume without restriction that
e = P is already a projection. This way we obtain a full and completely positive non-degenerate A-
valued inner product 〈 · , · 〉E

A
on EA by restricting the canonical inner product of An to PAn. Since as

associative algebras we have B ∼= PMn(A)P ∼= EndA(EA) = BA(EA) via the left action, the algebra
B acts by adjointable operators on EA. Thus by

〈x, b · y〉E
A

= 〈b+ · x, y〉E
A

a ∗-involution is induced on B such that (B,+ ) is ∗-isomorphic to PMn(A)P . With respect to this
∗-involution, EB A is a strong equivalence bimodule. In general, here one reaches a dead end as this
∗-involution might be completely different from the original ∗-involution ∗ of B. However, thanks to
the assumption (∗) we know that B is even ∗-isomorphic to PMn(A)P and hence to (B,+ ) since the
later two are ∗-isomorphic via the left action. Thus let

Φ: (B,+ ) −→ (B,∗ )

be such a ∗-isomorphism. In particular, Φ ∈ Aut(B) is an ordinary automorphism. It follows that
the ∗-isomorphism form B to BA(EA) ∼= PMn(A)P is given by

b 7→
(
x 7→ Φ−1(b) · x

)
.

This way, the twisted bimodule EΦ
B A equipped with 〈 · , · 〉E

A
and the B-valued inner product 〈 · , · 〉E

B
=

Φ(Θ · , · ) becomes a strong equivalence bimodule. Since [ΦE] = `(Φ)[E] the classes of the bimodules
[E] and [ΦE] lie in the same Aut(B)-orbit. This finally shows that every Aut(B)-orbit in Pic(B,A)
is reached by Picstr(B,A) −→ Pic(B,A). �

Remark 5.2.22 We can also re-interpret the result as follows: for a given unital ∗-algebra A satis-
fying (K) and (H−) and another unital algebra B being Morita equivalent to A we find for every
equivalence bimodule EB A ∈ Pic(B,A) a ∗-involution + for B such that EB A with the obvious B-
valued inner product becomes a strong equivalence bimodule.

Remark 5.2.23 (Beer’s theorem) The above theorem gives also a refined version of Beer’s the-
orem: for two unital ∗-algebras A and B within a class of unital ∗-algebras satisfying (K), (H−),
and (∗) Morita equivalence implies strong Morita equivalence. Beer showed this statement for C∗-
algebras [6], for which we can apply Theorem 5.2.21 thanks to Example 5.2.19. Note, however, that
already for C∗-algebras the above theorem gives a more detailed result than just stating that the
orbits of Picstr and Pic coincide.

The question about surjectivity of Picstr −→ Pic is not yet answered completely by Theorem 5.2.21.
To this end we have to investigate the relation between Aut(B) and Aut∗(B) more closely. For
Φ ∈ Aut(B) one defines the map

Φ∗ : B 3 b 7→ Φ∗(b) = Φ(b∗)∗ ∈ B, (5.2.59)

which gives again an automorphism Φ∗ ∈ Aut(B). It follows that the map Φ 7→ Φ∗ is an involutive
group automorphism of Aut(B) such that Φ∗ = Φ if and only if Φ ∈ Aut∗(B), see also Exercise 5.4.10.

Proposition 5.2.24 Let A be a unital ∗-algebra satisfying (K) and (H−). Moreover, let B be
another unital ∗-algebra Morita equivalent to A via an equivalence bimodule EB A. Assume that [ EB A]
is in the image of Picstr(B,A) −→ Pic(B,A). Then the following statements are equivalent:
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i.) The whole Aut(B)-orbit of [ EB A] is in the image.
ii.) For all Φ ∈ Aut(B) there is an invertible u ∈ B such that Φ∗Φ−1 = Ad(u∗u).

Proof: Let EB A be in the image then we find on EB A a full and completely positive A-valued inner
product 〈 · , · 〉E

A
such that the left B-action gives a ∗-representation, i.e. 〈b · x, y〉E

A
= 〈x, b∗ · y〉E

A
for

the given ∗-involution of B. From the ∗-isomorphism B ∼= F(EA) the B-valued inner product is then
determined to be Θ · , · as usual. By the properties of A, the inner product 〈 · , · 〉E

A
is unique up to

isometric isomorphisms. Thus consider first EΦ
B A being in the image, too, for some Φ ∈ Aut(B). By

assumption there is again an A-valued inner product 〈 · , · 〉
ΦE
A being compatible with the Φ-twisted

B-module structure. Necessarily, the two inner product are isometrically isomorphic as the right
A-module structure was not changed and we have (K) and (H−) for A. Thus there is an isometric
isomorphism V ∈ BA( EΦ

A, EA) with

〈x, y〉
ΦE
A = 〈V (x), V (y)〉E

A
(∗)

for all x, y ∈ E. Since necessarily V is right A-linear, there exists a (unique) invertible v ∈ B with
V (x) = v · x. Now on one hand we have for every b ∈ B〈

x, b ·Φ y
〉ΦE

A
=
〈
V (x), V (Φ−1(b) · y)

〉E

A
=
〈
v · x, v · (Φ−1(b) · y)

〉E

A
=
〈
x, (v∗vΦ−1(b)) · y

〉E

A
,

and on the other hand〈
x, b·Φy

〉ΦE

A
=
〈
b∗·Φx, y

〉ΦE

A
=
〈
V (Φ−1(b∗)·x), V (y)

〉E

A
=
〈
v·Φ−1(b∗)·x, v·y

〉E

A
=
〈
x, (Φ−1(b∗)∗v∗v)·y

〉E

A

for all x, y ∈ E. Thus v∗vΦ−1(b) = Φ−1(b∗)∗v∗v follows from the usual non-degeneracy argument.
This shows that Φ−1 satisfies the condition mentioned in the second statement. Since Φ was arbitrary,
the second statement follows in general. Conversely, assume the second statement holds. Then for
Φ ∈ Aut(B) we choose the appropriate u and define the inner product 〈 · , · 〉

ΦE
A by (∗). By an

analogous computation one shows that this inner product is then compatible with the Φ-twisted left
B-module structure. �

Remark 5.2.25 Since Φ ∈ Aut(B) is a ∗-automorphism if and only if Φ∗ = Φ, the property ii.) in
Proposition 5.2.24 is always fulfilled for ∗-automorphisms by u = 1B. Thus the condition is relevant
for those automorphism which are not ∗-automorphisms: for them the combination Φ∗Φ−1 has to
be an inner automorphism of a particular form. Whether or not this is the case typically depends
strongly on the example.

Corollary 5.2.26 Let A and B be unital ∗-algebras within a class of ∗-algebras satisfying (K), (H−),
and (∗).

i.) The map Picstr(B,A) −→ Pic(B,A) is surjective if and only if B satisfies the condition ii.)
of Proposition 5.2.24.

ii.) Within this class of ∗-algebras the condition ii.) of Proposition 5.2.24 is a strong Morita invari-
ant.

Proof: The first part is clear by Theorem 5.2.21 and Proposition 5.2.24. The second part is clear
as well, as the surjectivity of Picstr(B,A) −→ Pic(B,A) is a property of the groupoid orbit through
B since we have a groupoid morphism. �

We conclude this discussion with an example of a C∗-algebra which does not fulfill the condition ii.)
of Proposition 5.2.24, see also [29, Sect. 7] for more details.
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Example 5.2.27 Let H be a Hilbert space with countably infinite Hilbert basis {en}n∈N. Let A ⊆
B(H) be the unital C∗-subalgebra consisting of operators of the form c idH +K with c ∈ C and
K ∈ K(H) being compact. Moreover, let A = A∗ ∈ B(H) be determined by Ae2n = 2e2n and
Ae2n+1 = e2n+1. Then Φ = Ad(A)

∣∣
A

: A −→ A is an automorphism with Φ∗ = Φ−1 and hence
Φ∗Φ−1 = Ad(A−2). We claim there is no invertible B ∈ A with Ad(A−2) = Ad(B∗B). Indeed, if
there would be such an operator then A−2B∗BC(A−2B∗B)−1 = C for all C ∈ A. This would imply
A−2B∗B = c idH for some c ∈ C and hence B∗B = cA2 which is clearly not possible for B ∈ A by
the choice of A. Thus for this C∗-algebra A the property ii.) as in Proposition 5.2.24 fails.

On the other hand, for a commutative unital ∗-algebra A it is very easy to decide whether the
condition ii.) as in Proposition 5.2.24 holds or not: since all automorphisms are outer, this condition
holds iff

Aut∗(A) = Aut(A). (5.2.60)

In particular, C∞(M) always fulfills the condition ii.) as in Proposition 5.2.24.

5.3 Morita Invariants

In the last sections we have already seen several quantities which are preserved under Morita equiv-
alence in its various incarnations. In this section we shall give a more systematic approach to these
Morita invariants and put them into a more unified framework. Then we will also discuss some further,
new invariants for all three flavours of Morita theory. It turns out that Morita equivalent algebras
share a lot of properties.

5.3.1 From Groupoid Actions to Morita Invariants

The notion of “invariant” we are aiming at will rely on actions of a groupoid. We start recalling the
following definition:

Definition 5.3.1 (Groupoid action) Let G be a groupoid and let C be a category. A left action of
G on C (better: on the objects of C) is a covariant functor

Φ: G −→ C. (5.3.1)

Analogously, a right action is defined to be a contravariant functor Φ: G −→ C.

Remark 5.3.2 (Groupoid action) Let C be a category.
i.) For a groupoid G with just one object ∗, i.e. for a group, a functor Φ: G −→ C consists

in the choice of an object Φ(∗) ∈ Obj(C) together with the specification of morphisms Φg ∈
Morph(Φ(∗),Φ(∗)) = End(Φ(∗)) such that Φe = id and Φg ◦ Φh = Φg◦h. Since all g are
invertible, this really gives a group action in the sense that we have a group homomorphism
into the automorphism group of Φ(∗).

ii.) There are alternative and more sophisticated definitions of groupoid actions which can ultimately
be reduced to the above definition. However, they allow to characterize some more specific
features of the functor in addition, see also Exercise 5.4.11. Our choice is in some sense the
most innocent one.

Example 5.3.3 (Isotropy groups) The isotropy groups of a groupoid are in some sense the most
fundamental invariants. For a groupoid G one constructs the following functor

Isotropy : G −→ Group (5.3.2)
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where Isotropy(a) = G(a) and for a morphism g : a −→ b one considers the group isomorphism
Isotropy(g) : G(a) −→ G(b) defined by Isotropy(g)h = ghg−1. It is an easy check that this is indeed a
functor. Thus the isotropy groups are invariants of the groupoid, a fact which we have already seen
in Proposition 5.1.4.

The following simple statement shows how we obtain an “invariant” from a groupoid action:

Theorem 5.3.4 (Invariants from groupoid action) Let Φ: G −→ C be a left action of a groupoid
G on a category C.
i.) For every a ∈ G0 the object Φ(a) ∈ Obj(C) becomes a G(a)-space in the sense that

G(a) 3 g 7→ Φg ∈ End(Φ(a)) (5.3.3)

is a group morphism.
ii.) If a, b ∈ G0 are in the same orbit then Φ(a) and Φ(b) are isomorphic.
iii.) Every morphism g : a −→ b in G1 yields an isomorphism Φg : Φ(a) −→ Φ(b) which intertwines

the G(a)-structure of Φ(a) into the G(b)-structure of Φ(b).

Proof: The proof is just a simple reformulation of the statement that Φ is a functor and the fact
that every morphism in a groupoid is invertible. �

In this sense, the objects Φ(a) are constant along the orbit of a in G and can thus be understood as
an invariant of the groupoid. Note that every invariant carries a canonical structure of a G(a)-space
which we always consider as being part of the invariant.

Even though the above theorem is an almost trivial statement about functoriality we shall see
important applications and not so trivial examples: the Morita invariants. Here the groupoid in
question is of course the Picard groupoid in one of its various forms. Thus a Morita invariant is,
by definition, a functor Φ: Pic −→ C from the Picard groupoid into some category and similarly for
∗-Morita invariants and strong Morita invariants, respectively. Analogously, an invariant of rings is
defined to be a functor Φ: Iso −→ C and a ∗-invariant of ∗-algebras is a functor Φ: Iso∗ −→ C. We
will have to argue that this point of view is not superfluous, but gives nice insights even for the case
of Iso-invariants.

Example 5.3.5 (Picard groups) In view of Example 5.3.3 the isotropy groups of Pic, Pic∗, and
Picstr, respectively, i.e. the Picard groups, are the most fundamental Morita invariants.

Thanks to the groupoid morphism ` every Morita invariant is also an invariant of unital rings or
∗-algebras, respectively.

Proposition 5.3.6 Every Morita invariant Φ: Pic −→ C induces an invariant

Φ ◦ ` : Iso −→ C, (5.3.4)

where on objects we have (Φ ◦ `)(A) = Φ(A). The same holds for a ∗-Morita invariant and a strong
Morita invariant.

Proof: Clearly, as the composition of functors is a functor, this follows immediately from Theo-
rem 5.2.4, iv.), and `(A) = [ AA A]. �
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5.3.2 The Center

After the Picard groups themselves, the centers are the next simple examples of Morita invariants.
We consider unital ∗-algebras for simplicity. Then one defines

Z : Obj(Pic∗) 3 A 7→ Z(A) ∈ Obj( -Alg∗
com), (5.3.5)

where -Alg∗
com ⊆ -Alg∗ denotes the subcategory of commutative unital ∗-algebras. For a ∗-equivalence

bimodule EB A one sets

Z : Pic∗(B,A) 3 [ EB A] 7→ Z([ EB A]) =
(
hE : Z(A) −→ Z(B)

)
∈ Iso∗(Z(B),Z(A)), (5.3.6)

where hE is the map from Proposition 5.2.9. For the ring-theoretic version from (5.2.30) we shall use
the same symbols. One obtains the following result:

Theorem 5.3.7 (Morita invariance of center) The map (5.3.6) is well-defined and yields, to-
gether with (5.3.5), a ∗-Morita invariant

Z : Pic∗ −→ -Alg∗
com. (5.3.7)

The corresponding ∗-isomorphism invariant Z ◦ ` is given on ∗-isomorphisms by the restriction of the
∗-isomorphism to the center, i.e.

(Z ◦ `)(Φ) = Φ
∣∣∣
Z(A)

. (5.3.8)

Analogously, one obtains a Morita invariant with values in the commutative unital rings

Z : Pic −→ Ringcom. (5.3.9)

Proof: We have already shown in Proposition 5.2.9, iv.), that the map hE actually depends on
[ EB A] only. Thus the well-definedness follows. Moreover, from Proposition 5.2.9, iii.), it follows
that Z is a functor. It remains to show (5.3.8). Thus let Φ: A −→ B be a ∗-isomorphism. Then
`(Φ) is represented by the twisted bimodule BΦ

B A . Now let a ∈ Z(A) then for all b ∈ B one has
b ·Φ a = bΦ(a) = Φ(a)b = Φ(a) · b since Φ(a) ∈ Z(B). From this it follows that h`(Φ) = Φ. The
ring-theoretic version is shown analogously, see again Exercise 5.4.8. �

Note that the above point of view gives more than just a random isomorphism Z(A) ∼= Z(B).
Instead we have a very precise way how to pass from one center to the other, compatible with the
action of the isomorphisms of the ambient algebras on each side.

5.3.3 K0-Theory

As a next example of a Morita invariant we consider the various versions of K0-theory. The ring-
theoretic result is classical, see e.g. [4, 99]. For ∗-algebras, we restrict to the case of unital ∗-algebras.
To construct a functor whose values on objects are the K0-groups we have to consider the finitely
generated and projective modules with strongly non-degenerate inner product. Let (PB, 〈 · , · 〉

P

B
) be

such an inner-product right B-module. Moreover, let EB A be a ∗-equivalence bimodule. Then we
consider the inner-product module PB ⊗̂B EB A.

Theorem 5.3.8 (Morita invariance of K0) For unital ∗-algebras we have:
i.) For PB ∈ Proj∗(B) and EB A ∈ Pic∗(B,A) one has PB ⊗̂B EB A ∈ Proj∗(A). Moreover, the

equivalence class [PB ⊗̂B EB A] ∈ Proj∗(A) depends only on [PB] ∈ Proj∗(B) and [ EB A] ∈
Pic∗(B,A).
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ii.) The map
Proj∗([ EB A]) : Proj∗(B) 3 [PB] 7→

[
PB ⊗̂B EB A

]
∈ Proj∗(A) (5.3.10)

is a morphism of abelian semi-groups.
iii.) One has

Proj∗([ BB B]) = idProj∗(B) (5.3.11)

and
Proj∗

([
FC B ⊗̃B EB A

])
= Proj∗([ EB A]) ◦ Proj∗([ FC B]). (5.3.12)

iv.) The definition of Proj∗ : Pic∗ −→ AbSemiGroup by

Obj(Pic∗) 3 A 7→ Proj∗(A) ∈ Obj(AbSemiGroup) (5.3.13)

on objects and

Pic∗(B,A) 3 [ EB A] 7→ Proj∗([ EB A]) ∈ Morph(Proj∗(B), Proj∗(A)) (5.3.14)

on morphisms yields a right action of Pic∗ on the category of abelian semi-groups AbSemiGroup.
v.) This right action induces a right action

K∗0 : Pic∗ −→ Ab, (5.3.15)

and hence the K∗0-theory becomes a ∗-Morita invariant.
vi.) Analogously, one obtains the right actions

Projstr : Picstr −→ AbSemiGroup (5.3.16)

and
Kstr

0 : Picstr −→ Ab (5.3.17)

for the strong Morita equivalence as well as in the ring-theoretic framework

Proj : Pic −→ AbSemiGroup (5.3.18)

and
K0 : Pic −→ Ab. (5.3.19)

Proof: For the first part we can apply Proposition 4.2.7 to show that PB ⊗B EB A has a finite
Hermitian dual basis. Thus PB ⊗B EB A is finitely generated and projective. Moreover, the A-valued
inner product 〈 · , · 〉P⊗E

A is already strongly non-degenerate implying that PB ⊗B EB A = PB ⊗̂B EB A

is an object in Proj∗(A). Together with the functoriality of ⊗̂ the first part follows. The second is
clear as ⊗̂ is compatible with orthogonal direct sums. The third part is clear as well: on one hand
PB ⊗̂B BB B

∼= PB for all strongly non-degenerate right B-modules and PB ∈ Proj∗(B) has this
property since with a finite Hermitian dual basis eα, fα ∈PB we have for all p ∈PB

p · 1B =
∑

α
eα · 〈fα, p · 1B〉PB =

∑
α
eα ·

(
〈fα, p〉PB1B

)
=
∑

α
eα · 〈fα, p〉PB = p.

On the other hand we can use the associativity of ⊗̂ and observe that(
PC ⊗̂C FC B

)
⊗̂B EB A

∼= PC ⊗̂C

(
FC B ⊗̂B EB A

) ∼= PC ⊗̂C

(
FC B ⊗̃B EB A

)
.

Note that the situation is particularly simple as we do not need any quotient procedure for ⊗̂ here
according to Proposition 4.2.7. Now (5.3.11) and (5.3.12) mean that Proj∗ is a contravariant functor
and thus we have a right action of Pic∗. The composition with the covariant Grothendieck functor
AbSemiGroup −→ Ab yields again a contravariant functor K∗0. This shows the fourth and fifth part.
The last is shown analogously. �
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5.3.4 The Lattice of Closed Ideals

For the following invariant we can consider idempotent and non-degenerate ∗-algebras again. As
motivation we recall the following well-known result from C∗-algebra theory:

Theorem 5.3.9 (Closed ∗-ideals) Let A be a C∗-algebra andJ ⊆ A a ∗-ideal. Then the following
statements are equivalent:

i.) The ∗-idealJ is closed.
ii.) There is a ∗-representation (H, π) of A on a Hilbert space H such that kerπ =J.

Proof: For completeness, we give a sketch of the proof: it is well-known that a ∗-representation
of a C∗-algebra on a pre-Hilbert space is continuous and can thus be extended to the Hilbert space
completion by continuity. Note that the kernel will not change under the completion. Then the kernel
is closed. For the reverse, it is also known that A

/
J is a C∗-algebra itself if J is a closed ∗-ideal.

But every C∗-algebra has a faithful ∗-representation, say π̃ : A
/
J −→ B(H). If pr: A −→ A

/
J is

the canonical projection, then π = π̃ ◦ pr is the desired ∗-representation of A. �

Moreover, for a unital C∗-algebra we can split every ∗-representation on a Hilbert space into a
strongly non-degenerate one and the null representation on the orthogonal complement. The kernel
of the original ∗-representation coincides with the strongly non-degenerate part of it. For a non-unital
C∗-algebra there is still an orthogonal splitting into the null representation and a ∗-representation on
a Hilbert space which is strongly non-degenerate up to completion. Again, the kernel of the original
∗-representation is determined by the strongly non-degenerate part. This suggest to focus on the
strongly non-degenerate ∗-representations in general.

In the following we want also ∗-representations on general inner-product modules over an arbitrary
coefficient ∗-algebra D and not just D = C. As usual we insist on ∗-algebras being non-degenerate
and idempotent. Then for any ∗-representation HA D ∈ -mod∗

D(A) we can pass to a strongly non-
degenerate one by tensoring with the canonical bimodule AA A: by Lemma 4.3.28 the resulting bimod-
ule is just the submodule A · HA D ⊆ HA D up to the usual isomorphism. Since we are interested in the
kernels of ∗-representations we want to relate the kernel of the original ∗-representation to the kernel
of this strongly non-degenerate one. In general, one can not say much, but under mild assumptions
the kernels coincide:

Proposition 5.3.10 Let A and D be ∗-algebras and let ( HA D, π) be a ∗-representation on an inner-
product (A,D)-bimodule and let π(A)H ⊆ HA D be the corresponding strongly non-degenerate ∗-
representation.

i.) If A has local Hermitian units then kerπ = kerπ
∣∣
π(A)H

.

ii.) If H is a pre-Hilbert bimodule and D is admissible, then kerπ = kerπ
∣∣
π(A)H

.

Proof: In both cases it is clear that kerπ ⊆ kerπ
∣∣
π(A)H

. Thus let a ∈ A satisfy π(a)
∑

i π(bi)φi = 0

for all bi ∈ A and φi ∈H. If we have local Hermitian units, we find an e ∈ A with ae = a. Thus we
have 0 = π(a)π(e)φ = π(a)φ for all φ ∈H and thus a ∈ kerπ. This shows the first part. For the other
situation, assume that D is admissible and H is a pre-Hilbert module over D. For a ∈ kerπ

∣∣
π(A)H

we have in particular π(a)π(a∗)φ = 0 for all φ ∈H. Thus 0 = 〈φ, π(a)π(a∗)φ〉
D

= 〈π(a∗)φ, π(a∗)φ〉
D
.

Since 〈 · , · 〉
D
is positive definite by assumption, we conclude π(a∗)φ = 0 for all φ ∈ H. Since π is a

∗-representation, this implies a ∈ kerπ. �

In view of this proposition, the following choice for “closed” ideals seems to be very reasonable.
We state the definition in two flavours: first without positivity requirement and, second, taking into
account the positivity as usual.
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Definition 5.3.11 (D-Closed ∗-ideals) Let A and D be ∗-algebras over C = R(i).
i.) A ∗-idealJ ⊆ A is called D-closed if there is a strongly non-degenerate ∗-representation HA D ∈

-Mod∗
D(A) of A on an inner-product right D-module with kernel given byJ. The set of these

∗-ideals is denoted by Ideals∗D(A).
ii.) A ∗-idealJ ⊆ A is called strongly D-closed if there is a strongly non-degenerate ∗-representation

HA D ∈ -Rep∗
D(A) of A on a pre-Hilbert right D-module with kernel given by J. The set of

these ∗-ideals is denoted by IdealsstrD (A).

Note that the name closed is meant only in analogy to the C∗-algebraic case, we do not have any
sort of topology around to justify closedness in a topological sense. Note also that we differ slightly
from the definition in [25] where the assumption about strong non-degeneracy of the ∗-representation
was not included into the definition. In view of Proposition 5.3.10 this will only make a difference for
∗-algebras having somewhat pathological features anyway.

Remark 5.3.12 Also in the ring-theoretic situation one can define a D-closed ideal to be the kernel
of a strongly non-degenerate representation of A on a right D-module. However, at least for the case
where C is a field, any ideal will be D-closed: indeed, let J ⊆ A be a two-sided ideal in a unital
algebra A over C. Then the algebra A

/
J is faithfully represented on itself via left multiplications

as we assume that A and hence also A
/
J are unital. Viewed as a right A-module, the kernel of

this representation is justJ. Now if D is any other coefficient algebra, then on A
/
J⊗ D we have

a (A,D)-bimodule structure and the kernel of the left A-module structure is still justJ, unless we
have some torsion effects in the tensor product spoiling this. In particular, if C is a field, then this will
not happen. From this point of view the notion of D-closed ideals will be non-interesting. However,
requiring that on the module one has in addition an algebra-valued inner product gives some new
and non-trivial extra conditions, see also Example 5.3.20.

A first interpretation of the D-closed ∗-ideals (in both cases) is obtained by the following proposi-
tion. Note again that the strong non-degeneracy does not provide an extra condition in many cases
as described in Proposition 5.3.10.

Proposition 5.3.13 Let A and D be ∗-algebras over C and letJ ⊆ A be a ∗-ideal.
i.) The quotient ∗-algebra A

/
J has a faithful and strongly non-degenerate ∗-representation on an

inner product right D-module iffJ ∈ Ideals∗D(A).
ii.) The quotient ∗-algebra A

/
J has a faithful and strongly non-degenerate ∗-representation on a

pre-Hilbert right D-module iffJ ∈ IdealsstrD (A).

Proof: This is clear as the kernel of the quotient map A −→ A
/
J is preciselyJ. �

Proposition 5.3.14 Let A be a ∗-algebra over C. Moreover, let I be an index set, let Jα ⊆ A be
∗-ideals for α ∈ I, and letJ =

⋂
α∈IJα.

i.) IfJα ∈ Ideals∗D(A) for all α ∈ I then alsoJ ∈ Ideals∗D(A).
ii.) IfJα ∈ IdealsstrD (A) for all α ∈ I then alsoJ ∈ IdealsstrD (A).

Proof: This is clear as in general

ker

(⊕
α∈I

(Hα, πα)

)
=
⋂
α∈I

ker(Hα, πα). �

In both cases, the set of D-closed ∗-ideals Ideals∗D(A) or IdealsstrD (A) of A carries a rich structure,
namely it forms a lattice. We recall the definition:
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Definition 5.3.15 (Lattice) A lattice is a set L endowed with two compositions

∧,∨ : L× L −→ L (5.3.20)

such that
i.) the compositions ∧ and ∨ are associative and commutative,
ii.) for all a ∈ L one has a ∧ a = a = a ∨ a,
iii.) for all a, b ∈ L one has a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a.
A homomorphism φ : (L,∧,∨) −→ (L′,∧′,∨′) of lattices is a map with φ(a ∧ b) = φ(a) ∧′ φ(b) and
φ(a ∨ b) = φ(a) ∨′ φ(b) for all a, b ∈ L. The category of lattices is denoted by Lattice.

Remark 5.3.16 (Lattices)
i.) Needless to say, lattices indeed form a category with respect to the above notion of homomor-

phisms.
ii.) A first example of a lattice is the power set L = 2M of a set M . Indeed, for subsets U, V ⊆M

one defines
U ∧ V = U ∩ V and U ∨ V = U ∪ V. (5.3.21)

The verification of the properties of a lattice is trivial in this case. Nevertheless, this will be a
guiding example.

iii.) For a, b ∈ L one has
a ∧ b = a iff a ∨ b = b. (5.3.22)

In this case we write a ≤ b. It is easy to see that ≤ defines a half-ordering. The lattice is called
to have a maximal element 1 ∈ L if for all a ∈ L

a ≤ 1. (5.3.23)

If existing, the maximal element is unique. Analogously, one defines a minimal element 0 by
requiring 0 ≤ a for all a ∈ L.

iv.) Conversely, if (L,≤) is a set with half-ordering with the additional property that for two elements
a, b ∈ L there always exists a supremum sup(a, b) and an infimum inf(a, b) then L becomes a
lattice via

a ∧ b = inf(a, b) and a ∨ b = sup(a, b). (5.3.24)

We shall now prove that the D-closed ∗-ideals of A form a lattice for both versions. In order to
define the lattice operations we first introduce a closure operation for both cases. Let I ⊆ A be an
arbitrary subset. Then the ∗-closure (with respect to the coefficient algebra D) is defined by

I∗-cl =
⋂

J∈Ideals∗D(A) with I⊆J

J, (5.3.25)

while the strong closure (with respect to the coefficient algebra D) is defined by

Istrcl =
⋂

J∈IdealsstrD (A) with I⊆J

J. (5.3.26)

By Proposition 5.3.14, both operations yield D-closed ∗-ideals of the desired type, i.e. I∗-cl ∈
Ideals∗D(A) and Istrcl ∈ IdealsstrD (A), respectively. Note that, by some mild abuse of notation, we do
not indicate the coefficient algebra in the notation of the closure operations.
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Lemma 5.3.17 For arbitrary subsets I,J ⊆ A we have
i.) I ⊆ Icl,
ii.) I ⊆J implies Icl ⊆Jcl,
iii.) (Icl)cl = Icl,
where cl is either ∗-cl or strcl.

The proof of these facts is obvious. Nevertheless, these simple properties guarantee that we obtain a
lattice:

Proposition 5.3.18 Let D be a ∗-algebra. Then the D-closed ∗-ideals Ideals∗D(A) of A form a lattice
via

J∧I =J∩I and J∨I = (J∪I)∗-cl, (5.3.27)

with maximal element A and a minimal element denoted by

J∗min,D(A) = {0}∗-cl =
⋂

J∈Ideals∗D(A)

J. (5.3.28)

We have
J ≤ I iff J ⊆ I. (5.3.29)

Analogously, IdealsstrD (A) forms a lattice, too, with minimal elementJstr
min,D(A) = {0}strcl.

Proof: In fact, the above construction is much more general and relies on the fact that we have
a closure operation cl with the properties as described in Lemma 5.3.17. Though this is a folklore
construction of a lattice out of a closure operation we outline the proof. First it is clear that ∧ is
associative and commutative. The commutativity of ∨ is clear, too. To show the associativity of ∨ we
choose I,J,K ∈ Ideals∗D(A). We have K,I∪J ⊆ I∪J∪K and hence K = K∗-cl ⊆ (I∪J∪K)∗-cl

as well as I∨J = (I∪J)∗-cl ⊆ (I∪J∪K)∗-cl. Thus we have (I∨J)∨K ⊆ (I∪J∪K)∗-cl. On
the other hand, we have I,J,K ⊆ (I ∨J) ∨K and hence (I ∪J∪K) ⊆ (I ∨J) ∨K implying
(I ∪J∪K) ⊆ (I ∨J) ∨K and hence (I ∪J) ∪K)∗-cl ⊆ (I ∨J) ∨K. This shows

(I ∨J) ∨K = (I ∪J∪K)∗-cl.

Analogously one finds I ∨ (J ∨ K) = (I ∪J ∪ K)∗-cl which shows associativity. The properties
J∧J =J∩J =J andJ∨J = (J∪J)∗-cl =J∗-cl =J are fulfilled, too. NowJ =J∪ (J∩I)
impliesJ =J∗-cl = (J∪ (J∩I))∗-cl =J∨ (J∧I). Finally, we haveJ∩ (J∨I) ⊆J and since
J∨I containsJ we haveJ =J∩ (J∪I) ⊆J∩ (J∨I). From this we see the last requirement for
a lattice. The claim (5.3.29) follows at once since ∧ coincides with the set-theoretic ∩. Finally, {0}
is contained in every ∗-ideal and hence in every D-closed ∗-ideal. Thus {0}∗-cl is a D-closed ∗-ideal,
still contained in every other D-closed ∗-ideal. This shows that {0}∗-cl is the minimal element of the
lattice IdealsD(A). Finally, A is always a D-closed ∗-ideal since it is the kernel of the ∗-representation
on the 0-module. The case of strongly D-closed ∗-ideals is treated analogously. �

Remark 5.3.19 (Minimal D-closed ∗-ideal) The minimal D-closed ∗-idealJ∗min,D(A) of a ∗-algebra
A plays an important role: it encodes whether or not there is a faithful strongly non-degenerate ∗-
representation of A on a inner-product module HD. Analogously, the minimal strongly D-closed
∗-ideal Jstr

min,D(A) encodes whether we have a faithful and strongly non-degenerate ∗-representation
on a pre-Hilbert module over D. In particular, the sizes ofJ∗min,D(A) as well asJstr

min,D(A) strongly
depend on the coefficient ∗-algebra D. The scalar case, i.e. D = C, was extensively discussed in
Exercise 1.4.15 based on [25]. In general, we have

Jstr
min,A(A) = {0}, (5.3.30)
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since AA A is always a faithful strongly non-degenerate ∗-representation on the canonical pre-Hilbert
A-module. Here one uses that A is non-degenerate and idempotent.

Example 5.3.20 Let A = Λ•Cn be the Grassmann algebra and D = C. If H is a pre-Hilbert space
and π : A −→ B(H) a ∗-representation then we have for the base vectors ei ∈ Cn ⊆ Λ•Cn obviously
e∗i ei = eiei = 0 and hence 〈π(ei)φ, π(ei)φ〉 = 〈φ, π(e∗i ei)φ〉 = 0. Thus necessarily π(ei) = 0. But
together with the unit element 1 the ei generate Λ•Cn. It follows that⊕

k≥1

ΛkCn ⊆ kerπ. (5.3.31)

On the other hand, there do exist ∗-representations of the Grassmann algebra on pre-Hilbert spaces
with π(1) = id and hence we conclude that

Jstr
min,C(Λ•Cn) =

⊕
k≥1

ΛkCn. (5.3.32)

In view of (5.3.30), this example shows that the minimal strongly D-closed ∗-ideal can depend very
much on the coefficient ∗-algebra.

Remark 5.3.21 Since every strongly non-degenerate ∗-representation on a pre-Hilbert module is in
particular a ∗-representation on an inner-product module, a strongly D-closed ∗-ideal is also D-closed.
This shows that

IdealsstrD (A) ⊆ Ideals∗D(A). (5.3.33)

However, the inclusion map needs not to be a lattice homomorphism as the closure operation ∗-cl in
Ideals∗D(A) may yield strictly smaller closures than the strong closure strcl in IdealsstrD (A). Thus we
will not have compatibility with respect to the two different ∨-products.

The next theorem shows that the whole lattice of (strongly) D-closed ∗-ideals Ideals∗D(A) and
IdealsstrD (A) is in fact a ∗-Morita (strong Morita) invariant, respectively. In order to prove this we
define for a ∗-equivalence bimodule EB A the map ΦE : 2A −→ 2B by

ΦE(J) =
{
b ∈ B

∣∣ 〈x, b · y〉E
A
∈J for all x, y ∈ E

}
. (5.3.34)

This map turns out to implement the action of Pic∗ and Picstr, respectively, yielding the ∗-Morita
invariance of Ideals∗D(A) and the strong Morita invariance of IdealsstrD (A), respectively.

Theorem 5.3.22 (Morita invariance of IdealsstrD ) Let FC B and EB A be strong equivalence bimod-
ules.

i.) If (H, π) ∈ -rep∗
D(A) then

ΦE(kerπ) = kerRE(H, π), (5.3.35)

where RE is the Rieffel induction with EB A.
ii.) The map ΦE : IdealsstrD (A) −→ IdealsstrD (B) depends on the isometric isomorphism class [E] ∈

Picstr(B,A) only.
iii.) For all C-submodulesJ ⊆ A we have

ΦF(ΦE(J)) = ΦF⊗̃E(J). (5.3.36)

iv.) For allJ ∈ IdealsstrD (A) one has
ΦA(J) =J. (5.3.37)
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v.) The definition IdealsstrD : Picstr −→ Lattice, with IdealsstrD (A) as before and

IdealsstrD ([ EB A]) =
(
ΦE : IdealsstrD (A) −→ IdealsstrD (B)

)
(5.3.38)

on morphisms, yields a left action of Picstr on Lattice.
vi.) One hasJstr

min,D(A) = {0} if and only ifJstr
min,D(B) = {0}.

Analogously, using ∗-equivalence bimodules instead, we obtain a left action

Ideals∗D : Pic∗ −→ Lattice. (5.3.39)

Proof: Let b ∈ ΦE(kerπ) then 〈x, b · y〉E
A
∈ kerπ for all x, y ∈ E. But then we have

0 =
〈
ψ, π

(
〈x, b · y〉E

A

)
φ
〉H

D
=
〈
x⊗ ψ, b · (y ⊗ φ)

〉E⊗̂H

D
=
〈
x⊗ ψ, (RE(π))(b)y ⊗ φ

〉RE(H)

D
.

It follows that (RE(π))(b) = 0 and hence b is in the kernel of the Rieffel induced representation.
Conversely, let b ∈ kerRE(π) then we have for all φ, ψ ∈ HD and x, y ∈ EB A

0 =
〈
ψ, π

(
〈x, b · y〉E

A

)
φ
〉H

D
.

Hence 〈x, b · y〉E
A
∈ kerπ follows. This shows the first part. In particular, we see that ΦE maps

strongly D-closed ∗-ideals of A to strongly D-closed ∗-ideals of B since the Rieffel induction with
an equivalence bimodule maps strongly non-degenerate ∗-representations to strongly non-degenerate
ones. Thus we obtain a map ΦE : IdealsstrD (A) −→ IdealsstrD (B). Now let T : EB A −→ E′B A be an
isometric isomorphism and let b ∈ ΦE(J). Then for all x′, y′ ∈ E′ we have〈

x′, b · y′
〉E′

A
=
〈
T−1(x′), T−1(b · y′)

〉E

A
=
〈
T−1(x′), b · T−1(y′)

〉E

A
∈J,

showing b ∈ ΦE′(J). The reverse implication follows by symmetry proving the second part. For the
third part we consider c ∈ C together with x, y ∈ E and φ, ψ ∈ F. Then〈

φ⊗ x, c · (ψ ⊗ y)
〉F⊗E

A
=
〈
x, 〈φ, c · ψ〉F

B
· y
〉E

A
(∗)

as usual. If c ∈ ΦF⊗̃E(J) then the left hand side of (∗) is in J. Thus 〈φ, c · ψ〉F
B
∈ ΦE(J) for all

φ, ψ. This shows c ∈ ΦF(ΦE(J)). Conversely, if c ∈ ΦF(ΦE(J)) then the right hand side of (∗)
is in J. Since the elementary tensors span F ⊗̃ E we conclude c ∈ ΦF⊗̃E(J). This completes the
third part. Now letJ = kerπ with a strongly non-degenerate ∗-representation (H, π) ∈ -Rep∗

D(A).
By i.) we have ΦA(J) = kerRA(H, π). Now A ⊗̂A H is unitarily equivalent to H again thanks to
the assumption that H is a strongly non-degenerate ∗-representation of A, see Lemma 4.3.15. This
implies the fourth part. For the fifth part we already know that IdealsstrD ([ AA A]) = id and

IdealsstrD ([ FC B]) ◦ IdealsstrD ([ EB A]) = IdealsstrD

([
FC B ⊗̃ EB A

])
.

It remains to show that ΦE is indeed a morphism in the category Lattice. To this end, let I,J ∈
IdealsstrD (A) be given. Then

ΦE(J∧I) = ΦE(J∩I) = ΦE(J) ∩ ΦE(I) = ΦE(J) ∧ ΦE(I)

is obvious. Moreover, it is clear that

ΦE(J) ∪ ΦE(I) = ΦE(J∪I) ⊆ ΦE(J∨I).

Since ΦE(J∨I) is already closed we find

ΦE(J) ∨ ΦE(I) = ΦE(J∪I)cl ⊆ ΦE(J∨I).
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Applying ΦE = Φ−1
E yields

ΦE

(
ΦE(J∪I)cl

)
⊆ ΦEΦE(J∨I) =J∨I

NowJ and I are contained in the left hand side and the left hand side is a strongly D-closed ∗-ideal.
ButJ∨I is the smallest strongly D-closed ∗-ideal containingJ as well as I and hence both sides
actually coincide. Thus we conclude

ΦE(ΦE(J) ∨ ΦE(I)) =J∨I,

from which the lattice homomorphism property follows at once. This shows the fifth part. Note
that from the fifth part we deduce that the minimal ideal is mapped to the minimal ideal. Hence
the last part sharpens this statement: AssumeJstr

min,D(A) = {0}. We choose a faithful strongly non-
degenerate ∗-representation (H, π) ∈ -Rep∗

D(A). If now b ∈Jstr
min,D(B) = ΦE(Jstr

min,D(A)) then we
have 〈x, b · y〉E

A
∈ kerπ = {0} for all x, y ∈ EB A. Since EB A is a strong equivalence bimodule this

implies b = 0 and thusJstr
min,D(B) = {0}, too. The other implication follows by symmetry. �

5.3.5 The Representation Theories

We come now to the last Morita invariant which was essentially the main motivation to develop the
tools of equivalence bimodules after all: the representation theories -Rep∗

D(A). In the usual approach
to (strong) Morita theory one shows that the categories of ∗-representations or modules, respectively,
are equivalent categories. The equivalence is implemented by the Rieffel induction functors. Instead of
showing this directly, which would be easy with the present tools at hand, we formulate the equivalence
in a slightly more sophisticated version in order to prepare the ground for a Picard groupoid action.
The following theorem is shown analogously to Proposition 3.1.15.

Theorem 5.3.23 (Morita invariance of representation theories) Let A, B, and C be ∗-algebras
and let FC B ∈ -mod∗

B( C) as well as EB A ∈ -mod∗
A(B) be inner-product modules. Moreover, let D

be an auxiliary ∗-algebra.
i.) The associativity of ⊗̂ yields a natural unitary isomorphism

asso : RF⊗̂E −→ RF ◦ RE (5.3.40)

between the Rieffel induction functors RF⊗̂E,RF ◦ RE : -mod∗
D(A) −→ -mod∗

D( C).
ii.) Restricted to -Mod∗

D(A) the left identity yields a natural unitary isomorphism

left : RA −→ id∗-ModD(A) . (5.3.41)

iii.) If T : EB A −→ E′B A is an intertwiner then one has a natural transformation

IT : RE −→ RE′ (5.3.42)

with
I∗T = IT ∗ , (5.3.43)

defined for HA D ∈ -mod∗
D(A) by

IT ( HA D) = T ⊗̂ idH . (5.3.44)

iv.) For intertwiners T : EB A −→ E′B A and T ′ : E′B A −→ E′′B A one has

IT ′( HA D) ◦ IT ( HA D) = IT ′◦T ( HA D) (5.3.45)

for every HA D ∈ -mod∗
D(A) as well as

IidE
( HA D) = idE⊗̂H . (5.3.46)
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v.) For intertwiners T : EB A −→ E′B A and S : FC B −→ F′C B the diagram

RF⊗̂E(H) (RF ◦ RE)(H)

RF′⊗̂E′(H) (RF ◦ RE′)(H)

(RF′ ◦ RE′)(H)

asso(H)

I S
⊗̂
T

(H
)

asso(H)

R
F
(I
T (H

))

IS(R E
′(H

))

(5.3.47)

commutes for all HA D ∈ -mod∗
D(A).

Proof: Let HA D ∈ -mod∗
D(A) be given and define asso(H) to be the usual isometric isomorphism

asso(H) : (F ⊗̂ E) ⊗̂H −→ F ⊗̂ (E ⊗̂H).

The naturalness of the associativity asso from Lemma 4.3.14 in all three arguments implies the
naturalness in the third argument. Note that asso(H) is unitary for all H. This shows the first part.
If now HA D ∈ -Mod∗

D(A) is strongly non-degenerate then

left(H) : RA( HA D) = A ⊗̂ HA D −→ HA D

defined by left(H) : a ⊗ φ 7→ a · φ yields an isometric isomorphism which is natural. The necessary
computations are completely analogous to the one for Lemma 4.3.15. Again, left(H) is unitary for
all H. That IT (H) is natural also follows from the functoriality of the ⊗̂-tensor product: for an
intertwiner U : HA D −→ H′A D we have

IT ( H′A D) ◦ RE(U) = (T ⊗̂ idH′) ◦ (idE ⊗̂U) = T ⊗̂ U = (idE′ ⊗̂U) ◦ (T ⊗̂ idH) = RE′(U) ◦ IT ( HA D).

This shows that IT is natural. Clearly, for all H we have

IT (H)∗ = (T ⊗̂ idH)∗ = T ∗ ⊗̂ idH = IT ∗(H).

For the fourth part we take intertwiners T : EB A −→ E′B A and T ′ : E′B A −→ E′′B A. Then we have

IT ′(H) ◦ IT (H) = (T ′ ⊗̂ idH) ◦ (T ⊗̂ idH) = (T ′ ◦ T ) ⊗̂ idH = IT ′◦T (H),

which shows (5.3.45). The statement (5.3.46) is obvious. Finally, let T : EB A −→ E′B A and S : FC B −→
F′C B be intertwiners. Then we have for all y ∈ F, x ∈ E and φ ∈H

(IS(RE′(H)) ◦ RF(IT (H)) ◦ asso(H))((y ⊗ x)⊗ φ)

=
((
S ⊗̂ idRE′ (H)

)
◦
(
idF ⊗̂IT (H)

))
(y ⊗ (x⊗ φ))

=
(
S ⊗̂ idRE′ (H)

)
(y ⊗ (T (x)⊗ φ))

= S(y)⊗ (T (x)⊗ φ).

For the other direction in the diagram we obtain(
asso(H) ◦

(
IS⊗̂T (H)

))
((y ⊗ x)⊗ φ) = asso(H)((S(y)⊗ T (x))⊗ φ) = S(y)⊗ (T (x)⊗ φ),

and hence both sides agree. Since it is sufficient to consider elementary tensors also the fifth part is
shown. �
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Corollary 5.3.24 (Morita invariance of representation theories) Let A and B be idempotent
and non-degenerate and let D be an arbitrary ∗-algebra over C.

i.) If A and B are ∗-Morita equivalent then the Rieffel induction with a ∗-equivalence bimodule
EB A yields a ∗-equivalence of ∗-categories

RE : -Mod∗
D(A) −→ -Mod∗

D(B). (5.3.48)

ii.) If A and B are strongly Morita equivalent then the Rieffel induction with a strong equivalence
bimodule EB A yields a ∗-equivalence of ∗-categories

RE : -Rep∗
D(A) −→ -Rep∗

D(B). (5.3.49)

Proof: Let EB A ∈ Pic∗(B,A) and let EA B ∈ Pic∗(A,B) be its complex conjugate. By Proposi-
tion 4.3.25 the bimodule EA B is an inverse to EB A via the canonical unitary isomorphism

φcan : EA B ⊗̃B EB A −→ AA A.

By Theorem 5.3.23 we obtain the following natural transformations

RE⊗̃E RE ◦ RE

RA id∗-ModD(A)

asso

Iφcan

left

between ∗-functors on -Mod∗
D(A). Since φcan is a unitary isomorphism it follows from (5.3.44),

(5.3.43), and (5.3.45) that Iφcan is a natural unitary isomorphism. Since asso and left are natural
unitary isomorphisms as well, it follows that RE ◦ RE is naturally unitarily isomorphic to the identity
functor on -Mod∗

D(A). Exchanging the role of E and E we see that RE ◦ RE is naturally unitarily
isomorphic to the identity on -Mod∗

D(B). This shows the first part. The second part follows anal-
ogously since for a strong equivalence bimodule EB A also the complex conjugation EA B is a strong
equivalence bimodule and all operations from Theorem 5.3.23 preserve complete positivity. �

With this corollary we have finally answered the question asked in the introduction of this chap-
ter: the equivalence of representation theories is encoded in Morita equivalence and the functors
implementing the equivalence are the Rieffel induction functors. However, Theorem 5.3.23 gives a
much more precise formulation of this Morita invariant. The Equations (5.3.40) and (5.3.41) can be
interpreted almost like a left action of the Picard groupoid on the representation theories. However,
in these equations, we do not get equality of the functors but only a natural unitary isomorphism
between them. Thus, if we want to interpret the construction of Theorem 5.3.23 as an action, we
have to enlarge our notion of groupoid actions to an action of the Picard bigroupoids.

To this end, we first introduce the bicategory of all representation theories -Mod∗
D( · ) and

-Rep∗
D( · ), respectively, where D is a fixed ∗-algebra. In fact, this will even lead to a 2-category

and not just to a bicategory. Moreover, we have even a ∗-bicategory:

Definition 5.3.25 (The ∗-bicategories ∗-ModD and ∗-Rep
D
) Let D be a ∗-algebra over C. Then

we define the ∗-bicategories ∗-ModD and ∗-Rep
D
as follows:

i.) The class of objects of ∗-ModD and ∗-Rep
D
, respectively, are the non-degenerate and idempotent

∗-algebras over C.
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ii.) For two such ∗-algebras A and B one defines the class of 1-morphisms 1-Morph(B,A) as
the class of ∗-functors R : -Mod∗

D(A) −→ -Mod∗
D(B) and R : -Rep∗

D(A) −→ -Rep∗
D(B),

respectively. The class of 2-morphisms 2-Morph(R′,R) is defined to be the class of natural
transformations η : R −→ R′. The corresponding categories are denoted by ∗-ModD(B,A) and
∗-Rep

D
(B,A).

iii.) The composition of 1-morphisms ⊗ is the usual composition of functors. The identity 1-
morphisms are the ∗-functors IdA = id∗-ModD(A) and IdA = id∗-RepD(A), respectively. The C-
module structure for 2-morphisms is the C-module structure on natural transformations between
∗-functors according to (4.3.57) and (4.3.58).

iv.) The associativity asso, the left identity left, and the right identity right are always the identity
transformations.

Before we actually show that this definition gives indeed a ∗-bicategory (even a 2-category by iv.))
there are some remarks in due: first we note that since the categories -Mod∗

D(A) as well as -Rep∗
D(A)

are ∗-categories over C with respect to the C-module structure of BD( HA D, H′A D) and the operator
adjoint as ∗-involution, it is meaningful to speak of ∗-functors. Natural transformation between those
automatically consist of collections of adjointable bimodule morphisms. Even though this may look
unfamiliar for the moment, we shall denote the composition of functors in the context of ∗-ModD

and ∗-Rep
D
by R⊗ S and not as usual by R ◦ S. We shall use this notation to stay conform with the

bicategory formulations.

Theorem 5.3.26 (2-Categories of ∗-representations) For a ∗-algebra D the definitions of ∗-ModD

as well as of ∗-Rep
D
yield ∗-bicategories (in fact even 2-categories).

Proof: This relies on the more general fact that the “category” of all categories with functors as 1-
morphisms and natural equivalences as 2-morphisms is actually a 2-category, see e.g. [85, Sect. II.5]. In
our situation we can rely on these general results. The only thing to be check is that the composition ⊗
of ∗-functors yields again a ∗-functor and that the natural transformations inherit C-module structures
compatible with the composition. But this is clear from the definitions. �

The key observation in understanding ∗-ModD and ∗-Rep
D
as Morita invariants is to view them

as bicategories even though they are 2-categories. This allows for more and hence for more interesting
morphisms. In particular, we can look for a functor of bicategories

Pic∗ −→ ∗-ModD (5.3.50)

or
Picstr −→ ∗-Rep

D
, (5.3.51)

respectively, since Pic∗ and Picstr are only bicategories but not 2-categories. Before doing so we have
to explain the notion of functor between bicategories in some more detail. In fact, the notions are far
from being uniform in the literature requiring that we should be specific here, see e.g. [7,83] for a more
detailed discussion and other options. Instead of presenting the most general form we concentrate
directly on the notion of a left action of a bigroupoid. Moreover, since ∗-ModD and ∗-Rep

D
are even

∗-bicategories, we can require the left action of the Picard bigroupoids to be unitary in a second step.
Putting everything together, the following definition is suitable for us:

Definition 5.3.27 (Left action of a bigroupoid) Let G be a bigroupoid and B a bicategory. A
left action Φ of G on B consists of the following data:

i.) A map Φ: G0 −→ B0.
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ii.) For any two objects a, b ∈ B0 a functor

Φba : G1(b, a) −→ B1(Φ(b),Φ(a)). (5.3.52)

iii.) For every three objects a, b, c ∈ G0 a natural isomorphism

ϕcba : ⊗Φ(b) ◦ (Φcb × Φba) −→ Φca ◦ ⊗b. (5.3.53)

iv.) For every object a ∈ G0 a 2-isomorphism

ϕa : IdΦ(a) −→ Φaa(Ida). (5.3.54)

These data are required to fulfill the following coherence conditions: For all 1-morphisms g ∈ G1(b, a),
h ∈ G1(c, b), and k ∈ G1(d, c) the diagrams

(Φdc(k)⊗ Φcb(h))⊗ Φba(g)

Φdc(k)⊗ (Φcb(h)⊗ Φba(g)) Φdb(k ⊗ h)⊗ Φba(g)

Φdc(k)⊗ Φca(h⊗ g) Φda((k ⊗ h)⊗ g)

Φda(k ⊗ (h⊗ g))

ass
oB

ϕ
dcb (k,h)⊗id

id⊗ϕcba(h,g) ϕdba(k⊗h,g)

ϕ
dca (k,h⊗g)

ass
oG

(5.3.55)

as well as

Φba(g)⊗ IdΦ(a) Φba(g)⊗ Φaa(Ida)

Φba(g) Φba(g ⊗ Ida)

idΦba(g)⊗ϕa

ϕbaa(g,Ida)rightba

Φ(rightba)

(5.3.56)

and

IdΦ(b) ⊗ Φba(g) Φbb(Idb)⊗ Φba(g)

Φba(g) Φba(Idb ⊗ g)

ϕb⊗idΦba(g)

ϕbba(Idb,g)leftba

Φ(leftba)

(5.3.57)

commute.

Remark 5.3.28 (Morphisms of bicategories) Our definition of an action is a particular case of a
more general notion of morphisms between bicategories. First, we can use an arbitrary bicategory G
instead of a bigroupoid. Moreover, ϕcba can be relaxed to an arbitrary natural transformation and ϕa
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can be allowed to be an arbitrary 2-morphisms instead of isomorphisms as we did in Definition 5.3.27.
In this case, one ends up with Benabou’s definition of a morphism of bicategories, see [7]. If both ϕcba
and ϕa are isomorphisms, then Benabou speaks of a homomorphism. We write for a homomorphism
also

Φ: G −→ C. (5.3.58)

If only the ϕa are isomorphisms then Φ is called a unitary morphism, not to be confused with our
notions of unitarity referring to the ∗-involutions. Finally, if even ϕa = id then one has a strict unitary
morphism which yields a strict homomorphism if in addition also ϕcba = id. For us, the notion of a
homomorphism turns out to be the relevant one. The notion of “bifunctor” or “weak 2-functor” is not
used uniformly in the literature. Thus we shall avoid this term.

Definition 5.3.29 (Unitary left action of a bigroupoid) Let G be a bigroupoid and let B be a
∗-bicategory. A unitary left action of G on B is a left action such that in addition one has the
following properties:
i.) For every three objects a, b, c ∈ G0 the natural isomorphism

ϕcba : ⊗Φ(b) ◦ (Φcb × Φba) −→ Φca ◦ ⊗b (5.3.59)

is unitary.
ii.) For every object a ∈ G0 the 2-isomorphism

ϕa : IdΦ(a) −→ Φaa(Ida). (5.3.60)

is unitary.

Analogously to Theorem 5.3.4 we obtain an invariant also from a bigroupoid action in the following
sense:

Proposition 5.3.30 Let Φ: G −→ B be a left action of a bigroupoid G on a bicategory B.
i.) If a, b ∈ G0 are objects in the same orbit then Φ(a) and Φ(b) are isomorphic objects in the

bicategory sense.
ii.) Every 1-morphism g : a −→ b in G1 yields an isomorphism Φba(g) : Φ(a) −→ Φ(b).
iii.) The classifying groupoid G of G acts from the left on the classifying category B via the classifying

action Φ which is defined by the functor Φ: G −→ B explicitly given by

Φ(a) = Φ(a) and Φ([g]) = [Φba(g)]. (5.3.61)

Proof: For g : a −→ b also Φ(g) is invertible up to a 2-morphism. Indeed, if h : b −→ a is a
1-morphism and

φ : h⊗ g −→ Ida and ψ : g ⊗ h −→ Idb

are the corresponding 2-isomorphisms, then for Φ(g) and Φ(h) we find that

Φ(g)⊗ Φ(h)
ϕ(g,h)−→ Φ(g ⊗ h)

Φ(φ)−→ Φ(Ida)
ϕ−1
a−→ IdΦ(a)

is a 2-isomorphism in B since all involved arrows are 2-isomorphisms. Analogously, we find the
2-isomorphism

ϕ−1
b ◦ Φ(ψ) ◦ ϕ(h, g) : Φ(h)⊗ Φ(g) −→ IdΦ(b).

Thus Φ(g) is indeed invertible and Φ(a) and Φ(b) turn out to be isomorphic objects in the bicategory
sense. This shows the first and second part. Note that we need that the ϕa are all invertible: a

c© Stefan Waldmann 2019-01-25 15:18:20 +0100 Hash: 13717b6



5.3. Morita Invariants 153

morphism of bicategories would not be sufficient for this statement. For the third part, we have
already seen in Proposition 5.1.6 and Theorem 4.3.22 that G is a groupoid and B is a category,
respectively. We have to show that Φ([g]) is well-defined. Thus let φ : g −→ g′ be a 2-isomorphism.
Then by the functoriality of Φ also Φ(φ) : Φ(g) −→ Φ(g′) is a 2-isomorphism. It follows that (5.3.61) is
well-defined. Let now g : a −→ b and h : b −→ c be given. Then Φ(h)⊗Φ(g) is (naturally) isomorphic
to Φ(h⊗ g) via ϕcba. Similarly, Φ(Ida) is (naturally) isomorphic to IdΦ(a), hence

[Φ(h)] ◦ [Φ(g)] = [Φ(h)⊗ φ(g)] = Φ([g ⊗ h]) = Φ([g] ◦ [h]),

and [Φ(Ida)] = [IdΦ(a)] follows. This shows that (5.3.61) is indeed functorial. �

After this general preparation we can now formulate the Morita invariants -Mod∗
D and -Rep∗

D

from Corollary 5.3.24 in the framework of a bicategory action:

Theorem 5.3.31 (Picard bigroupoid action on representation theory) The Rieffel induction
yields a unitary left action Φ of Pic∗ on ∗-ModD and of Picstr on ∗-Rep

D
, respectively. More precisely,

Φ is obtained as follows:
i.) For the objects in Pic∗ or Picstr, i.e. idempotent and non-degenerate ∗-algebras A, one sets

Φ(A) = A.
ii.) For a 1-morphism EB A in Pic∗(B,A) or in Picstr(B,A), respectively, one sets

Φ( EB A) = RE : -Mod∗
D(A) −→ -Mod∗

D(A) (5.3.62)

or
Φ( EB A) = RE : -Rep∗

D(A) −→ -Rep∗
D(B), (5.3.63)

respectively.
iii.) For a 2-morphism T : EB A −→ E′B A one uses the natural transformation

Φ(T ) = IT : RE −→ RE′ (5.3.64)

according to (5.3.42).
iv.) For A, B, and C as well as for EB A in Pic∗(B,A) or in Picstr(B,A), respectively, and FC B

in Pic∗( C,B) or in Picstr( C,B), respectively, one sets

ϕCBA(F, E) = asso−1 : RF ⊗ RE −→ RF⊗̃E (5.3.65)

according to (5.3.40).
v.) Finally, one uses

ϕA = left−1 : id∗-ModD(A) −→ RA (5.3.66)

with left as in (5.3.41).

Proof: First of all, it is clear from Theorem 5.3.23 that Φ: Pic∗(B,A) −→ ∗-ModD(B,A) is indeed
functorial: for T : EB A −→ E′B A and T ′ : E′B A −→ E′′B A the corresponding IT is on one hand a natural
transformation between RE and RE′ and thus a morphism in ∗-ModD(B,A). On the other hand we
have IT ′◦T = IT ′ ◦ IT as well as Iid = idRE

. Thus ii.) of Definition 5.3.27 is fulfilled. Moreover, for
unitary T we have I−1

T = IT−1 = IT ∗ = I∗T showing that the natural transformation is unitary in
this case. By Theorem 5.3.23, i.), the associativity asso and hence also its inverse asso−1 is a natural
unitary isomorphism, thus a unitary isomorphism in ∗-ModD( C,A) as wanted. It remains to show
that this unitary isomorphism is also natural in E and F. Thus let 2-morphisms T : EB A −→ E′B A and
S : FC B −→ F′C B be given. Then we have (⊗ ◦ (Φ×Φ))(F, E) = RF ⊗ RE as well as (Φ ◦ ⊗)(F, E) =
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RF⊗̃E where we write again ⊗ for the composition of functors in ∗-ModD as this is the tensor product
of this bicategory. Moreover, we have (⊗ ◦ (Φ × Φ))(S, T ) = IS ⊗ IT : RF ⊗ RE −→ RF′ ⊗ RE′ with
the tensor product of natural transformations IS ⊗ IT . Evaluating this on a given HA D we get

(IS ⊗ IT )( HA D) = IS(RE′( HA D)) ◦ RF(IT ( HA D))

= IS
(
E′ ⊗̂ HA D

)
◦ (idF ⊗̂(IT ( HA D)))

=
(
S ⊗̂ idE′⊗̂H

)
◦
(
idF ⊗̂(T ⊗̂ idH)

)
= S ⊗̂ (T ⊗̂ idH)

for every HA D ∈ -Mod∗
D(A). Finally, we have (Φ◦⊗)(S, T ) = IS⊗̃T : RF⊗̃E −→ RF′⊗̃E′ . Now putting

things together we see that the naturalness of ϕCBA(F, E) = asso−1
CBA(F, E) means that we have to

show
asso−1

CBA(F′, E′) ◦ (IS ⊗ IT ) = IS⊗̃T ◦ asso
−1
CBA(F, E).

But this is just the statement that the diagram (5.3.47) commutes. Thus ϕCBA is natural as wanted,
showing that iii.) of Definition 5.3.27 is satisfied. Since we already know that left and thus also
left−1 are natural unitary isomorphisms, we conclude that ϕA = left−1 is a unitary 2-isomorphism in
∗-ModD as needed. It remains to show the coherence conditions between these data. To this end we
first note that the associativity in ∗-ModD holds strictly. Thus the hexagon in (5.3.55) degenerates to
a pentagon. To prove its commutativity we first write all involved natural transformations explicitly
for some HA D ∈ -Mod∗

D(A). We have(
idRG

⊗ϕCBA(F, E)
)
(H) = idRF⊗̃E(H) ◦ RG(ϕCBA(F, E)(H))

= RG

(
asso−1(F, E,H)

)
= idG ⊗̂ asso−1(F, E,H),

and ϕC′ CA( G,F ⊗̃ E)(H) = asso−1( G,F ⊗̃ E,H). Thus we get(
ϕC′ CB( G,F ⊗̃ E) ◦

(
idRG

⊗ϕCBA(F, E)
))

(H)

= asso−1( G,F ⊗̃ E,H) ◦
(
idG ⊗̂ asso−1(F, E,H)

)
. (∗)

On the other hand, we get first(
ϕC′ CB( G,F)⊗ idRE

)
(H) = (ϕC′ CB( G,F))(RE(H)) = asso−1( G,F, E ⊗̂H),

and second
(
ϕC′BA( G ⊗̃F, E)

)
(H) = asso−1( G ⊗̃F, E,H) as well as

(Φ C′A(asso( G,F, E)))(H) = Iasso( G,F,E)(H) = asso( G,F, E) ⊗̂ idH .

Collecting this yields the result

((Φ C′A(asso( G,F, E)))(H)) ◦
((
ϕC′BA( G ⊗̃F, E)

)
(H)

)
◦
((
ϕC′ CB( G,F)⊗ idRE

)
(H)

)
=
(
asso( G,F, E) ⊗̂ idH .

)
◦
(
asso−1( G ⊗̃F, E,H)

)
◦
(
asso−1( G,F, E ⊗̂H)

)
. (∗∗)

The fact that (∗) and (∗∗) coincide is just the associativity coherence of asso as in Proposition 4.3.8,
i.). Indeed, for the associativity coherence it was never important to use the fact H ·D = H, thus the
equality of (∗) and (∗∗) holds also without this feature of H. Next we consider the diagram (5.3.56).
We have

ΦBA(E)⊗ IdΦ(A) = RE ⊗ IdA = RE ◦ id∗-ModD(A) = RE,

c© Stefan Waldmann 2019-01-25 15:18:20 +0100 Hash: 13717b6



5.4. Exercises 155

since the identity functor is a strict unit element in the 2-category ∗-ModD. Hence the diagram
(5.3.56) degenerates to a triangle. We consider HA D ∈ -Mod∗

D(A) and compute(
idRE
⊗ϕA

)
(H) = id(Φ(IdA)) ◦ RE(ϕA(H)) = RE(left−1(H)) = idE ⊗̂ left−1(H),

where left−1(H) : H −→ A ⊗̂ H is the inverse to the unitary isomorphism left(H) : A ⊗̂ H −→ H.
Moreover, we have ϕCBA(E, IdA)(H) = asso−1(E,A,H) and (Φ(right(E)))(H) = right(E)⊗̂ idH where
right(E) : E ⊗̂ A −→ E is the canonical isomorphism. Combining these things we get

(Φ(right(E))(H)) ◦ (ϕBAA(E,A)(H)) ◦
(
(idΦ(E)⊗ϕA)(H)

)
=
(
right(E) ⊗̂ idH

)
◦ asso−1(E,A,H) ◦

(
idE ⊗̂ left−1(H)

)
= idE⊗̂H,

according to the identity coherence for the three bimodules E, A, and H as in Proposition 4.3.8, ii.).
Again, for the identity coherence the strong non-degeneracy H · D = H was not needed. Finally, we
have

Φ(left(E))(H) = Ileft(E)(H) = left(E) ⊗̂ idH

with the canonical unitary isomorphism left(E) : B ⊗̂ E −→ E. Moreover, we have ϕBBA(B, E)(H) =
asso−1(B, E,H) and (

ϕB ⊗ idRE

)
(H) = ϕB(RE(H)) = left−1(E ⊗̂H).

With this, we consider the remaining diagram (5.3.57) which also degenerates to a triangle. We have

(Φ(left(E))(H)) ◦ (ϕBBA(B, E)(H)) ◦
(
(ϕB ⊗ idRE

)(H)
)

= (left(E) ⊗̂ idH) ◦ (asso−1(B, E,H)) ◦ left−1(E ⊗̂H)

= idE⊗̂H,

as a simple computation shows. In fact, since we have a bicategory, the last step also follows from
the “all diagrams commute” theorem for bicategories, as we only have morphisms being data of the
bicategory itself. Thus the last coherence diagram is shown and we indeed have a unitary action of
the ∗-Picard bigroupoid. Note that the strong version follows analogously. �

Remark 5.3.32 Using this theorem we obtain Corollary 5.3.24 immediately from our general consid-
erations on bigroupoid actions in Proposition 5.3.30. Thus the above theorem can be viewed as the
deeper reason for the equivalence of the representation theories for Morita equivalent ∗-algebras in
both flavours. As usual for our point of view, we have the equivalence not just “by accident” but com-
ing with a more systematic structure yielding in particular a systematic way to actually implement
the natural isomorphisms between the Rieffel induction functors.

5.4 Exercises

Exercise 5.4.1 (Isomorphisms yield a groupoid) Prove Proposition 5.1.2.

Exercise 5.4.2 (Isotropy groups of a groupoid) Prove Proposition 5.1.4.

Exercise 5.4.3 (Groupoid morphisms) Let G and H be two groupoids. A groupoid morphism
Φ: G −→ H is a covariant functor.
i.) Show that groupoids with groupoid morphisms form a category Groupoid.
ii.) Show that a groupoid morphism Φ induces group morphisms Φ: G(a) −→ H(Φ(a)) between the

isotropy groups for all objects a of G.
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iii.) Show that the kernels as well as the images of the induced group morphisms Φ: G(a) −→
H(Φ(a)) are isomorphic along the orbit of a.

iv.) Let a and b be objects of G with Morph(b, a) 6= ∅. Show that for g, h ∈ Morph(b, a) with
Φ(g) = Φ(h) there exists a unique element u ∈ ker Φa ⊆ G(a) such that h = g ◦u. In this sense,
the kernels of the group morphisms Φ: G(a) −→ H(Φ(a)) encode the (non-) injectivity of the
groupoid morphism Φ: G −→ H completely, even though there is no naive groupoid definition
of a kernel directly.

Exercise 5.4.4 (Inversion functors in Pic∗ and Picstr) Consider the complex conjugation of bi-
modules in the bigroupoids Pic∗ and Picstr as inversion.
i.) Show that for two idempotent and non-degenerate ∗-algebras A and B the inversion gives

functors

inv : Pic∗(B,A) −→ Pic∗(A,B) (5.4.1)
as well as

inv : Picstr(B,A) −→ Picstr(A,B), (5.4.2)

provided there are equivalence bimodules between A and B at all.
ii.) Consider now the inversion of a tensor product FC B⊗̃ EB A and compare it to the tensor product of

the inversions EA B and FB C: here one has a unitary isomorphism. Show that this isomorphism
is natural.

iii.) Show that the inversion of the identity bimodule AA A is unitarily isomorphic to AA A with a
natural isomorphism, too.

iv.) Investigate the relations between the above natural isomorphisms and formulate corresponding
coherence properties.

Exercise 5.4.5 (Inner automorphisms) Let A be a unital ring.
i.) Check directly that the inner automorphisms InnAut(A) form a normal subgroup of all auto-

morphisms Aut(A).
ii.) Denote by Gl(A) the invertible elements in A and show that they form a group under multipli-

cation. Define
Ad: GL(A) 3 g 7→ Adg ∈ InnAut(A) (5.4.3)

by Adg(a) = gag−1 for all a ∈ A. Show that this defines a group homomorphism.
iii.) Determine the kernel of Ad.
Assume now in addition that A is a unital ∗-algebra. Proceed analogously for InnAut∗(A) instead
of InnAut(A) and the group of unitary elements U(A) of A instead of the invertible ones.

Exercise 5.4.6 (The center acts on equivalence bimodules) Let A and B be idempotent and
non-degenerate ∗-algebras over C = R(i) and let EB A be a ∗-equivalence bimodule.
i.) Show that the center Z(A) is a ∗-subalgebra of A, containing 1 whenever A is unital.
ii.) Show that the endomorphisms End( EB A) of EB A in the sense of the category Pic∗(B,A) form

a unital ∗-algebra.
iii.) Let a ∈ Z(A) be a central element of A. Show that the right multiplication with a is an

endomorphism of EB A. Show that this gives a ∗-homomorphism

Z(A) −→ End( EB A), (5.4.4)

such that the image is in the center of End( EB A).
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Exercise 5.4.7 (The strong Picard group of Mn(C)) Assume that R is a real closed field (with
its canonical ordering) such that C = R(i) is an algebraically closed field.
i.) Discuss whether C satisfies (K) and (H).
ii.) Compute the strong Picard groups Picstr(C) and Picstr(Mn(C)) for all n ∈ N.

Hint: What are the finitely generated projective modules over C? Use Exercise 2.4.21 and Exercise 2.4.22.

iii.) Show that all ∗-automorphisms of Mn(C) are inner.

Exercise 5.4.8 (Ring-theoretic Picard group and the center) Formulate and prove the ring-
theoretic versions of Proposition 5.2.9, Proposition 5.2.12, and Theorem 5.3.7.

Exercise 5.4.9 (The strong Picard group of C∞(M)) Use Theorem 5.2.17 and Corollary 5.2.26
to simplify the computation of the strong Picard group of C∞(M) as in Theorem 5.2.15.

Exercise 5.4.10 (The involution of Aut(A)) Let A be a ∗-algebra over C = R(i). Consider the
map ∗ : Aut(A) −→ Aut(A) as in (5.2.59).
i.) Show that ∗ is an involutive automorphism of the group Aut(A).
ii.) Let Φ ∈ Aut(A). Show that Φ∗ = Φ iff Φ ∈ Aut∗(A).
iii.) Let g ∈ Gl(A) be a invertible element in A and compute (Adg)

∗.
iv.) Show that ∗ induces a well-defined involutive group automorphism of OutAut(A).

Exercise 5.4.11 (Geometric groupoid action) Let G be a (small) groupoid and M a set. An
alternative way to define a groupoid action of G on M is as follows: one has two maps, the anchor

% : M −→ G0 (5.4.5)

and the multiplication map
. : G1 ×G0 M −→M (5.4.6)

written as (g, p) 7→ g . p. Here ×G0 denotes the usual fiber product

G1 ×G0 M =
{

(g, p)
∣∣ source(g) = %(p)

}
⊆ G1 ×M (5.4.7)

with respect to the source map and the anchor. Then these two maps constitute a geometric groupoid
action if %(g . p) = target(g) and ida .p = p for %(p) = a as well as

h . (g . p) = (hg) . p, (5.4.8)

whenever the compositions are defined. Show that this can be interpreted as a groupoid action
Φ: G −→ Set in the sense of Definition 5.3.1.
Hint: Define Φ(a) = %−1(a) ⊆M and let Φ(g) : Φ(a) −→ Φ(b) be the obvious map where g : a −→ b is an arrow in G.

The advantage of the definition of a geometric groupoid action compared to Definition 5.3.1 is that
one can encode useful information in the two maps % and . which are hard to encode in the functor
Φ directly. As example one can consider instead of a bare set a topological space or a manifold M
and require continuity or smoothness properties of % and ..

Exercise 5.4.12 (Lattices) We collect some basic properties of lattices in this exercise:
i.) Let L be a lattice and let a, b ∈ L. Show that a ∧ b = b holds iff a ∨ b = b holds. Prove that

a ≤ b if a ∧ b = b defines a partial ordering on L.
ii.) Show that for a lattice L the partial ordering ≤ has for all a, b ∈ L an infimum and a supremum

given by (5.3.24).
iii.) Show that in a lattice L a maximal (minimal) element is necessarily unique, if it exists at all.
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iv.) Now suppose that (L,≤) is a partially ordered set such that for any two elements one has an
infimum and a supremum. Show that in this case (5.3.24) defines the structure of a lattice.

Exercise 5.4.13 (The closed ∗-ideals of C∞(M)) Consider the ∗-algebra C∞(M) for a smooth
manifold M . Show that the scalar closed ∗-ideals of C∞(M) are precisely the vanishing ideals

JA =
{
f ∈ C∞(M)

∣∣ f ∣∣
A

= 0
}

(5.4.9)

of closed subsets A ⊆M .
Hint: Use the characterization of positive functionals of C∞(M) from Exercise 1.4.17 as well as Exercise 1.4.15, see
also [25, Sect. 6].

Exercise 5.4.14 (The minimal ideal: general case) This exercise is a continuation of the inves-
tigations of the minimal ideal started in Exercise 1.4.15. Let A be an idempotent and non-degenerate
∗-algebra over C and let D be an admissible coefficient ∗-algebra.
i.) Show that dividing by the minimal strongly D-closed ∗-ideal A  A

/
Jstr

min,D(A) is functorial.

ii.) Prove that the minimal strongly D-closed ∗-ideal of the quotient A
/
Jstr

min,D(A) is trivial.

iii.) Show that the representation theories of A and A
/
Jstr

min,D(A) on pre-Hilbert right D-modules
are equivalent categories.

iv.) Show that the ∗-algebras A and A
/
Jstr

min,D(A) are strongly Morita equivalent iff Jstr
min,D(A) =

{0}.

Exercise 5.4.15 (Representation theory of Λ(Cn)) Consider the Grassmann algebra A = Λ(Cn).
i.) Show that the scalar ∗-representation theories -Rep∗ of C and A on pre-Hilbert spaces are

equivalent by explicitly constructing functors which establish the equivalence.
ii.) Show that the Grassmann algebra is not strongly Morita equivalent to C.

Hint: Here one can argue in many ways. Try to use one of the Morita invariants or argue with Exercise 5.4.14.

Exercise 5.4.16 (Unitary intertwiner for Rieffel induction) Let A, B, and D be ∗-algebras
over C = R(i). Let HA D ∈ -Mod∗

D(A) be a strongly non-degenerate ∗-representation of A with the
coefficient ∗-algebra D. Moreover, let EB A be a ∗-equivalence bimodule. Theorem 5.3.31 provides now
a natural and unitary intertwiner from (RE ◦ RE)( HA D) to HA D. Find an explicit formula for this
intertwiner in terms of the algebra-valued inner products on EB A and EA B and verify the claimed
properties according to Theorem 5.3.31 explicitly.
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Chapter 6

Deformations of Algebras, States, and
Modules

After developing the representation theory of ∗-algebras in detail, we shall now use the general results
to investigate ∗-algebras which are obtained as deformations of other ∗-algebras. First we remind
that for an ordered ring R also the formal power series RJλK are ordered in a natural way. Thus we
do not leave the general framework of ∗-algebras over ordered rings if we study formal deformations.
In fact, this was one of the main motivations to study general ordered rings instead of just the real
numbers R. This way, one is able to gain new examples with entirely new features by deformation.
Including such ∗-algebras into the discussion will also help to understand ∗-algebras over C from a
slightly different angle, broadening the point of view considerably.

The main theme of this and the following chapter is that existence and classification theorems in
deformation theory are usually very hard and difficult. However, the inverse process, i.e. taking a
classical limit, can be defined and constructed in a rather simple way. In this chapter we will therefore
discuss the classical limit of various mathematical structures: algebras, states, and modules. For all
of them we obtain classical limit constructions in a rather straightforward way, posing the typically
much more subtle question of quantization as the way to go the other direction.

6.1 Deformations of ∗-Algebras

In this introductory section we provide the necessary background in deformation theory of associative
algebras and ∗-algebras. This will not be a comprehensive discussion, more detailed expositions can
be found e.g. in the textbooks [47,116] as well as in the seminal papers of Gerstenhaber [52–56] who
coined the basic notions of deformation theory of associative algebras. The field itself is by now vast
and fast developing. We will indicate more recent literature when needed.

The basic idea of formal deformation theory is that we have an algebraic structure like e.g. an
algebra multiplication µ0 which we would like to understand and study. One (traditional) approach
is to relate µ0 to other structures of the same type by trying to find a classification of these structures
and determine the isomorphism class of µ0 within this classification scheme. While in simple situations
this might succeed, in more realistic scenarios of interest, a full classification might be out of reach.
Now what is still possible is to investigate which structures µ of the same sort are still close to the
given structure µ0: one wants to understand the classification only of the nearby structures. This
suggest that one has a notion of nearby in order to make sense out of such ideas on a mathematically
sound basis. As soon as one has algebraic structures combined with analytic features this can be
done in various ways. However, Gerstenhaber’s original idea is to consider a formal neighbourhood of
the structure µ0 thereby avoiding the usage of any a priori topological concepts. One thus considers
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160 6. DEFORMATIONS OF ALGEBRAS, STATES, AND MODULES

structures µ of the form
µ = µ0 + λµ1 + λ2µ2 + · · · (6.1.1)

as a formal power series expansion called formal deformations of µ0. Here we have to assume that the
structures we are investigating can be placed inside some linear space. It then turns out that studying
whether µ is equivalent to the original structure µ0 tells much about µ0. If there are non-equivalent
such deformations one wants to understand how many equivalence classes are possible.

Ultimately, there are many occasions where the algebraic structures allow for some more serious
analytic context. Hence a study of the convergence of the above formal series is a primary goal after
the algebraic questions have been settled. This will of course be of yet another level of complication:
we will not touch these questions related to convergence here any more.

While the above interpretation of deformations and rigidity is perfectly adequate within math-
ematics there are applications far beyond. Soon after Gerstenhaber’s general theory of deforming
associative algebras it became clear that the transition from classical physics to quantum physics can
be viewed as a deformation process with the formal parameter λ playing the role of Planck’s constant
~. This is the basis for the seminal work of Bayen et al. [5] establishing the notion of star products and
deformation quantization, see also e.g. [44,60,109] for recent reviews as well as the textbooks [47,116]
for more details. We will occasionally come back to this main class of examples and gain motivation
from this point of view.

6.1.1 The Ring of Formal Power Series as new Scalars

We have already met the ring of formal power series RJλK with coefficients in a given ring R in
Section 1.1.1. Here we will recall some of its basic properties we need in the sequel.

Thus let R be an associative and commutative ring and consider a module V over it. Then the
formal power series V JλK with coefficients in V become a module over RJλK by the usual multiplication
of formal series, i.e. by the Cauchy product formula

a · v =

( ∞∑
r=0

λrar

)( ∞∑
r=0

λrvr

)
=
∞∑
r=0

λr
r∑
s=0

as · vr−s (6.1.2)

for a ∈ RJλK and v ∈ V JλK. Note that the ring inclusion R ⊆ RJλK yields the canonical R-module
structure of V JλK.

Next, suppose that V and W are both modules over R and φr : V −→ W are R-linear maps for
r ∈ N0. Then we obtain an RJλK-linear map

φ =
∞∑
r=0

λrφr : V JλK −→W JλK (6.1.3)

by setting

φ(v) =

( ∞∑
r=0

λrφr

)( ∞∑
s=0

λsvs

)
=

∞∑
r=0

λr
r∑
s=0

φs(vr−s) (6.1.4)

for v ∈ V JλK. We leave it as a little exercise to verify that this is indeed RJλK-linear. In particular,
we can extend a given R-linear map φ : V −→ W by this to an RJλK-linear map φ : V JλK −→ W JλK.
In the following we will always assume such an extension without indicating this in our notation.
A similar construction can be done with multilinear maps. It is now a simple verification that the
composition of such extensions φ and ψ =

∑∞
r=0 λ

rψr : W JλK −→ UJλK yields analogous formulas to
the Cauchy product (6.1.2).

As a first observation we note that between such modules all RJλK-linear maps are of the form
(6.1.3):

c© Stefan Waldmann 2019-01-25 15:18:20 +0100 Hash: 13717b6



6.1. Deformations of ∗-Algebras 161

Proposition 6.1.1 Let V1, . . . , Vn and W be R-modules. Then for an RJλK-multilinear map

Φ: V1JλK× · · · × VnJλK −→W JλK (6.1.5)

there exists unique R-multilinear maps φr : V1 × · · · × Vn −→W such that

Φ =

∞∑
r=0

λrφr. (6.1.6)

Here we use the canonical extension of the φr to RJλK-multilinear maps as above. The proof is
discussed in Exercise 6.4.1.

Of course, there are other modules over RJλK which are not of the form V JλK with an R-module
V , see Exercise 6.4.4 for a more intrinsic characterization. Nevertheless, most of the time we will
be interested in such more particular modules. Here we have a canonical projection onto the zeroth
order

cl : V JλK 3 v =

∞∑
r=0

λrvr 7→ v0 ∈ V, (6.1.7)

which we will call the classical limit map. Conversely, we can consider V as a subset of V JλK by
including it in order zero. Note that this will only be an R-submodule but not an RJλK-submodule.

For an element v =
∑∞

r=0 λ
rvr ∈ V JλK we define its order by

o(v) = min
{
k
∣∣ vk 6= 0

}
(6.1.8)

with the convention o(0) =∞. Then the λ-adic valuation is defined by

ϕ(v) = 2−o(v) (6.1.9)

with the convention 2−∞ = 0 for the zero element 0 ∈ V JλK. Using this valuation we can define the
λ-adic metric by

d(v, w) = ϕ(v − w) = 2−o(v−w) (6.1.10)

for v, w ∈ V JλK. This turns out to be a metric with the following nice properties:

Proposition 6.1.2 Let V , W , V1, . . . , Vn be modules over R.
i.) The order satisfies

o(v) = o(−v), o(v) =∞ iff v = 0, and o(v + w) ≥ min(o(v), o(w)) (6.1.11)

for all v, w ∈ V JλK.
ii.) The λ-adic metric is an ultrametric, i.e. a metric satisfying the strong triangle inequality

d(v, w) ≤ max(d(v, u), d(u,w)) (6.1.12)

for all v, w, u ∈ V JλK.
iii.) With respect to the λ-adic metric, V JλK is a complete metric space and the polynomials V [λ] ⊆

V JλK are dense. In fact, we have the convergence

lim
N−→∞

N∑
r=0

λrvr =

∞∑
r=0

λrvr (6.1.13)

for all v ∈ V JλK. The induced topology on V ⊆ V JλK is discrete.
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iv.) The ring RJλK is a topological ring and the module structure of V JλK is continuous. More
precisely, one has

o(av) ≥ o(a) + o(v) and ϕ(av) ≤ ϕ(a)ϕ(v) (6.1.14)

for all elements a ∈ RJλK and v ∈ V JλK.
v.) All RJλK-multilinear maps

Φ: V1JλK× · · · × VnJλK −→W JλK (6.1.15)

are continuous with respect to the λ-adic metric topologies.

We refer to Exercise 6.4.3 for more details on the rather straightforward proof.

6.1.2 Basic Definitions and Examples

We are now able to make the heuristic considerations in the introduction of this section more precise.
One defines a formal associative deformation of an associative algebra as follows [53]:

Definition 6.1.3 (Associative formal deformation) Let A be an associative algebra over a ring
R with multiplication µ0 : A×A −→ A. Then an associative formal deformation of A is an associative
RJλK-bilinear multiplication µ for AJλK such that

cl(µ) = µ0. (6.1.16)

Let us unwind this definition. By Proposition 6.1.1 we know that any RJλK-bilinear map µ : AJλK×
AJλK −→ AJλK is actually of the form

µ =

∞∑
r=0

λrµr (6.1.17)

with some uniquely determined R-bilinear maps µr : A × A −→ A. Then the requirement (6.1.16)
simply means that the zeroth order of µ is the original, given multiplication of A, thereby justifying our
sloppy notation. The associativity is a quadratic condition on µ meaning µ(a, µ(b, c)) = µ(µ(a, b), c)
for all a, b, c ∈ AJλK. Inserting (6.1.17) we can evaluate this order by order and obtain the equivalent
conditions

r∑
s=0

µs(µr−s(a, b), c) =

r∑
s=0

µs(a, µr−s(b, c)), (6.1.18)

which have to hold for all r ∈ N0 and a, b, c ∈ A. If these equations only hold for r = 0, . . . , n then µ
is called an associative deformation up to order n. Note that it is sufficient to check this for elements
a, b, c ∈ A ⊆ AJλK without higher orders of λ.

We will typically denote the new multiplication by a product symbol ? and thus write

a ? b = µ(a, b) = ab+
∞∑
r=1

λrµr(a, b), (6.1.19)

where we simply write ab = µ0(a, b) for the original multiplication of A. If A is unital with unit
element 1 we typically require that the same element 1 ∈ AJλK serves as unit for ? as well. This
means that

1 ? a = a = a ? 1 (6.1.20)

for all a ∈ AJλK or, equivalently, µr(1, · ) = 0 = µr( · ,1) for all r ≥ 1.
There is of course always one particular deformation, namely the trivial deformation where we

simply have µ = µ0 extended RJλK-linearly to AJλK.
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Suppose that ? is a formal associative deformation. Consider then a formal power series T =
id +

∑∞
r=1 λ

rTr of linear maps Tr ∈ EndR(A) viewed as RJλK-linear endomorphism of AJλK. Then
the definition

a ?′ b = T (T−1(a) ? T−1(b)) (6.1.21)

yields a new associative product ?′ for AJλK. Note that in general a formal series is invertible iff the
zeroth order is invertible. Thus in our case, T−1 is well-defined. We call ? and ?′ equivalent if there
exists such a T . Clearly, one obtains an equivalence relation. The set of equivalence classes is then
the space of formal deformations of A:

Definition 6.1.4 (Equiv(?, ?′) and Def(A)) Let A be an associative algebra over R.
i.) An equivalence transformation T from an associative deformation ? to another associative de-

formation ?′ is an algebra isomorphism starting with id in the zeroth order. In the unital case
we additionally require T1 = 1.

ii.) The set of all equivalence transformations from ? to ?′ is denoted by

Equiv(?′, ?) =
{
T ∈ Iso

(
(AJλK, ?), (AJλK, ?′)

) ∣∣∣ cl(T ) = id
}
. (6.1.22)

iii.) Two associative deformations ? and ?′ of A are called equivalent if there exists an equivalence
transformation from ? to ?′.

iv.) The set of equivalence classes [?] of associative deformations, denoted by

Def(A) =
{

[?]
∣∣ ? is an associative deformation of A

}
, (6.1.23)

is called the deformation theory of A.

Remark 6.1.5 One way to interpret these definitions is that Equiv becomes a sub-groupoid of the
isomorphism groupoid Iso and Def encodes the orbits of this smaller groupoid.

As usual for groupoids, it is of great importance to understand the self-equivalences Equiv(?) =
Equiv(?, ?), i.e. those automorphisms of a deformation ? which are in addition equivalence transfor-
mations. Here the following proposition gives a quite satisfying answer in the case where Q ⊆ R. For
us this will always be a reasonable assumption.

Proposition 6.1.6 Let A be an associative algebra over a ring R ⊇ Q and let ? be a formal associative
deformation of A. Let T = id +

∑∞
r=1 λ

rTr be a formal series of R-linear endomorphisms of A.
i.) There is a unique logarithm

D =

∞∑
r=0

λrDr : AJλK −→ AJλK (6.1.24)

of T , i.e. T = exp(λD).
ii.) The map T is an automorphism of ? iff D is a derivation of ?.

Proof: We follow [27, Lem. 5]. The first part is clear since we can define D uniquely by the Taylor
series of the logarithm

λD = log(T ) = log

(
id +

∞∑
r=1

λrTr

)
=

∞∑
s=1

(−1)s+1

s

( ∞∑
r=1

λrTr

)s
,
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which is a well-defined formal power series. In fact, it is easy to see that it converges in the λ-adic
topology. Note that it is important to have Q ⊆ R and T0 = id. We denote the possible failure of D
being a derivation by

E(a, b) = D(a ? b)−D(a) ? b− a ? D(b),

where a, b ∈ AJλK. By induction we find constants ckrst ∈ Q such that

Dk(a ? b) =

k∑
`=0

(
k

`

)
D`(a) ? Dk−`(b) +

k−1∑
r,s,t=0

ckrstD
r(E(Ds(a), Dt(b))).

The precise combinatorics is not relevant for the following. We can now compute the possible failure
of T being an automorphism and get

T (a ? b) =
∞∑
k=0

λk

k!
Dk(a ? b)

=
∞∑
k=0

λk

k!

k∑
`=0

(
k

`

)
D`(a) ? Dk−`(b) +

∞∑
k=0

λk

k!

k−1∑
r,s,t=0

ckrstD
r(E(Ds(a), Dt(b)))

= T (a) ? T (b) +
∞∑
k=0

λk

k!

k−1∑
r,s,t=0

ckrstD
r(E(Ds(a), Dt(b))).

Hence T is an automorphism iff the second contribution vanishes. Now the second term will not
contribute to order zero and the first order in λ is just E(a, b). Hence T is an automorphism iff

E(a, b) = −
∞∑
k=2

λk

k!

k−1∑
r,s,t=0

ckrstD
r(E(Ds(a), Dt(b))). (∗)

We can now solve this equation by recursion: more precisely, we know that E is an RJλK-bilinear map
and hence

E ∈ HomRJλK(AJλK,AJλK; AJλK) = HomR(A,A; A)JλK,

where we have used the identification from Proposition 6.1.1. Now the space on the right hand side is
a complete metric space for the λ-adic metric. Moreover, E can be seen as a solution of a fixed point
equation E = φ(E) with a map φ determined by the right hand side of (∗). Since the right hand
side of (∗) starts with at least one more power of λ, the map φ is easily seen to be contracting for
the λ-adic metric: by Banach’s fixed point theorem we have a unique fixed point, which is of course
E = 0 since φ is linear, see also Exercise 6.4.5. Hence T is an automorphism iff E = 0 iff D is a
derivation. �

Remark 6.1.7 This proposition makes sense out of the heuristic argument that the exponential of a
derivation is an automorphism: in general we can not exponentiate maps easily. This requires always
an analytic argument. However, in the present case, the λ-adic topology can take care of that in a
rather trivial way.

In many cases the original algebra A is not only associative but also commutative. Of particular
interest are then the non-commutative deformations ?, but also commutative deformations are con-
sidered where µr(a, b) = µr(b, a) holds. The antisymmetric part of the first order of a deformation of
a commutative algebra is necessarily a Poisson bracket:
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Proposition 6.1.8 Let (A, µ0) be an associative and commutative algebra over R. Suppose that
µ =

∑∞
r=0 λ

rµr is an associative deformation of µ0. Then

{a, b} = µ1(a, b)− µ1(b, a) (6.1.25)

defines a Poisson bracket for A.

Proof: The antisymmetry and R-bilinearity is clear. For the Leibniz rule one considers the Leibniz
rule for the ?-commutator [a, b ? c]? = [a, b]? ? c + b ? [a, c]? in lowest non-trivial order. The Jacobi
identity then follows from the Jacobi identity of the ?-commutator by considering the second order
of [a, [b, c]?]? = [[a, b]?, c]? + [b, [a, c]?]?. Note that it is crucial that µ0 is commutative. �

Remark 6.1.9 (Quantization) This observation leads immediately to the question, whether or not
a given Poisson bracket { · , · } on a commutative algebra A actually occurs as the anti-symmetric part
of the first order of an associative deformation of A. In general, this is a highly non-trivial question,
depending on the details of the situation. Remarkably, for the algebra C∞(M) of smooth functions
on a smooth manifold M , Kontsevich was able to answer the question in the positive: every Poisson
bracket can be quantized into an associative product ?, see [77]. This is the basic task in deformation
quantization. Before Kontsevich’s ground-breaking results the existence and classfication of star
products for more particular Poisson manifolds, most notably symplectic manifolds, where found, see
e.g. [43,49,50,94], and classified, see [8, 9, 42,61,91,119].

Remark 6.1.10 In case of a commutative algebra A it is easy to see that equivalent deformations
lead to the same Poisson bracket, see Exercise 6.4.6. In this case, we denote the equivalence classes
of deformations ? of A for a fixed Poisson structure { · , · } by

Def(A, { · , · }) =
{

[?]
∣∣ ? induces the Poisson bracket { · , · }

}
. (6.1.26)

Note however, that the first order part of an equivalent deformation ?′ can very well differ from the
original deformation ?: the equivalence transformation may change the symmetric part.

Remark 6.1.11 There is of course no need to stop with associative algebras: one can equally well
speak about formal deformations of other types of algebras like e.g. Lie algebras. Then the cor-
responding condition would be an order-by-order evaluation of the Jacobi identity instead of the
associativity (6.1.18). But we also can deform e.g. Poisson brackets on an associative commutative
algebra as Poisson brackets.

We conclude this section with one typical and yet extremely important example of an associative
deformation. The construction has been used in the literature in many contexts at many places. The
first appearance is due to Gerstenhaber [55, Thm. 8], see also Exercise 6.4.8 for some slight variations
on this theme:

Proposition 6.1.12 Let (A, µ0) be an associative algebra over R where we assume Q ⊆ R. Let
D1, . . . , Dn, E1, . . . , En be pairwise commuting derivations of A. Then

a ? b = µ0 ◦ eλP (a⊗ b) with P =
n∑
k=1

Dn ⊗ En (6.1.27)

defines an associative deformation ? of µ0 where a, b ∈ AJλK.
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Proof: For convenience we sketch the proof. We identify the bilinear maps with linear ones on the
corresponding tensor products. Consider then the auxiliary maps

P12 = P ⊗ id, P13 =

n∑
k=1

Dn ⊗ id⊗En, and P23 = id⊗P,

viewed as endomorphisms of A ⊗ A ⊗ A. Since the maps Dk and Ek are assumed to be derivations
of µ0 we get the Leibniz rules

P ◦ (id⊗µ0) = (id⊗µ0) ◦ (P12 + P13) and P ◦ (µ0 ⊗ id) = (µ0 ⊗ id) ◦ (P13 + P23).

Moreover, since all the derivations commute pairwise, the three maps P12, P13, and P23 mutually
commute, too. These two facts allow to compute

a ? (b ? c) = µ0 ◦ (id⊗µ0) ◦ eλ(P12+P13+P23)(a⊗ b⊗ c),

and analogously for (a ? b) ? c. Since µ0 is associative, the claim follows. �

6.1.3 Hochschild Cohomology I

Following Gerstenhaber [52–56] we outline now briefly how the deformation problem of an associative
algebra can be formulated using the Hochschild cohomology of the algebra. The following results will
essentially not be needed and are thus only included for completeness. We will thus be rather brief and
omit many of the details and proofs. More complete discussions can be found e.g. in the textbooks [47]
or [116, Sect. 6.2]. The role of Hochschild cohomology beyond deformation theory is also discussed
in e.g. the monographs [84], [59, Sect. 8.4], [36, Chap. IX], [118, Chap. 9], or [66, Sect. 6.11].

First we recall the definition of the Hochschild complex of A:

Definition 6.1.13 (Hochschild complex I) Let A be an associative algebra over R.
i.) The Hochschild complex HC•(A,A) of A is

HCn(A,A) = HomR

(
A, . . . ,A︸ ︷︷ ︸
n times

; A
)

(6.1.28)

with n-linear maps from n copies of A with values in A again. For n = 0 we set HC0(A,A) = A.
ii.) The Hochschild differential δ : HC•(A,A) −→ HC•+1(A,A) is defined by

(δφ)(a1, . . . , ak+1)

= a1φ(a2, . . . , ak+1) +
k∑
r=1

(−1)rφ(a1, . . . , arar+1, . . . , ak+1) + (−1)k+1φ(a1, . . . , ak)ak+1,

(6.1.29)

where a1, . . . , ak+1 ∈ A and φ ∈ HCk(A,A).
iii.) The Hochschild cohomology of A is defined by

HH•(A,A) =
∞⊕
k=0

HHk(A,A) with HHk(A,A) =
ker
(
δ
∣∣
HCk(A,A)

)
δ(HCk−1(A,A))

. (6.1.30)

Of course, we first have to show that δ2 = 0 in order to have a well-defined cohomology theory.
We postpone this for a moment and investigate the lowest Hochschild cohomologies directly. For
a ∈ HC0(A,A) = A we have

(δa)(b) = ba− ab = − ad(a)b (6.1.31)
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for b ∈ A. Hence δa = 0 iff a is central. Since there are no δ-exact terms in this degree we obtain

HH0(A,A) = Z(A). (6.1.32)

For k = 1 we have
(δD)(a, b) = aD(b)−D(ab) +D(a)b (6.1.33)

for D ∈ HC1(A,A) = EndR(A) and a, b ∈ A. Thus we have δD = 0 iff D is a derivation. With
(6.1.31) it follows that the first Hochschild cohomology is given by the quotient

HH1(A,A) =
Der(A)

InnDer(A)
= OutDer(A), (6.1.34)

i.e. the outer derivations of A.
Instead of directly proving that δ is indeed a differential, i.e. δ2 = 0, we follow Gerstenhaber [52]

and introduce some more structure on the Hochschild complex. The key observation is now that we
have a super Lie algebra structure on HC•(A,A) if we shift the degree by one:

Definition 6.1.14 (Gerstenhaber bracket) Let A be a module over a ring R. Moreover, let φ ∈
HCk+1(A,A) and ψ ∈ HC`+1(A,A).
i.) One defines the degree of φ to be deg(φ) = k.
ii.) Let i = 0, . . . , k. Then the insertion of ψ into φ after the i-th position is the map φ ◦i ψ ∈

HCk+`+1(A,A) defined by

(φ ◦i ψ)(a1, . . . , ak+`+1) = φ(a1, . . . , ai, ψ(ai+1, . . . , ai+`+1), ai+`+2, . . . , ak+`+1), (6.1.35)

where a1, . . . , ak+`+1 ∈ A.
iii.) The Gerstenhaber product φ ◦ ψ ∈ HCk+`+1(A,A) of φ and ψ is defined by

φ ◦ ψ =

deg(φ)∑
i=0

(−1)ideg(ψ)φ ◦i ψ. (6.1.36)

iv.) The Gerstenhaber bracket [φ, ψ] ∈ HCk+`+1(A,A) of φ and ψ is defined by

[φ, ψ] = φ ◦ ψ − (−1)deg(φ) deg(ψ)ψ ◦ φ. (6.1.37)

It is clear that the Gerstenhaber product and the Gerstenhaber bracket are graded with respect
to the shifted degree deg but not with respect to the original grading of HC•(A,A) by the number
of arguments. It turns out that the Gerstenhaber bracket is a graded Lie bracket even though the
Gerstenhaber product is not associative:

Proposition 6.1.15 Let A be a module over R.
i.) The Gerstenhaber product is not associative but satisfies the identity

(φ ◦ ψ) ◦ χ− φ ◦ (ψ ◦ χ) = (−1)deg(ψ) deg(χ)((φ ◦ χ) ◦ ψ − φ ◦ (χ ◦ ψ)) (6.1.38)

for homogeneous elements φ, ψ, χ ∈ HC•(A,A).
ii.) The Gerstenhaber bracket is a graded Lie bracket with respect to deg, i.e. we have graded

antisymmetry and the graded Jacobi identity

[φ, [ψ, χ]] = [[φ, ψ], χ] + (−1)deg(φ) deg(ψ)[ψ, [φ, χ]] (6.1.39)

for homogeneous elements φ, ψ, χ ∈ HC•(A,A).
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Proof: We omit the proof which can be found at many places in the literature. The original and
quite direct approach of Gerstenhaber can be found in [52] see also [116, Sect. 6.2] and Exercise 6.4.9.
Now one has more elaborate techniques to minimize the actual computations needed to show the
identity (6.1.38), see e.g. the operadic approaches in [84]. �

The relevance of the Gerstenhaber bracket comes now from the observation that a bilinear map
µ : A × A −→ A, which we view as element in HC2(A,A) of degree deg(µ) = 1, is an associative
multiplication iff µ ◦ µ = 0. Indeed, an explicit evaluation of (6.1.36) shows that

(µ ◦ µ)(a, b, c) =
1∑
i=0

(−1)i(µ ◦i µ)(a, b, c) = µ(µ(a, b), c)− µ(a, µ(b, c)) (6.1.40)

for a, b, c ∈ A. If we assume 1
2 ∈ R then this is equivalent to the condition

[µ, µ] = 0, (6.1.41)

since deg(µ) = 1 and thus the graded commutator becomes [µ, µ] = µ ◦ µ+ µ ◦ µ = 2µ ◦ µ.
Now suppose that A is not just an R-module but even an associative algebra with multiplication

µ. Then the Hochschild differential δ can be written as follows:

Lemma 6.1.16 Let A be an associative algebra over R.
i.) One has

δφ = (−1)deg(φ)[µ, φ] = −[φ, µ] (6.1.42)

for all φ ∈ HC•(A,A).
ii.) One has δ2 = 0.

Proof: The first statement is just a direct evaluation. Then the second is clear from the graded
Jacobi identity and [µ, µ] = 0. �

Remark 6.1.17 This gives a more conceptual proof of δ2 = 0. We have chosen the traditional
definition for δ. From the point of view of Lemma 6.1.16 it would perhaps be more natural to define δ
as [µ, · ] causing some additional signs in (6.1.29). Of course, the cohomologies will not change at all.
Moreover, the Hochschild differential satisfies now a Leibniz rule with respect to the Gerstenhaber
bracket since it is even an inner derivation. Hence the bracket is well-defined also in the Hochschild
cohomology HH•(A,A) which therefore becomes a graded Lie algebra as well.

We will now use the Hochschild cohomology to describe obstructions for associative deformations
of a given product µ0 on A. For simplicity we assume 1

2 ∈ R from now on. Then the fundamental
idea is the following: if µ0 is associative and µ1, µ2, . . . ∈ HC2(A,A) are given then

µ = µ0 + λµ1 + λ2µ2 + · · · ∈ HC2(A,A)JλK (6.1.43)

is a formal associative deformation iff [µ, µ] = 0. Expanding this in powers of λ we get the associativity
conditions

0 =
k∑
r=0

[µr, µk−r] = [µ0, µk] +
k−1∑
r=1

[µr, µk−r] + [µk, µ0] = −2δµk +
k−1∑
r=1

[µr, µk−r] (6.1.44)

in each order k ≥ 1. Note that for µi, µj ∈ HC2(A,A) the Gerstenhaber bracket is symmetric
[µi, µj ] = [µj , µi].
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Heading for a recursive construction this means that for already found µ1, . . . , µk−1 we want to
find µk such that

δµk =
1

2

k−1∑
r=1

[µr, µk−r]. (6.1.45)

The obvious necessary condition to find a solution of this equation is that the right hand side is
δ-closed. This is always the case since for any µ, whether associative or not, we have [µ, [µ, µ]] = 0
by the graded Jacobi identity. Now if µ was associative up to order λk−1 then the lowest non-trivial
term in this cubic equation is

0 =

k∑
r=0

[µ0, [µr, µk−r]] = [µ0, [µ0, µk]] +

k−1∑
r=1

[µ0, [µr, µk−r]] + [µ0, [µk, µ0]]. (6.1.46)

Since [µk, µ0] = [µ0, µk] and [µ0, [µ0, · ]] = 0 by the associativity of µ0 we end up with the middle
part being zero. But this is precisely

δ

k−1∑
r=1

[µr, µk−r] = 0. (6.1.47)

Hence the necessary condition for (6.1.45) is fulfilled and we are left with a cohomological problem:

Proposition 6.1.18 Let A be an associative algebra over R with product µ0. Moreover, assume that
µ(k−1) = µ0 + λµ1 + · · ·+ λk−1µk−1 with µ1, . . . , µk−1 ∈ HC2(A,A) is an associative deformation of
µ0 up to order k − 1 where k ∈ N.
i.) The error term for associativity in order k is δ-closed, i.e.

δ

k−1∑
r=1

[µr, µk−r] = 0. (6.1.48)

ii.) There exists a µk ∈ HC2(A,A) such that µ(k) = µ(k−1) + λkµk is associative up to order k iff
the error term is exact, i.e.

δµk =
1

2

k−1∑
r=1

[µr, µk−r]. (6.1.49)

Thus the obstruction for associative deformations of µ0 is controlled by the third Hochschild cohomol-
ogy HH3(A,A). Now in typical examples the Hochschild cohomology is known to be nontrivial: thus
we do have to expect obstructions. From this point of view the above analysis is rather disappointing
since it only tells us that there might be problems in continuing a deformation up to the next order.
The recursive approach will of course not say anything about absolute obstructions since it might or
might not happen that the error term is exact.

In a second step we want to show how the question of equivalence of formal deformations can
be formulated as a cohomological problem. To this end, suppose that µ = µ0 + λµ1 + · · · and
µ̃ = µ0 + λµ̃1 + · · · are two associative deformations of the same classical limit µ0. If µ and µ̃ are
equivalent up to order k− 1 then there is an equivalence transformation T = id +λT1 + · · · such that
the new multiplication µ′(a, b) = T−1µ(Ta, Tb) coincides with µ̃ up to order k − 1 and is equivalent,
by construction, to µ up to all orders. Thus we can assume that µ̃ is already of this form: we have
µ̃r = µr for all r = 1, . . . , k− 1. Then the question is whether one can find an equivalence T between
µ and µ̃ up to one order higher. The natural Ansatz would be to consider a T = id +λkTk + · · ·
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to accomplish this. We have T−1 = id−λkTk + · · · by the usual geometric series. Evaluating the
equivalence condition in k-th order gives

µ̃k(a, b) = −Tk(µ0(a, b)) + µk(a, b) + µ0(Tka, b) + µ0(a, Tkb) (6.1.50)

for a, b ∈ A. Again, we can rephrase this as

δTk = µ̃k − µk. (6.1.51)

With a similar argument as above one shows that the difference µ̃k−µk is necessarily closed whenever
µ and µ̃ are both associative deformations which coincide up to order k − 1. Hence we again have a
cohomological problem:

Proposition 6.1.19 Let µ and µ̃ be associative deformations of an associative algebra A over R
which coincide up to order k − 1.

i.) The difference µ̃k − µk is δ-closed.
ii.) There exists an equivalence transformation between µ and µ̃ up to order k of the form T =

id +λkTk + · · · iff the Hochschild cohomology class of µ̃k − µk is trivial.

Thus the second Hochschild cohomology HH2(A,A) is the source of obstructions to equivalence of
deformations. However, the above proposition will not directly give a classification of inequivalent
deformations as there might be other equivalence transformations T up to order k which are not of
the specified form: lower order terms can very well contribute to establish an equivalence which can
not be achieved by transformations of the form T = id +λkTk + · · · . However, for the start point
k = 1 the above Proposition gives a complete classification of the possible inequivalent infinitesimal
deformations: they are parameterized by the second Hochschild cohomology.

Again, in most relevant examples the second Hochschild cohomology is nontrivial and hence there
is the chance to get some non-equivalent deformations. Note that if HH2(A,A) = {0} is trivial then
any two deformations would be equivalent and thus equivalent to the undeformed multiplication µ0.
Such an algebra would be absolutely rigid.

6.1.4 Hermitian Deformations

In a next step we specialize deformation theory to ∗-algebras. Thus let R be an ordered ring with
C = R(i) as usual. Then the first important observation is that RJλK is still ordered, see Example 1.1.3,
ii.). Thus we stay within the correct framework of algebras over ordered rings when we pass to formal
deformations. Of course we have canonically (RJλK)(i) = CJλK.

Now if A is a ∗-algebra over R then we can deform two algebraic structures, the multiplication
and the ∗-involution. If we denote the ∗-involution by I0 : A −→ A then a deformation of I0 would
be a CJλK-antilinear map

I = I0 + λI1 + · · · =
∞∑
r=0

λrIr (6.1.52)

with corresponding antilinear maps Ir : A −→ A. This leads to the following definition [24]:

Definition 6.1.20 (Hermitian deformation) Let (A, µ0, I0) be a ∗-algebra over C = R(i) with an
ordered ring R.

i.) A ∗-algebra deformation (AJλK, µ, I) of (A, µ0, I0) is a ∗-algebra over CJλK such that cl(µ) = µ0

and cl(I) = I0.
ii.) A Hermitian deformation of A is a ∗-algebra deformation where in addition I = I0, i.e. the

∗-involution stays undeformed.
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Note that a minor adaption of Proposition 6.1.1 shows that CJλK-antilinear maps I : AJλK −→ AJλK
are necessarily of the form (6.1.52) with C-antilinear maps Ir. Thus we can always speak of the zeroth
order of I.

If the reference to ? is clear from the context, we abbreviate the deformed ∗-algebra also by

AAA =
(
AJλK, ?

)
. (6.1.53)

Moreover, by some slight abuse of language we will speak of ? as the Hermitian deformation of A.

Remark 6.1.21 Another way to phrase the definition is to say that the classical limit map

cl : (AJλK, µ, I) −→ (A, µ0, I0) (6.1.54)

is a ∗-homomorphism of ∗-algebras along the ring morphism cl : CJλK −→ C: the ∗-homomorphism
property of cl means

cl(za+ wb) = z0a0 + w0b0 = cl(z)cl(a) + cl(w)cl(b) (6.1.55)
cl(µ(a, b)) = µ0(a0, b0) = cl(µ)(cl(a), cl(b)) (6.1.56)

cl(I(a)) = I0(a0) = cl(I)(cl(a)) (6.1.57)

for all a, b ∈ AJλK and z, w ∈ CJλK. We will make constantly use of these facts without further
mentioning. In particular, the classical limit of Hermitian, normal, unitary, or isometric elements,
respectively, are again Hermitian, normal, unitary, or isometric, respectively. Also the classical limit
of projections are projections again.

Remark 6.1.22 Hermitian deformations are sometimes also called symmetric deformations in the
context of star products [5]. There relevance comes e.g. from quantization theory: here we want to
keep the fact that certain elements (the Hermitian ones) of an observable algebra are observables in
the physical sense: both in the classical, i.e. undeformed case, and in the quantum, i.e. deformed case.
In such approaches to quantization one of the main advantages is that we have the same underlying
space, namely AJλK, for the observable algebra: thus we can directly and trivially identify the physical
meaning of elements in AJλK by their classical interpretation. It is only the product which changes
when passing from classical to quantum. Of course, such an interpretation is only possible for a
Hermitian deformation, a ∗-algebra deformation would not be sufficient.

Remark 6.1.23 (Hochschild cohomology of ∗-algebras) It is fairly straightforward to extend
the ∗-involution of A to the Hochschild complex of A. This way, one can extend the previous
cohomological discussion of the deformation problem also to Hermitian deformations, see e.g. [24]
and Exercise 6.4.13. However, we shall not take this point of view here.

In the following we will mainly be interested in Hermitian deformations. This allows to write
again a 7→ a∗ for the involution and abandon the more clumsy notation I0. Since from the definition
of CJλK it is clear that

λ = λ, (6.1.58)

an associative deformation µ is Hermitian iff

µr(a, b)
∗ = µr(b

∗, a∗) (6.1.59)

holds for all a, b ∈ A and r ∈ N.
The following technical lemma shows that not only the classical limit of certain types of elements is

preserved, but we can go the other direction and deform squares and unitaries [23, Lem. 2.1, Cor. 2.2]:
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Lemma 6.1.24 Let ? be a Hermitian deformation of a ∗-algebra A over C = R(i) and assume 1
2 ∈ R.

i.) Let b0 ∈ A be invertible and let a =
∑∞

r=0 λ
rar = a∗ ∈ AJλK with a0 = b∗0b0 be given. Then

there exist elements b1, b2, . . . ∈ A such that

a = b∗ ? b, (6.1.60)

where b =
∑∞

r=0 λ
rbr.

ii.) Let u0 ∈ A be unitary. Then there exists a unitary u ∈ AAA with cl(u) = u0.

Proof: We construct b recursively. Suppose that b0, . . . , bk−1 ∈ A are found in such a way that
b(k−1) = b0 + · · · + λk−1bk−1 satisfies a − (b(k−1))∗ ? b(k−1) = λkck + · · · . Since a = a∗ is Hermitian
also ck = c∗k is Hermitian. We want to find bk such that the corresponding b(k) = b(k−1) + λkbk has a
square (b(k))∗ ? b(k) which coincides with a up to one order higher, i.e. up to order λk+1. Collecting
the terms in order λk gives the necessary and sufficient condition b∗kb0 + b∗0bk = ck. This equation can
now be solved by bk = 1

2(ckb
−1
0 )∗. Induction gives then the first part. The second is clear as we can

apply the first part to 1 = u∗0u0. �

Note, however, that in general neither b nor u are uniquely determined: if v =
∑∞

r=0 λ
rvr is

unitary with respect to ? then v ? b also solves a = (v ? b)∗ ? (v ? b). In particular, there will be many
unitary elements v starting with v0 = 1. This also gives a large freedom in the second case, see also
Exercise 6.4.14.

Having Hermitian deformations ? and ?′ of A we can refine our notion of equivalence to ∗-
equivalence: two Hermitian deformations ? and ?′ are called ∗-equivalent if there is an equivalence
transformation T = id +

∑∞
r=1 λ

rTr with (6.1.21) such that in addition

T (a∗) = T (a)∗ (6.1.61)

holds for all a ∈ AJλK. Equivalently, this means Tr(a∗) = Tr(a)∗ for all a ∈ A and r ∈ N. The set of
all ∗-equivalence transformations is then denoted by Equiv∗(?′, ?). Again, we obtain an equivalence
relation. The corresponding set of equivalence classes

Def∗(A) =
{

[?]
∣∣ ? is a Hermitian deformation of A

}
(6.1.62)

is called the Hermitian deformation theory of the ∗-algebra A. Forgetting about the ∗-involution we
get a well-defined map

Def∗(A) −→ Def(A) (6.1.63)

for every ∗-algebra. Among Hermitian deformations the orbits of the two groupoids Equiv and Equiv∗

coincide [27, Cor. 4]:

Proposition 6.1.25 Let A be a ∗-algebra over C = R(i) with Q ⊆ R. Then two Hermitian defor-
mations ? and ?′ of A are equivalent iff they are ∗-equivalent. Hence the map (6.1.63) becomes an
inclusion

Def∗(A) ⊆ Def(A). (6.1.64)

Proof: Every ∗-equivalence is an equivalence. Thus let S be an equivalence from ? to ?′, i.e. S(a?b) =
S(a)?′S(b). Define a† = S−1(S(a)∗) which yields a ∗-involution for ? which coincides with the original
∗-involution in zeroth order. Thus there is a CJλK-linear map T = id +λT1 + · · · with a† = T (a∗).
Since both ∗ and † are anti-automorphisms, T is an automorphism of ?. Hence Proposition 6.1.6
shows that T 1/2 can be defined and is still an automorphism of ?. By a straightforward computation
one verifies that ST 1/2 is the ∗-equivalence from ? to ?′ we are looking for. �
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For C∗-algebras one has a canonical decomposition of an automorphism into a ∗-automorphism
and an exponential of an anti-Hermitian derivation. This kind of polar decomposition uses very much
the strong analytic structure of C∗-algebras, see e.g. [103, Thm. 4.1.19] or [93, Thm. 7.1]. Moreover,
in the commutative case every automorphism is a ∗-automorphism directly: there are no derivations
of the algebra of continuous functions on a compact Hausdorff space. This feature is shared by other
classes of ∗-algebras like e.g. the smooth functions on a manifold, see again (5.2.51). Surprisingly,
this feature is again rigid under Hermitian deformation in the following sense [29, Prop. 8.8]:

Proposition 6.1.26 Let A be a ∗-algebra over C = R(i) with Q ⊆ R such that every automorphism
of A is a ∗-automorphism. Let ? be a Hermitian deformation of A. Then every automorphism
Φ ∈ Aut(AAA) has a unique factorization

Φ = eiλD ◦Ψ (6.1.65)

with D ∈ -Der∗ (AAA) and Ψ ∈ Aut∗(AAA).

Proof: We know that Φ = Φ0 +λΦ1 + · · · from Proposition 6.1.1. Since Φ is an automorphism of ?,
the zeroth order Φ0 is invertible and an automorphism of the undeformed product, i.e. Φ0 ∈ Aut(A).
Hence we can write Φ = T ◦ Φ0 with T starting with id in zeroth order. Define now a ?′ b =
Φ0(Φ−1

0 (a) ? Φ−1
0 (b)) which gives again a Hermitian deformation since Φ0 is even a ∗-automorphism

of the undeformed product by assumption. It follows that T is an equivalence from ? to ?′. By
Proposition 6.1.25 we find even a ∗-equivalence T̃ from ?′ to ?. Thus Ψ(1) = Φ0◦T̃ is a ∗-automorphism
of ?. Hence we can factorize the automorphism Φ into Ψ(1) and some automorphism starting with the
identity. By Proposition 6.1.6 this composition has a logarithm and hence we find a derivationD(1) of ?
with Φ = eiλD(1) ◦Ψ(1). The derivation D(1) can be decomposed into ∗-derivations D(1) = D

(1)
1 +iD

(1)
2 .

By the Baker-Campbell-Hausdorff formula we find a derivation D(2) with eiλD(1) ◦ eλD
(1)
2 = eiλD(2)

in such a way that the imaginary part of D(2) is of one order higher than the one in D
(1)
2 . By

induction, we can split off successively ∗-automorphisms eλD
(k)
2 such that their infinite product gives

the factorization (6.1.65). �

The basic example of a deformation by commuting derivations can also be turned into a Hermitian
deformation by specifying the derivations as follows:

Example 6.1.27 Let A be a ∗-algebra over C = R(i) where we assume Q ⊆ R. Moreover, let
D1, . . . , Dn be pairwise commuting Hermitian derivations. Then the associative deformation

a ? b = µ0 ◦ eiλPπ(a⊗ b), (6.1.66)

where

Pπ =

n∑
r,s=1

πrsDr ⊗ Ds (6.1.67)

with coefficients πrs ∈ C is a Hermitian deformation if the matrix π ∈ Mn(C) is an anti-Hermitian
matrix. This is clear since we have

(τ ◦ (∗ ⊗ ∗))(Pπ(a⊗ b)) =
n∑

r,s=1

πrs(Dsb)
∗ ⊗ (Dra)∗ =

 n∑
r,s=1

πrsDs ⊗ Dr

(b∗ ⊗ a∗) = Pπ∗(a
∗ ⊗ b∗)

with the canonical flip τ(a⊗ b) = b⊗a as usual. Together with the sign from the complex conjugation
of i in the exponent, the claim follows at once. This way, we get a large class of Hermitian deformations,
most notably examples from deformation quantization.
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Example 6.1.28 A slight variation of the previous example is obtained as follows. Suppose that
D1, . . . , Dn are pairwise commuting derivations such that also Dr commutes with D∗s for all r, s =
1, . . . , n. Then the deformation

a ? b = µ0 ◦ e2λPg(a⊗ b) with Pg =

n∑
r,s=1

grsDr ⊗ D∗s (6.1.68)

is a Hermitian deformation whenever the matrix g ∈ Mn(C) is Hermitian. Again, the proof relies on
the observation that

τ ◦ (∗ ⊗ ∗) ◦ Pg = Pg∗ ◦ τ ◦ (∗ ⊗ ∗). (6.1.69)

One can alternatively show that this deformation is of the form (6.1.66) by decomposing Dr =

D
(1)
r + iD

(2)
r into real and imaginary parts which are then Hermitian derivations.

We conclude this section with the observation that Hermitian deformations behave well with
respect to the property (K):

Proposition 6.1.29 (Rigidity of (K)) Let A be a ∗-algebra over C = R(i) which satisfies property
(K). Then any Hermitian deformation ? of A still satisfies (K).

Proof: This is obvious since first Mn(A)JλK = Mn(AJλK) and hence ? yields a Hermitian deforma-
tion of Mn(A) as well. The invertibility of 1+A∗ ? A for A ∈ Mn(AAA) is then decided in zeroth order
where we can use (K) for the undeformed algebra. �

6.1.5 Deformation of Projections

Let ? be an associative deformation of an associative algebra A. We know that an idempotent element
e ∈ AJλK with respect to ? has a classical limit e0 = cl(e) which is idempotent for the undeformed
product, see also Remark 6.1.21. The following proposition shows that we can also deform classically
idempotent elements into idempotents, see [51, Eq. (6.1.4)] as well as [46,57,100], and determine the
image of the projections [23]:

Proposition 6.1.30 Let ? be an associative deformation of an associative algebra A over a ring R.
i.) Let n,m ∈ N and suppose e ∈ Mn(AAA) and f ∈ Mm(AAA) are idempotent with cl(e) = e0 and

cl(f) = f0. Then the map

I : Mn×m(A)JλK 3 A 7→ e ? (e0Af0) ? f ∈ Mn×m(A)JλK (6.1.70)

is of the form

I =
∞∑
r=0

λrIr (6.1.71)

with C-linear maps Ir : Mn×m(A) −→ Mn×m(A) such that I0 is the projection I0(A) = e0Af0.
ii.) The map I restricts to a CJλK-linear isomorphism

I : (e0Mn×m(A)f0)JλK −→ e ?Mn×m(AAA) ? f. (6.1.72)

of CJλK-modules.
iii.) The map I induces a formal associative deformation of the subalgebra e0Mn(A)e0 of Mn(A).
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iv.) If e0 ∈ A is idempotent then there exist e1, e2, . . . ∈ A such that e =
∑∞

r=0 λ
rer ∈ AJλK is

idempotent with respect to ?. If A is unital and Q ⊆ R the element

e =
1

2
+

(
e0 −

1

2

)
?

1
?
√

1 + 4(e0 ? e0 − e0)
(6.1.73)

satisfies cl(e) = e0 and e ? e = e.
v.) If in addition R is an ordered ring, A is a ∗-algebra over C = R(i), and ? is a Hermitian

deformation, the deformation (6.1.73) of a projection e0 = e2
0 = e∗0 gives a projection in AAA. For

a projection P = P ∗ = P ? P ∈ Mn(AAA) the subalgebra P ? Mn(AAA) ? P is a ∗-subalgebra and
induces a Hermitian deformation of P0Mn(A)P0.

Proof: Since I is RJλK-linear, it is a formal series of R-linear maps. The classical limit of I is now
given by cl(I(A0)) = cl(e? (e0A0f0)?f0) = cl(e)(e0A0f0)cl(f) = e2

0A0f
2
0 = e0A0f0 since e0 and f0 are

idempotent. This shows the first part. For the second part we note that I restricted to e0Mn×m(A)f0

is injective already in zeroth order since I0 is the identity on this submodule. But then the RJλK-linear
extension is still injective. Thus let B ∈ e ? Mn×m(AAA) ? f be given. Then e ? B ? f = B implies
e0B0f0 = B0. Hence B0 ∈ e0Mn×m(A)f0 and thus I(B0)− B ∈ e ?Mn×m(AAA) ? f vanishes in zeroth
order. Repeating this inductively gives the surjectivity of I. The third part is then a consequence
since for an idempotent e ∈ Mn(AAA) the subset e ? Mn(A) ? e is always a subalgebra. Thus we can
pull-back the product by I to (e0Mn(A)e0)JλK. Since I is the identity on this subspace in zeroth
order, we get a deformation of the original product of e0Mn(A)e0. For the fourth part let e2

0 = e0 be
given. Following [100] we assume that we have e0, . . . , ek ∈ Mn(A) such that e(k) = e0 + · · · + λkek
satisfies e(k) ? e(k) = e(k) + λk+1bk+1 + · · · . Clearly, for k = 0 this is trivially fulfilled. Since e(k)

commutes with e(k) ? e(k) − e(k) with respect to ?, we conclude that e0 commutes with bk+1 with
respect to the original product. Hence setting

ek+1 = −e0bk+1 − bk+1e0 + bk+1

yields the desired correction term such that e(k+1) = e(k) + λk+1ek+1 is an idempotent up to terms of
order λk+2. By induction we find an idempotent e with respect to ? deforming e0. This recursion sim-
plifies in the case Q ⊆ R since then the formal Taylor series of the ?-square root is well-defined. With
e according to (6.1.73), the verification e?e = e is then a simple computation, see also Exercise 6.4.21.
In case of a ∗-algebra and e∗0 = e0 we also get e∗ = e as one can see directly from the formula. Note
that the recursive construction will also yield a projection directly. Then the last statement is clear.�

The importance of the explicit formula can hardly be overestimated. We see e.g. that the original
idempotent e0 and the ?-idempotent e will ?-commute

e ? e0 = e0 ? e, (6.1.74)

since e is approximated in the λ-adic topology by polynomials in e0. We will come back to the
deformation of idempotents when we study K0-theory.

For later use we formulate the following special case of the above construction:

Corollary 6.1.31 Let ? be an associative deformation of an associative algebra A over R. Suppose
e ∈ Mn(AAA) is an idempotent with cl(e) = e0. Then

I : AnJλK 3 x 7→ e ? (e0x) ∈ AnJλK (6.1.75)

is of the form

I =

∞∑
r=0

λrIr (6.1.76)
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with R-linear maps Ir : An −→ An such that I0 is the projection I0(A) = e0A. In particular, the
restriction

I : e0A
nJλK −→ e ? AnJλK (6.1.77)

is an isomorphism.

6.2 Deformation of States

After deforming the ∗-algebra structure we are now interested in deformations of positive functionals
and of states. In general, this might not be possible. However, we will find many classes of examples
of Hermitian deformations which behave well also with respect to aspects of positivity, among which
we find all Hermitian star products from deformation quantization. For such algebras we are able
to study the behaviour of the important property (H), which turns out to be rigid. As a first
application we will relate the GNS representations of deformed positive functionals to the original
GNS representation.

6.2.1 Completely Positive Deformations

In general, Hermitian deformations already capture most of the interesting structure of the deforma-
tion theory of ∗-algebras. However, the aspect of positivity is not yet fully implemented. We first
note that the classical limit of a positive functional is again positive:

Proposition 6.2.1 Let ? be a Hermitian deformation of a ∗-algebra A over C = R(i). If ω : AAA −→
CJλK is positive with respect to ?, i.e. if ω(a∗ ? a) ≥ 0 for all a ∈ AAA, then ω0 = cl(ω) is positive for
the undeformed algebra.

Proof: We know ω =
∑∞

r=0 λ
rωr with C-linear functionals ωr : A −→ C. If we write ? = µ0 + λµ1 +

· · · and consider a ∈ A then

ω(a∗ ? a) = ω0(a∗a) + λ
(
ω0(µ1(a∗, a)) + ω1(a∗a)

)
+ · · · .

Hence ω(a∗ ? a) ≥ 0 implies ω0(a∗a) ≥ 0 by the very definition of the ring ordering of RJλK. �

The difficulty with the above observation is that the converse is not necessarily true: if ω0(a∗a) = 0
then the question of positivity ω0(a∗ ?a) is decided in the first order r where ω0(µr(a

∗, a)) is non-zero.
For this combination one typically can not say much. In fact, it may fail to be positive. This becomes
most visible in the following example from deformation quantization [18, Sect. 2]:

Example 6.2.2 (Weyl product and positivity) Consider the ∗-algebra C∞(R2) of smooth func-
tions on R2 with canonical coordinates (q, p). We deform this by the Weyl product

f ?Weyl g = µ0 ◦ e
iλ
2
P (f ⊗ g) with P =

∂

∂q
⊗ ∂

∂p
− ∂

∂p
⊗ ∂

∂q
. (6.2.1)

Clearly, this is a Hermitian deformation as it is a particular case of Example 6.1.27. Now, classically,
the δ-functional δ : C∞(R2) 3 f 7→ f(0) ∈ C is positive since

δ(ff) = f(0)f(0) ≥ 0. (6.2.2)

Remarkably, this will fail for ?Weyl. Taking e.g. the Hamiltonian H = 1
2(p2 + q2) of the harmonic

oscillator one has H = H and

δ(H ?Weyl H) = −λ
2

4
< 0. (6.2.3)

Since this is strictly negative, δ is not a positive functional for ?Weyl anymore.
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Thus we can not expect that positive functionals of the undeformed ∗-algebra stay positive for a
Hermitian deformation. However, in the situation of Proposition 6.2.1 we considered positive linear
functionals ω of the deformed algebra which might not just consist of a classical contribution ω0 alone:
the higher orders ω1, ω2, . . . can take care of the possible failure of ω0 being positive directly. This
motivates now the following definitions [24,30]:

Definition 6.2.3 (Completely positive deformation) Let A be a ∗-algebra over C = R(i) and
let ? be a Hermitian deformation of A.

i.) The deformation ? is called positive if for every positive linear functional ω0 : A −→ C one finds
higher orders ω1, ω2, . . . such that

ω =

∞∑
r=0

λrωr : AAA −→ CJλK (6.2.4)

is positive with respect to ?.
ii.) The deformation ? is completely positive, if the induced deformations ? for Mn(A) are positive

for all n ∈ N.
iii.) The deformation ? is called strongly positive if every classically positive linear functional ω0 of

A is positive with respect to ?.

The above example shows that the Weyl product is not a strongly positive deformation. To decide
whether the Weyl product is actually a positive deformation is a much more subtle task: we have
to find correction terms ω1, ω2, . . . for a given classically positive ω0. Since we are dealing now with
inequalities there seems to be no powerful cohomological description of the problem as for the equalities
needed for associativity etc. We come back to the question of the existence of such deformations in
Section 6.2.3.

Remark 6.2.4 (Every classical state is a classical limit) One way to phrase this in the context
of deformation quantization is that one wants every classical state to appear as the classical limit of
a (possibly highly non-unique) quantum state. From a physical point of view this is of course highly
desirable as anything else would contradict the idea that quantum theory is the more fundamental
one: if there are classical states not accessible by quantum physics then the classical theory can hardly
be called a limiting theory of the quantum theory. Thus we anticipate already here that reasonable
deformations of ∗-algebras should be positive.

Remark 6.2.5 (Non-uniqueness of deformations) If we can deform a positive functional ω0

then the possible deformations will typically not be unique: given ω with cl(ω) = ω0 and any other
positive functional µ : AAA −→ CJλK the convex combination ω + λµ is still positive and has the same
classical limit. If ω0 was a state, ω0(1) = 1, then we can normalize ω+λµ again to become a state as
well since ω(1) + λµ(1) starts with 1 in zeroth order. Hence this number in CJλK is invertible again.
Due to this effect it seems hopeless to classify deformations of ω0 without further restrictions.

Remark 6.2.6 If A has sufficiently many positive linear functionals then every positive deformation
? of A yields a ∗-algebra AAA which still has sufficiently many positive linear functionals. In particular,
the nice consequences from e.g. Corollary 1.2.10 or Proposition 2.1.18 apply to any such deformation.

Remark 6.2.7 (∗-Equivalence of positive deformations) Let ? and ?′ be ∗-equivalent Hermi-
tian deformations of a ∗-algebra A over C = R(i) via a ∗-equivalence transformation S = id +λS1+· · · .
Then ? is (completely) positive iff ?′ is (completely) positive. Indeed, given a positive linear functional
ω = ω0 + λω1 + · · · of (AJλK, ?) we obtain a positive linear functional

ω′ = ω ◦ S = ω0 + λ(ω0 ◦ S1 + ω1) + · · · (6.2.5)
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with respect to ?′ which has the same classical limit ω0. This way we find a deformation of ω0

with respect to ?′ if we have one with respect to ?. Since S is invertible, the situation is obviously
symmetric and works for matrices Mn(A) as well. Hence we can consider the ∗-equivalence classes of
completely positive deformations

Defstr(A) =
{

[?] ∈ Def∗(A)
∣∣ ? is completely positive

}
⊆ Def∗(A) (6.2.6)

of the ∗-algebra A. Note, however, that the notion of strongly positive deformation is typically not
invariant under ∗-equivalences. This is e.g. the case in deformation quantization where the Weyl
star product is not strongly positive but positive according to Theorem 6.2.19 while a different star
product, the Wick star product, will turn out to be strongly positive.

In a next step we provide some first little tools: it will be sufficient to check the positivity of ω
on elements a0 ∈ A without higher orders in λ, see [15, Lem. A.5].

Proposition 6.2.8 Let ? be a Hermitian deformation of a ∗-algebra A over C = R(i). Then a
CJλK-linear functional ω : AJλK −→ CJλK is positive with respect to ? iff

ω(a0 ? a0) ≥ 0 (6.2.7)

for all a0 ∈ A.

Proof: One direction is obvious. Thus suppose ω(a∗0 ? a0) ≥ 0 for all a0 ∈ A. We prove a weaker
version of the Cauchy-Schwarz inequality now only valid for elements in A instead of all elements of
AJλK. For z, w ∈ C the assumption (6.2.7) implies

0 ≤ ω((za0 + wb0)∗ ? (za0 + wb0)) = zzω(a∗0 ? a0) + zwω(a∗0 ? b0) + zwω(b∗0 ? a0) + wwω(b∗0 ? b0)

for all a0, b0 ∈ A as an inequality in RJλK. By specifying the values of z and w in C in a clever way
we conclude as in the proof of the Cauchy-Schwarz inequality in Lemma 1.1.7 that

ω(a∗0 ? b0)ω(a∗0 ? b0) ≤ ω(a∗0 ? a0)ω(b∗0 ? b0) and ω(a∗0 ? b0) = ω(b∗0 ? a0) (∗)

for all a0, b0 ∈ A as an inequality in RJλK. Now we apply this to a0 and a1 which yields with
α = ω(a∗0 ? a0), β = ω(a∗0 ? a1), and γ = ω(a∗1 ? a1) the inequality ββ ≤ αγ in RJλK. But with this
inequality one has

ω((a0 + za1)∗ ? (a0 + za1)) = α+ βz + βz + γzz ≥ 0

for all z ∈ CJλK and not only for z ∈ C. In particular, for z = λ we obtain the positivity

ω((a0 + λa1)∗ ? (a0 + λa1)) ≥ 0.

Thus we have extended the original positivity property (6.2.7) to the case where we have also a first
order in λ. Repeating this argument inductively, we get the positivity

ω

((
N∑
r=0

λrar

)∗( N∑
r=0

λrar

))
≥ 0

for all N ∈ N. Now we use that any CJλK-linear functional is continuous with respect to the λ-adic
topology according to Proposition 6.1.2, v.), and the fact that the λ-adic topology is compatible
with the ordering in the sense that the subset of non-negative elements in RJλK is closed. Then the
convergence from Proposition 6.1.25, iii.), finally shows ω(a∗ ?a) ≥ 0 for all a =

∑∞
r=0 λ

rar ∈ AJλK.�
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One of the important consequences of a (completely) positive deformation is that the classical
limits of positive algebra elements are positive. Without control over the quantum states this would
not be possible [29, Lemma 8.1]:

Proposition 6.2.9 Let ? be a positive deformation of a ∗-algebra A over C = R(i). If a ∈ AAA is
positive with respect to ? then cl(a) = a0 ∈ A is positive with respect to the undeformed product.

Proof: Let a ∈ AAA be positive. This means that ω(a) ≥ 0 for all positive CJλK-linear functionals
ω : AAA −→ CJλK. Since for a given classically positive C-linear functional ω0 : A −→ C we find a
deformation ω into a positive functional with respect to ?, we have ω(a) ≥ 0 for this ω and thus

0 ≤ cl(ω(a)) = ω0(a0)

is still positive in C. This shows a0 ∈ A+. �

Remark 6.2.10 If we would know that every positive element a ∈ AAA+ is actually algebraically
positive, i.e. a =

∑n
i=1 βib

∗
i ? bi for some bi ∈ AAA and 0 < βi ∈ RJλK, then the classical limit of a is

again algebraically positive since

a0 = cl(a) =
n∑
i=1

cl(βi)cl(bi)
∗cl(bi) ∈ A++. (6.2.8)

Thus the above criteria becomes interesting for the case where we have a strict inclusion of algebraically
positive elements inside the positive elements, a situation which we know to be relevant in many
examples, see e.g. Exercise 1.4.18.

Remark 6.2.11 One can also consider the converse problem: given a positive element a0 ∈ A+,
can one find higher orders a1, a2, . . . ∈ A such that a =

∑∞
r=0 λ

rar is positive with respect to the
deformed product? Even for a positive deformation this is not completely obvious: there could be a
positive functional ω0 of A allowing for a positive deformation ω = ω0 + λω1 + · · · of AAA with respect
to ? such that ω0(a0) = 0 but ω(a0) < 0 by contributions in higher orders. Thus a deformation might
be necessary and it is not clear how one can show existence in general.

We conclude this section now with the following first non-trivial observation concerning com-
pletely positive deformations: the important property (H) is preserved under completely positive
deformations [29, Prop. 8.2]:

Proposition 6.2.12 (Rigidity of (H)) Let ? be a completely positive deformation of a unital ∗-
algebra A over C = R(i) with 1

2 ∈ R. If A satisfies (H) or (H−) then AAA = (AJλK, ?) also satisfies
(H) or (H−), respective.

Proof: We consider the property (H) first. Thus let H = H + · · · ∈ Mn(AAA)+ be an invertible
positive element and let P α ∈ Mn(AAA) be projections forming an orthogonal partition of unity with
H ? P α = P α ?H. Taking classical limits, we see that the elements Pα = cl(P α) are projections
again, forming an orthogonal partition of unity for the undeformed algebra. Moreover, [H,Pα] = 0
holds. Since we assume that ? is a completely positive deformation, H ∈ Mn(A) is positive by
Proposition 6.2.9. Since H is invertible, the zeroth order is invertible for the undeformed product,
too. Thus we find a unitary U ∈ Mn(A) with H = U∗U and [U,Pα] = 0 for all α by property (H)
for the undeformed algebra A applied to H and the Pα. Now we consider PαMn(A)Pα as unital
∗-algebra with unit Pα as we did before in Proposition 4.2.10, i.). Then Uα = PαUPα ∈ PαMn(A)Pα
is an invertible element in this ∗-algebra for all α with inverse U−1

α = PαU
−1Pα, since

PαUPαPαU
−1Pα = PαUU

−1Pα = Pα
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according to [U,Pα] = 0. Moreover, for the α-th component Hα = PαHPα of H we get

Hα = PαHPα = PαU
∗PαPαUPα = U∗αUα. (∗)

Clearly, this Hα is the classical limit of P α ?H ? P α. Now by Proposition 6.1.30, v.), the ∗-algebra
P α ?Mn(AAA) ?P α induces a Hermitian deformation ?α for PαMn(A)Pα. From (∗) and Lemma 6.1.24,
i.), transferred back from (PαMn(A)P0)JλK, ?α) to the ∗-subalgebra P α ?Mn(AAA) ?P α of Mn(AAA), we
see that we find an invertible Uα ∈ P α ?Mn(AAA) ? P α with

P α ?H ? P α = P α ?U
∗
α ? P α ? P α ?Uα ? P α. (∗∗)

Then we can consider the block-diagonal U =
∑

αUα which clearly ?-commutes with each P α as
these projection form a partition of unity. Putting this together with (∗∗) shows H = U∗ ? U as
wanted. The case (H−) is a particular case with the partition of unity given by a single projection
P together with the complementary projection 1− P . �

As we have seen in the discussion of the groupoid morphism Picstr −→ Pic the property (H)
(essentially (H−) was sufficient) provides the additional information which simplifies the situation
drastically. With the above rigidity result and the corresponding statement from Proposition 6.1.29
for the property (K), we can transfer all these results on Morita theory to completely positive defor-
mations. A first application is the following corollary to Theorem 5.2.17:

Corollary 6.2.13 For the class of completely positive deformations of unital ∗-algebras satisfying
(K) and (H−), the groupoid morphism Picstr −→ Pic is injective.

Of course, it remains to find interesting examples of completely positive deformations first.

6.2.2 GNS Representations of Deformed ∗-Algebras

Before we investigate the general representation theory of deformed ∗-algebras we consider a particular
case here: the GNS representations arising from positive functionals. Thus we consider a ∗-algebra
A over C = R(i) together with a Hermitian deformation AAA = (AJλK, ?). It might be advantageous
to consider even a (completely) positive deformation in order to have many positive functionals. But
for the following it is sufficient to assume the existence of one positive functional ω = ω0 + λω1 + · · ·
of AAA with classical limit cl(ω) = ω0 which is then a positive functional of A.

To relate the GNS representations of ω and ω0 we first need to relate the GNS pre-Hilbert spaces.
Here the situation is less clear as for the deformed algebras: it might happen that the pre-Hilbert space
Hω is not of the form HJλK for some C-module H. Thus a naive classical limit map by projecting
onto the order-zero part is not available. The next try would be to consider the quotient H = H

/
λH

as classical limit with the quotient map as classical limit map. Again, there is one problem, namely
that there is no a priori inner product on this quotient.

This motivates to consider a slightly more general quotient procedure as classical limit in this
case [26, Lem. 8.2 and Lem. 8.3]:

Proposition 6.2.14 Let C = R(i) with R an ordered ring.
i.) Let H be a pre-Hilbert space over CJλK. Then

HNull =
{
φ ∈H

∣∣ cl(〈φ, φ〉) = 0
}

=
{
φ ∈H

∣∣ cl(〈ψ, φ〉) = 0 for all ψ ∈H
}

(6.2.9)

is a CJλK-submodule of H with
λH ⊆HNull (6.2.10)
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ii.) The quotient cl(H) = H
/
HNull becomes a pre-Hilbert space over C via the inner product〈

cl(φ), cl(ψ)
〉

cl(H)
= cl

(
〈φ, ψ〉H

)
, (6.2.11)

where cl(φ), cl(ψ) ∈ cl(H) denote the equivalence classes of φ, ψ ∈H.
iii.) For pre-Hilbert spaces H1 and H2 over CJλK and for A ∈ B(H1,H2) one has

A((H1)Null) ⊆ (H2)Null, (6.2.12)

and cl(A) : cl(H1) 3 cl(φ) 7→ cl(Aφ) ∈ cl(H2) is a well-defined adjointable operator.
iv.) The classical limit map

cl : B(H1,H2) 3 A 7→ cl(A) ∈ B(cl(H1), cl(H2)) (6.2.13)

satisfies

cl(zA+ wA′) = cl(z)cl(A) + cl(w)cl(A′), (6.2.14)
cl(BA) = cl(B)cl(A), (6.2.15)

and
cl(A∗) = cl(A)∗ (6.2.16)

for all A,A′ ∈ B(H1,H2) and B ∈ B(H2,H3) as well as z, w ∈ CJλK.

Proof: This is an elementary verification: first we show that the two sets in (6.2.9) coincide. The
inclusion ⊆ is clear, thus let φ ∈ H satisfy cl(〈φ, φ〉) = 0. In general, we know 〈φ, ψ〉〈φ, ψ〉 ≤
〈φ, φ〉〈ψ,ψ〉 by the Cauchy-Schwarz inequality for H. Since the ring morphism cl : RJλK −→ R is
compatible with the ordering we conclude

cl(〈φ, ψ〉)cl(〈φ, ψ〉) ≤ cl(〈φ, φ〉)cl(〈ψ,ψ〉),

from which the remaining inclusion ⊇ follows at once. But then it is clear that HNull is a CJλK-
submodule containing λH. Thus the quotient cl(H) is a CJλK-module with the property that zcl(φ) =
0 whenever cl(z) = 0. Hence essentially only the scalars in C act non-trivially. The definition of the
inner product (6.2.11) is then easily verified to yield a positive definite C-valued inner product on
cl(H) since we divided by the degeneracy space automatically. Next, suppose A ∈ B(H1,H2) and
φ ∈ (H1)Null. Then for ψ ∈H2 we have

cl(〈Aφ,ψ〉H2
) = cl(〈φ,A∗ψ〉H1

) = 0

by the characterization of (H1)Null according to (6.2.9). Thus Aφ ∈ (H2)Null follows. Hence the
operator A is well-defined on the quotients. The last part can then be verified on representatives
where it is obvious. �

Corollary 6.2.15 Let R be an ordered ring and C = R(i). Then the classical limit yields a functor

cl : PreHilbert(CJλK) −→ PreHilbert(C) (6.2.17)

from the category of pre-Hilbert spaces over CJλK to the category of pre-Hilbert spaces over C.

Example 6.2.16 Let H be a pre-Hilbert space over C. Then on H = HJλK we extend the inner
product of H is the usual λ-bilinear way. In this case we have

HNull = λH, (6.2.18)
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and the classical limit reproduces H. Moreover, it is easy to see that

B(HJλK) = B(H)JλK, (6.2.19)

so that the classical limit map cl for adjointable operators also becomes just the projection onto the
zeroth order. However, we can also rescale the inner product on H by λ. Then λ〈 · , · 〉 would still be
a positive definite inner product on H, but now we have HNull = H. Thus the classical limit is trivial
in this case. This shows that the classical limit procedure is more subtle than just “setting λ = 0”.

After this preparation we can now consider the classical limit of a GNS representation: thus let
AAA = (AJλK, ?) be a Hermitian deformation of A with a positive linear functional ω : AAA −→ CJλK.
Then we have the classical limit ω0 = cl(ω) : A −→ C which is again positive. In general, the relation
between the two Gel’fand idealsJω ⊆ AAA andJω0 ⊆ A can be quite complicated. In particular, there
is typically no isomorphism between Jω and Jω0JλK. However, the relation between the GNS pre-
Hilbert spaces and, building on that, the relation between the GNS representations is very simple [113,
Thm. 1]:

Proposition 6.2.17 Let AAA = (AJλK, ?) be a Hermitian deformation of a ∗-algebra A over C = R(i).
Let ω : AAA −→ CJλK be a positive linear functional with classical limit cl(ω) = ω0. Then the classical
limit of the GNS representation πω of AAA is canonically unitarily equivalent to the GNS representation
of the classical limit ω0 by the unitary intertwiner

U : cl(Hω) 3 cl(ψa) 7→ ψcl(a) ∈ Hω0 , (6.2.20)

where a ∈ AJλK.

Proof: Let ψa ∈ (Hω)Null which means 0 = cl(〈ψa, ψa〉) = cl(ω(a∗ ? a)) = ω0(a∗0a0). Hence we have
ψa ∈ (Hω)Null iff cl(a) = a0 ∈Jω0 . This shows that U , defined as above, is well-defined as we divide
byJω0 on the right hand side to get Hω0 . Moreover, U is isometric and hence injective since

〈Ucl(ψa), Ucl(ψb)〉ω0
= ω0(ψcl(a), ψcl(b)) = ω0(a∗0b0) = cl(ω(a∗ ? b)) = cl(〈ψa, ψb〉ω).

Finally, U is clearly surjective. The intertwiner property follows from

Ucl(πω)(a0)cl(ψb) = Ucl(πω(a0)ψb) = Ucl(ψa0?b) = ψcl(a0?b) = ψa0b0 = πω0(a0)ψb0 = πω0(a0)Ucl(ψb),

where a0 ∈ A and b ∈ AJλK. �

6.2.3 The Case of Star Products

Up to now we have not yet many examples of completely positive deformations. The fundamental
observation is that Gerstenhaber’s construction with commuting derivations can lead to completely
positive deformations. We consider again the situation from Example 6.1.28, see also [48, Thm. 6.7]
for a yet slightly more general situation:

Proposition 6.2.18 Let A be a ∗-algebra over C = R(i) with Q ⊆ R. Let D1, . . . , DN be pairwise
commuting derivations such that D∗i commutes with Dj for all i, j = 1, . . . , N . Let g ∈ MN (C) be
a positive matrix. Then the deformation ? from Example 6.1.28 is completely positive and strongly
positive.
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Proof: Since the deformation of Mn(A) works with the same formula and since the derivations are
extended to matrices in the canonical way, we only have to take care of the case n = 1. Thus let
ω : A −→ C be a positive linear functional of the undeformed algebra and a ∈ A. Then

ω(a∗ ? a) = ω

 ∞∑
m=0

(2λ)m

m!

N∑
k1,`1,...,km,`m=1

gk1`1 · · · gkm`mDk1 · · ·Dkma
∗D∗`1 · · ·D

∗
`ma


=
∞∑
m=0

(2λ)m

m!
ω

 N∑
k1,`1,...,km,`m=1

gk1`1 · · · gkm`m(D∗k1
· · ·D∗kma)∗D∗`1 · · ·D

∗
`ma


≥ 0,

since each term in the series is a positive algebra element of the undeformed algebra by Proposi-
tion 1.1.17 and since ω is positive. By Proposition 6.2.8 it suffices to check the positivity for elements
a ∈ A. �

Based on this construction we can now find a large class of completely positive deformations: the
star products from deformation quantization. Here we have the following result [24,30]:

Theorem 6.2.19 (Star products are completely positive) Let M be a smooth manifold. Then
every Hermitian star product ? is a completely positive deformation. Hence

Defstr( C∞(M)) = Def∗( C∞(M)). (6.2.21)

Proof: We will only sketch the proof as it would need to much preparation to get the full details.
First, we cover M by charts {(Uα, xα)}α∈I with U being diffeomorphic to an open ball. We choose
a quadratic partition of unity {χα}α∈I subordinate to this atlas. Now let ω0 : C∞(M) −→ C be a
positive linear functional. Then ω0 is the integration with respect to a compactly supported Borel
measure by Exercise 1.4.17. For all f ∈ C∞(M) we then have

ω0(f) =
∑
α∈I

ω0(χαfχα),

where in the summation only those finitely many α contribute where the support of ω0 meets the
supports of the functions χα. Each of the functionals ωα(f) = ω0(χαfχα) has now compact support
inside the corresponding Uα. Hence they extend to (still positive) linear functionals ωα : C∞(Uα) −→
C. Thus we only have to show that each ωα can be deformed into a positive linear functional for
C∞(Uα)JλK with respect to the restricted star product ?α = ?

∣∣
C∞(Uα)JλK. Note that we can restrict

star products to open subsets as they consist of bidifferential operators.
From here we distinguish two cases: if the star product deforms a symplectic Poisson structure

then it is known that any two (Hermitian) star products on an open subset with vanishing second
de Rham cohomology are equivalent (and hence ∗-equivalent by Proposition 6.1.25). Now on such an
open subset we have the Wick star product which is precisely of the form as in Proposition 6.2.18 and
hence strongly positive, see also Exercise 6.4.16. If S = id +

∑∞
r=1 λ

rSr is a ∗-equivalence between
the local Wick star product and the restriction ?α then ωα ◦ Sα is positive for ?α. Summing up all
these locally finitely many functionals yields the deformation of ω0 we are looking for, see [24].

The other case is when ? deforms an arbitrary Poisson structure. Here one shows that locally
one can embed the deformed algebra as a ∗-subalgebra of a Wick star product algebra in twice the
dimension. The construction of this embedding is non-trivial, see [30], but given that, we can use the
positivity of the Wick star product to obtain the deformation of ω0.

In both cases the complete positivity gives no additional difficulty as all arguments still hold for
matrix-valued functions. �
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Remark 6.2.20 There are several other classes of examples of completely positive deformations. In
particular, in [48] it was shown that certain Drinfel’d twists give rise to universal deformation formulas
similar to the one in Proposition 6.2.18 which turn out to be completely positive.

Since Hermitian star products are completely positive deformations, we have many features guar-
anteed by the general theory. In particular, Hermitian star products satisfy the properties (K) and
(H) since the classical counterparts C∞(M) have these features according Example 2.3.18, ii.), and
Example 2.3.22, ii.). While these properties are already sufficient to guarantee a reasonably well-
behaved Morita theory, star products have even stronger properties like e.g. the following:

Proposition 6.2.21 Let ? be a Hermitian star product on a manifold M . Moreover, let H ∈
Mn( C∞(M)JλK) be invertible and positive with respect to ?.
i.) The zeroth order H0 = cl(H) is an invertible positive matrix-valued function on M .
ii.) There exists a unique Hermitian logarithm Log(H) = log(H0) + · · · ∈ Mn( C∞(M)JλK) of H

with respect to ?, i.e. we have
Exp(Log(H)) = H, (6.2.22)

where Exp is the ?-exponential as in Exercise 6.4.15. For another function A ∈ Mn( C∞(M)JλK)
we have [H,A]? = 0 iff [Log(H), A]? = 0.

iii.) There exists a unique positive invertible square root ?
√
H ∈ Mn( C∞(M)JλK)+ with respect to ?,

explicitly given by
?
√
H = Exp(1

2 Log(H)). (6.2.23)

For A ∈ Mn( C∞(M)JλK) one has [H,A]? = 0 iff [ ?
√
H,A]? = 0.

Proof: Since ? is a completely positive deformation we know that H0 = cl(H) is an invertible and
positive matrix-valued function on M by Proposition 6.2.9. Thus at every point p ∈ M the matrix
H0(p) is positive definite. From the spectral calculus we know that there exists a global unique
Hermitian logarithm log(H0) of H0 which is still smooth since H0 is invertible. From here we can use
the well-known features of the ?-exponential from Exercise 6.4.15, see also e.g. [116, Thm. 6.3.4 and
Lem. 6.3.5]. �

This is of course a much stronger statement than the previous property (H) which would follow
from the general rigidity arguments from Proposition 6.2.12. The existence of the ?-logarithm and the
square root ?

√
· with respect to ? will provide additional options for star products which are typically

not available in general. Note however, that the assumption H0 > 0 is crucial in order to guarantee
smoothness of the logarithm and the square root.

6.3 Deformations of Modules

After algebras and their states we now deform modules over algebras. In this section we stick to the
ring-theoretic situation where the algebra will not carry any additional structure. Thus we consider
an associative algebra A over a ring R of scalars for which we assume to have a formal associative
deformation ?.

6.3.1 Deformation and classical limit of modules

Suppose that MA is a right A-module with module multiplication (x, a) 7→ x · a. In general, this will
no longer be a module structure for a deformation ? of A. To cure this, we need to add higher orders.
This motivates the following definition:
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Definition 6.3.1 (Module deformation) Let AAA = (AJλK, ?) be a formal associative deformation
of an associative algebra A over a ring R. Moreover, let MA be a right A-module.

i.) A right module deformation • of MA with respect to ? consists of an RJλK-bilinear right module
structure • : MAJλK× AJλK −→MAJλK such that

x • a = x · a+

∞∑
r=1

λr%r(x, a) (6.3.1)

for all x ∈MAJλK and a ∈ AJλK where

%r : MA × A −→MA (6.3.2)

are R-bilinear maps extended to MAJλK × AJλK as usual. If A is unital and also MA is unital,
then we require in addition

x • 1 = x (6.3.3)

for all x ∈MAJλK.
ii.) Two right module deformations • and •̃ are called equivalent if there exists a formal series

T = id +
∑∞

r=1 λ
rTr of R-linear maps Tr : MA −→MA such that

T (x • a) = T (x) •̃ a (6.3.4)

for all x ∈MAJλK and a ∈ AJλK. In this case T is called an equivalence transformation.

Recall that the RJλK-bilinearity of • implies the existence of the R-bilinear maps %r : MA×A −→MA

with (6.3.1).
In a completely analogous fashion one defines deformations and equivalences of left A-modules.

As usual, it suffices to check the above conditions on elements of MA and A only. It is clear that for a
fixed deformation ? of the underlying algebra the equivalence of module deformations is an equivalence
relation. Conversely, given a module deformation • and an arbitrary series T = id +

∑∞
r=1 λ

rTr we
get by (6.3.4) again a module deformation •̃ which is then equivalent to •.

If we have a fixed module deformation • we also write MAMAMA = (MAJλK, •) for the resulting right
AAA-module.

In general, the deformed algebra AAA can have modules which are not of the form (MAJλK, •). The
following example is rather trivial but of some importance:

Example 6.3.2 Let MA be a right A-module and let ? be an associative deformation of A. Then
MA becomes a right AAA-module by

x ◦ a = x · cl(a) (6.3.5)

for all x ∈ MA and a ∈ AAA. Indeed, this follows directly from cl(a ? b) = cl(a)cl(b) and the module
property of the original module multiplication. Note that this is not a module deformation in the
sense of Definition 6.3.1 since the underlying space MA is equipped with the RJλK-module structure
where λx = 0 for all x ∈ MA. Thus we have an enormous amount of torsion. Now if in addition • is
a module deformation for MA then we can consider the classical limit map

cl : MAMAMA = MAJλK 3 x 7→ cl(x) = x0 ∈MA (6.3.6)

as usual. It then turns out that this is a module morphism of right AAA-modules if we equip MA with
the right AAA-module structure (6.3.5). Indeed, this is clear since

cl(x • a) = cl(x) · cl(a) = cl(x) ◦ a (6.3.7)

for all x ∈MAMAMA and a ∈ AAA.
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As we discussed implicitly already in Section 6.2.2 we can always define a classical limit of a right
AAA-module by dividing by the multiples of λ: if we have no other structure to take care of, this is the
ring-theoretic construction of the classical limit:

Proposition 6.3.3 (Ring-theoretic classical limit of modules) Let AAA = (AJλK, ?) be an asso-
ciative deformation of an algebra A over a ring of scalars R.

i.) If MAMAMA is a right AAA-module then cl(MAMAMA) = MAMAMA

/
λMAMAMA becomes a right A-module by

cl(MAMAMA)× A 3 (cl(x), a) 7→ cl(x) · a = cl(x • a) ∈ cl(MAMAMA), (6.3.8)

where • denotes the module multiplication of MAMAMA.
ii.) If T : MAMAMA −→ MMM′

AAA is a module morphism of right AAA-modules then cl(T ) : cl(MAMAMA) −→ cl(MMM′
AAA)

defined by
cl(T )cl(x) = cl(T (x)) (6.3.9)

is a module morphism of right A-modules.
iii.) The classical limit of right modules and their morphisms yields a functor

cl : modAAA −→ modA. (6.3.10)

Proof: A simple verification shows that the map (6.3.8) is well-defined, R-bilinear, and yields a
right A-module structure. For the second part we note that cl(T ) is again well-defined since T is
RJλK-linear. Then it is easy to see that cl(T ) is right A-linear indeed. The functoriality (6.3.10) is a
straightforward computation. �

This version of the classical limit is functorial but not very suited to modules carrying additional
structures like inner products. While in the present ring-theoretic situation this definition of cl is
completely appropriate, we shall need a more sophisticated one later. For the case of a module
deformation MAMAMA = (MAJλK, •) this version of the classical limit reproduces the original module MA

up to a natural isomorphism.
On the other hand, it may also happen that the classical limit erases quite a bit of information

about the module: if the multiplication by λ is invertible in the module then the classical limit is
trivial. Here a typical examples can be obtained as follows:

Example 6.3.4 (Classical limit of formal Laurent series) We consider the ring R as algebra
over itself and take the trivial deformation RJλK. Moreover, we consider the formal Laurent series
R((λ)) with coefficients in R. Recall that they consist of formal series where now a finite number of
negative powers of λ is allowed. The multiplication is still given by the Cauchy product formula. Then
every element in R((λ)) is a multiple of λ since we have λ−1 ∈ R((λ)). Viewing R((λ)) as a RJλK-module
we therefore find λR((λ)) = R((λ)) and hence

cl(R((λ))) = {0}. (6.3.11)

6.3.2 Hochschild Cohomology II

As for algebras, also module deformations allow for a formulation of obstructions by means of
Hochschild cohomological techniques. In this section we briefly outline to generalization needed
to incorporate modules. The module condition for a deformation • explicitly means that

(x • a) • b = x • (a ? b) (6.3.12)
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holds for all x ∈ MAJλK and a, b ∈ AJλK. It is sufficient to consider x and a, b without powers of λ.
Then we can evaluate this condition order by order to obtain the infinite system of equations

k∑
r=0

%r(%k−r(x, a), b) =
k∑
r=0

%r(x, µk−r(a, b)) (6.3.13)

for x ∈MA and a, b ∈ A. Here µr is the given r-th order term of the deformation ? as in (6.1.17) and
µ0(a, b) = ab as well as %0(x, a) = x · a. Then (6.3.13) is understood as a recursive conditions for the
maps %r : MA × A −→MA for all r ≥ 1 which encode the module deformation • as in (6.3.2).

As in the case of an associative deformation of A we can interpret this system of conditions
using an appropriate Hochschild differential. To find the corresponding complex, we first note that
the endomorphisms EndR(MA) are an (A,A)-bimodule in the following canonical way. For A ∈
EndR(MA) and a ∈ A we define a ·A and A · a on elements x ∈MA by

(a ·A)(x) = A(x · a) and (A · a)(x) = (A(x)) · a. (6.3.14)

This determines new endomorphisms a · A,A · a ∈ EndR(MA) and it is easily shown that we obtain
a bimodule structure as claimed, see also Exercise 6.4.17. Note that we consider only R-linear endo-
morphisms but not necessarily A-linear ones: the R-submodule EndA(MA) ⊆ EndR(MA) is typically
not a sub-bimodule for this (A,A)-bimodule structure.

We re-interpret the maps %r now as R-linear maps

%r : A −→ EndR(MA), (6.3.15)

using the same symbol. This motivates to consider the space of all multilinear maps from copies of
the algebra into the bimodule of endomorphisms of MA. More generally, for an (A,A)-bimodule EA A

one defines the Hochschild complex with values in EA A as follows:

Definition 6.3.5 (Hochschild complex II) Let A be an associative algebra over a ring R and let
EA A be an (A,A)-bimodule.
i.) The Hochschild complex HC•(A, EA A) of A with coefficients in EA A is

HC•(A, EA A) =
∞⊕
n=0

HCn(A, EA A) with HCn(A, EA A) = HomR

(
A, . . . ,A︸ ︷︷ ︸
n times

; EA A

)
, (6.3.16)

equipped with the Hochschild differential δ : HC•(A, EA A) −→ HC•+1(A, EA A) defined by

(δφ)(a1, . . . , an+1) = a1 · (φ(a2, . . . , ak+1))

+
k∑
i=1

(−1)iφ(a1, . . . , aiai+1, . . . , ak+1) + (−1)k+1(φ(a1, . . . , ak)) · ak+1.

(6.3.17)

ii.) The Hochschild cohomology of A with values in the bimodule EA A is defined by

HH•(A, EA A) =
∞⊕
k=0

HHk(A, EA A) with HHk(A, EA A) =
ker
(
δ
∣∣
HCk(A, EA A)

)
δ(HCk−1(A, EA A))

. (6.3.18)

It is clear from the definition that we recover our previous definition of the Hochschild complex for
the algebra if we take as bimodule AA A: this explains the notation in (6.1.28).

Of course, we have to check that δ is indeed a differential. We collect this and a few other
immediate properties of the Hochschild complex in the following proposition:
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Proposition 6.3.6 Let A be an associative algebra over a ring R and let EA A be an (A,A)-bimodule.
i.) The Hochschild differential satisfies

δ2 = 0. (6.3.19)

ii.) For n = 0 we have

HH0(A, EA A) = ker
(
δ
∣∣
HC0(A, EA A)

)
=
{
x ∈ EA A

∣∣ a · x = x · a for all a ∈ A
}
. (6.3.20)

iii.) For n = 1 we have

ker
(
δ
∣∣
HC1(A, EA A)

)
=
{
D ∈ HomR(A, EA A)

∣∣ D(ab) = a ·D(b) +D(a) · b for all a, b ∈ A
}
.

(6.3.21)
while (δx)(a) = a · x− x · a for all x ∈ EA A and a ∈ A.

Proof: The first part is an immediate verification, see Exercise 6.4.10. In degree n = 0 there are not
yet exact terms and thus (6.3.20) follows at once. In degree n = 1 the condition δD = 0 immediately
gives the Leibniz rule D(ab) = a ·D(b) +D(a) · b. �

Thus the zeroth Hochschild cohomology of a bimodule EA A is given by the central elements of
the bimodule, generalizing the center of the algebra in the case EA A = AA A from (6.1.32). Hence the
zeroth Hochschild cohomology is a measure for the difference of the left and right module structures
on EA A. In the particular case of the (A,A)-bimodule EndR(MA) with some right A-module MA this
gives

HH0(A,EndR(MA)) = EndA(MA), (6.3.22)

see also Exercise 6.4.17, ii.). The first Hochschild cohomology HH1(A, EA A) can be interpreted as
the EA A-valued derivations modulo the inner derivations: we get the outer derivations with values in
EA A, see also (6.1.34).
For the deformation problem (6.3.13) we have now the following result:

Proposition 6.3.7 (Existence of right module deformations) Let AAA = (AJλK, ?) be an asso-
ciative deformation of an associative algebra A over a ring R. Moreover, let MA be a right A-
module and denote the right module structure by x · a = %0(a)x. Finally, suppose that %0, . . . , %r : ∈
HC1(A,EndR(MA)) are given such that %(r) = %0 +λ%1 + · · ·+λr%r is a right module deformation up
to order r for some r ∈ N0.

i.) The map Rr ∈ HC2(A,EndR(MA)) defined by

Rr(a, b) =
r∑
s=0

%s(µr+1−s(a, b))−
r∑
s=1

%(b) ◦ %r+1−s(a) (6.3.23)

for a, b ∈ A is a δ-cocycle, i.e. δRr = 0.
ii.) There exists a %r+1 ∈ HC1(A, EA A) such that %(r+1) = %(r) + λr+1%r+1 is a right module defor-

mation up to order r + 1 iff
δ%r+1 = Rr, (6.3.24)

iff the cohomology class [Rr] ∈ HH2(A,EndR(MA)) is trivial.

Proof: The proof is essentially a direct computation and can be done in Exercise 6.4.18. �

Corollary 6.3.8 If HH2(A,EndR(MA)) = {0} then there exists a deformation • of MA as a right
module for every associative deformation ? of A.
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For the equivalence of two module deformations • and •̃ we get also a cohomological description:

Proposition 6.3.9 Let AAA = (AJλK, ?) be an associative deformation of an associative algebra A over
a ring R. Moreover, let MA be a right A-module and denote the right module structure by x·a = %0(a)x.
Suppose that • = %0 +

∑∞
r=1 λ

r%r and •̃ = %0 +
∑∞

r=1 λ
r%̃r are two module deformations of MA with

respect to ?. Furthermore, suppose that T (r) = id +λ1T1 + · · ·+λrTr with Tr ∈ HC0(A,EndR(MA)) =
EndR(MA) constitutes an equivalence from • to •̃ up to order r, i.e. T (r)(x • a) = T (r)(x) •̃ a holds
up to order n for all a ∈ A and x ∈MA.

i.) The map Er ∈ HC1(A,EndR(MA)), defined by

Er(a) =

r∑
s=0

(%̃r+1−s ◦ Ts − Ts ◦ %r+1−s(a)) (6.3.25)

for a ∈ A, satisfies δEr = 0.
ii.) There exists a Tr+1 ∈ HC0(A,EndR(MA)) such that T (r+1) = T (r) +λr+1Tr+1 is an equivalence

up to order r + 1 iff
δTr+1 = Er (6.3.26)

iff the class [Er] ∈ HH1(A,EndR(MA)) is trivial.

Proof: Again, this is a direct computation discussed in Exercise 6.4.18. �

Corollary 6.3.10 If HH1(A,EndR(MA)) = {0} then any two deformations • and •̃ of MA as a right
module for an associative deformation ? of A are equivalent.

Note, however, that the proposition gives only an absolute obstruction in first order as in higher
orders we could in principle still allow for equivalence transformations T of more general type. It only
gives an obstruction to continue a given equivalence transformation to the next order: there might
be equivalence transformations after changing also the lower order terms.

In many situations the Hochschild cohomologies HHk(A,EndR(MA)) are nontrivial. In this situ-
ation, the above cohomological analysis of the deformation problem will not help much: there is the
possibility for obstructions but whether one actually can avoid them or not is not answered by the two
propositions. If, however, the cohomologies are trivial then we get an easy existence and uniqueness
of module deformations.

Note also that a similar analysis can be done for left modules instead of right modules: the
formulas for the error terms change slightly but the cohomological obstructions are again in the first
and second Hochschild cohomology of the bimodule of the endomorphisms of the left module, see also
Exercise 6.4.18.

Finally, we note that in many cases one wants the components %r of the module structure to be
more specific maps than just arbitrary elements in HC1(A,EndR(MA)). E.g. in differential geometric
contexts one is interested in differential operators etc. In these cases it is often useful to pass to
certain sub-complexes which take into account the desired properties, see Exercise 6.4.19 for a refined
version of the above two propositions.

6.3.3 Deformation of Bimodules

Since ultimately we are interested in Morita theory we need to investigate the deformation theory of
bimodules. The strategy will be to consider a bimodule EB A first as a right A-module and investigate
its deformations as a right AAA-module: this will hopefully allow to determine the module endomor-
phisms into which we need to map the deformed algebra BBB in a second step. Alternatively, one can
try to deform the bimodule structure directly, see Exercise 6.4.20. However, it turns out that this is
typically much more complicated in actual examples.
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Let AAA = (AJλK, ?) be a given associative deformation of A. We start with the following simple
observation that module endomorphisms of deformed modules have classical limits:

Lemma 6.3.11 Let MA be a right A-module with a given module deformation MAMAMA = (MAJλK, •) as
a right AAA-module.

i.) The module endomorphisms EndAAA(MAMAMA) form a unital RJλK-subalgebra of EndR(MA)JλK.
ii.) The classical limit map induces a unital algebra homomorphism

cl : EndAAA(MAMAMA) 3 A 7→ cl(A) = A0 ∈ EndA(MA). (6.3.27)

Proof: First we note that by our conventions any module endomorphism is linear over the un-
derlying scalars. Hence for A ∈ EndAAA(MAMAMA) we have A ∈ EndRJλK(MAJλK) = EndR(MA)JλK using
Proposition 6.1.1. Now clearly, the module endomorphisms form a unital algebra over RJλK, com-
pleting the proof of the first part. This allows to consider the classical limit of A since by the
first part A =

∑∞
r=0 λ

rAr with Ar ∈ EndR(MA). Hence cl(A) = A0 gives the map needed for
(6.3.27). Being a subalgebra of EndR(MA)JλK, the classical limit preserves the algebraic structures
as usual. Finally, A0 = cl(A) is right A-linear since for a ∈ A and A ∈ EndRJλK(MAMAMA) we have for
all x =

∑∞
r=0 λ

rxr ∈ MAMAMA = MAJλK the relation A(x • a) = A(x) • a. Taking classical limits gives
cl(A(x • a)) = A0(x0 · a) and cl(A(x) • a) = A0(x0) · a. �

As usual, the classical limit map

cl : EndAAA(MAMAMA) −→ EndA(MA) (6.3.28)

is not injective since we loose the higher order terms of the endomorphisms of the deformed module:
it is only injective for the zeroth order. Moreover, in general it is also not surjective: surjectivity
would mean that we can quantize every classical endomorphism A0 into a quantum endomorphism
A = A0 + λA1 + · · · by finding appropriate higher order terms A1, . . . ∈ EndR(MA) to achieve
A ∈ EndAAA(MAMAMA). Note that in general we can not expect that A0 ∈ EndAAA(MAMAMA) is already AAA-linear
without such corrections:

Example 6.3.12 We consider a unital algebra A as a right A-module. In this case we know that
EndA(AA) is isomorphic to A acting via left-multiplications. Given a deformation ? of A then the
undeformed left multiplications on AJλK will not be right AAA-linear in general. Instead, we have to
pass to the left multiplications with respect to ?: in the map x 7→ a ?x = a ·x+ · · · we typically have
higher orders needed to turn this into a right AAA-linear map.

Without the classical limit being surjective, not much can be said. But even then, yet another
difficulty is the following: when working with rings instead of fields for the scalars then a surjective
map might or might not split in an R-linear way. To avoid the resulting subtleties we will even assume
to have such a splitting which in the case of a field R is automatic:

Proposition 6.3.13 Let MA be a right A-module with a given deformation MAMAMA = (MAJλK, •) as a
right AAA-module. Suppose that in addition there exists a R-linear map

q : EndA(MA) −→ EndAAA(MAMAMA) (6.3.29)

with cl ◦ q = idEndA(MA).
i.) The RJλK-linear extension of q yields an isomorphism

q : EndA(MA)JλK −→ EndAAA(MAMAMA) (6.3.30)

of RJλK-modules.
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ii.) There exists an associative unital deformation ?′ of EndA(MA) together with a left module
structure •′ on MAMAMA such that MAMAMA becomes a ((EndA(MA)JλK, ?′),AAA)-bimodule with respect to •′
and •.

iii.) If ?̃′ and •̃′ are other such deformations of EndA(MA) and the left module structure then ?̃′ and
?′ are equivalent via some uniquely determined equivalence transformation S such that

A •̃′ x = S(A) •′ x (6.3.31)

for all A ∈ EndA(MA)JλK and x ∈MAMAMA.

Proof: First we note that the existence of q implies that cl is surjective and in the case where R is a
field the converse would be true as well: surjectivity of cl implies the existence of q. Since cl ◦ q = id
we see that the RJλK-linear extension q as in (6.3.29) is injective in zeroth order and hence injective.
We have to show that (6.3.29) is surjective. Thus let A ∈ EndAAA(MAMAMA) be given with A0 = cl(A). Then
q(A0) ∈ EndAAA(MAMAMA) and cl(q(A0)−A) = 0 shows that there is a A1 = cl( 1

λ(A− q(A0))) ∈ EndA(MA).
We continue with q(A0 + λA1) ∈ EndAAA(MAMAMA) and a simple induction completes the proof that we can
construct A1, A2, . . . such that A = q(A0 + λA1 + λ2A2 + · · · ). This gives the first part. Then the
second part is easy since for A,B ∈ EndA(MA)JλK we can set

A •′ x = q(A)x and A ?′ B = q−1(q(A)q(B)),

which are now easily verified to do the job. Note that •′ and ?′ are indeed deformations, i.e. reproduce
the classical left module structure and the classical algebra multiplication in zeroth order of λ. Suppose
now that ?̃′ and •̃′ are other such deformations. Then x 7→ A •̃′ x is right AAA-linear by assumption. By
the first and second part there exists a unique S(A) ∈ EndA(MA)JλK with A •̃′x = S(A)•′x for all x ∈
MAMAMA. From the uniqueness one concludes immediately that the resulting map S : EndA(MA)JλK −→
EndA(MA)JλK is RJλK-linear. Moreover, since both •′ and •̃′ deform the usual action of endomorphism,
taking the classical limit of A •̃′ x = S(A) •′ x gives cl(A)cl(x) = cl(S)(cl(A))cl(x) and hence S =
id +

∑∞
r=1 λ

rSr follows. Finally, we have

S(A ?̃′ B) •′ x = (A ?̃′ B) •̃′ x = A •̃′ (B •̃′ x) = S(A) •′ (S(B) •′ x) = (S(A) ?′ S(B)) •′ x

for all x ∈MAMAMA showing S(A ?̃′ B) = S(A) ?′ S(B) since the map A 7→ (x 7→ A •′ x) is injective. This
shows that S is an equivalence between ?′ and ?̃′. �

Remark 6.3.14 (Deformation of module endomorphisms) In many interesting situations the
surjectivity of cl and (up to technical questions) hence the existence of a quantization map q is
actually fulfilled. In this situation, we call the deformation ?′ of EndA(MA) the induced deformation
of the endomorphism. This is unique up to equivalence and depends on the deformation ? of A and
on the right module deformation •. Note that if we pass to an equivalent deformation ?̃ with an
equivalent module deformation •̃ then we also get equivalent induced deformations for EndA(MA)
and the corresponding left module structure. Moreover, in many cases we will encounter, the right
module MA can be deformed only in a unique way up to equivalence: in this case, the deformation
?′ and •′ are already fixed up to equivalence by ? and the classical right module MA. A large class
of such examples arising from principal bundles in differential geometry can be found in [16], see
also [64].

The problem of finding deformations of bimodules can now be rephrased in the following way:

Corollary 6.3.15 Let MB A be a (B,A)-bimodule and let BBB = (BJλK, ?′) and AAA = (AJλK, ?) be
associative deformations such that there exists a right module deformation • of MA together with a
quantization map q as (6.3.29). Then there exists a left BBB-module structure •′ on MAMAMA turning it into
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a (BBB,AAA)-bimodule via •′ and • iff the algebra homomorphism B 3 b 7→ (x 7→ b · x) ∈ EndA(MA) can
be deformed into an algebra homomorphism

(BJλK, ?′) −→ (EndA(MA)JλK, ?′), (6.3.32)

where on the right hand side we use the induced deformation ?′ of the endomorphisms.

Note that thanks to the uniqueness it will not be important which of the equivalent deformations ?′ for
the endomorphisms we actually use: either we can find the deformation of the algebra homomorphism
for all or for none.

Remark 6.3.16 (Obstructions to bimodule deformations) In general, we will encounter ob-
structions for bimodule deformations: suppose we are in the situation of Corollary 6.3.15 with the
additional assumption that B = EndA(MA) simply coincides with the classical endomorphisms. This
will be the case of e.g. Morita equivalence bimodules. Then a given deformation ?′′ of B will allow
for a bimodule deformation iff ?′′ is in the equivalence class of the induced deformation ?′. If B has
non-equivalent deformations we obtain hard obstructions, see again [16,64].

6.3.4 Deformation of Projective Modules

In view of Morita theory it is clear that projective modules will play a particular role also with respect
to deformations. We investigate the deformation theory of this class of modules in some detail. As
before we consider an associative deformation AAA = (AJλK, ?) of an associative algebra A over a ring
of scalars R. For simplicity we assume that A is unital and the deformation respects the unit. The
following fundamental result clarifies the deformations of projective right A-modules completely:

Theorem 6.3.17 (Deformation of projective modules) Let EA be a finitely generated projective
right module over A.

i.) There exists a deformation • of EA into a right AAA-module (EAJλK, •).
ii.) Any two deformations of EA are equivalent.
iii.) The deformed module (EAJλK, •) is again finitely generated and projective, now over AAA, with the

same number of generators.
iv.) If E′A is another finitely generated projective right module over A then the classical limit map

cl : HomAAA(EAEAEA, EEE
′
AAA) −→ HomA(EA, E

′
A) (6.3.33)

is split surjective and induces an RJλK-linear isomorphism

HomAAA(EAEAEA, EEE
′
AAA) ∼= HomA(EA, E

′
A)JλK. (6.3.34)

v.) The deformation • induces a deformation ?′ with a corresponding deformed left-module structure
•′ for the endomorphisms EndA(EA). The equivalence class of the deformation ?′ depends only
on the equivalence class of ? and the isomorphism class of EA.

vi.) Every dual basis {ei, ei}i∈I of EA can be deformed into a dual basis {ei, ei}i∈I for EAEAEA, i.e. we
have ei ∈ EAEAEA and ei ∈ HomAAA(EAEAEA,AAA) with

cl(ei) = ei and cl(ei) = ei (6.3.35)

as well as
x =

∑
i∈I

ei • ei(x) (6.3.36)

for all x ∈ EAEAEA.
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Proof: We mainly follow the arguments from [23]. For the first part we know that up to isomor-
phism we can write EA as e0An with some idempotent e0 = e2

0 ∈ Mn(A) and some n ∈ N. From
Proposition 6.1.30, iv.), we know that we can deform e0 into an idempotent e = e0 + · · · ∈ Mn(A)JλK
with respect to ?, i.e. we have e ? e = e. Thus we obtain a finitely generated projective module
e ?AAAn. Now again Proposition 6.1.30, ii.), shows that the classical limit map cl : e ?AAAn −→ e0An is
split surjective via the map I. It induces an RJλK-linear isomorphism e ?AAAn ∼= (e0An)JλK: indeed, by
choosing f0 in Proposition 6.1.30, ii.), to be a projection onto a single column this follows directly.
Transferring the right AAA-module structure of e ? AAAn back to (e0An)JλK and thus to EAJλK yields a
right AAA-module structure • which is the deformation of EA we are looking for. By construction, the
deformation is a finitely generated projective module over AAA with the number n of generators being
the same as classically. To prove the uniqueness assume that •̃ is another deformation of EA as a
right AAA-module, not necessarily projective. Then we have the diagram

(EAJλK, •)

(EAJλK, •̃) EA 0

T

cl

cl

with the classical limit maps cl for both deformations. According to Example 6.3.2 we can view the
classical limit maps as morphisms of AAA-modules if we equip the classical right A-module EA with the
trivial AAA-module structure (6.3.5). Since the classical limit is obviously surjective, we get a morphism
T of AAA-modules such that the diagram commutes by the very properties of a projective module from
Proposition 2.3.3, iv.). Thus we have cl ◦ T = cl which simply means that T = idEA

+ · · · starts with
the identity in zeroth order. But then T is invertible and •̃ and • turn out to be equivalent via T . For
the next part we can assume that the two projective modules are given as EA = e0An and E′A = f0Am

with idempotents e0 ∈ Mn(A) and f0 ∈ Mm(A) for some n,m ∈ N. From Exercise 2.4.14 we know
that the module morphisms from EA to E′A are then given by the matrices f0Mm×n(A)e0 acting on
e0An by matrix multiplication as usual. Correspondingly, the AAA-linear maps from e ?AAAn to f ?AAAm

are given by f ? Mm×n(AAA) ? e. Then Proposition 6.1.30, ii.), shows that the classical limit map is
split surjective and induces an isomorphism also in this case. This shows the fourth part. Using this,
the fifth then follows from Proposition 6.3.13 at once. For the last part, we first note that we can
apply the fourth part to EA and E′A = A to get the corresponding statement for the dual module
HomA(EA,A). This means that we have for ei ∈ HomA(EA,A) an element ei ∈ HomAAA(EAEAEA,AAA) with
cl(ei) = ei. Choosing such quantizations we consider the map

A : EAEAEA 3 x 7→ A(x) =
∑

i∈I
ei • ei(x).

By construction, A is right AAA-linear and hence A ∈ EndAAA(EAEAEA). Since we started with a dual basis we
have cl(A) = idEA

. This means that A is invertible by the usual geometric series. Setting ei = A−1(ei)
will then give the desired elements in EAEAEA with cl(ei) = ei and (6.3.36). �

This theorem has several important corollaries. As a first application we note that the classical
limit functor on projective modules is essentially surjective and full. Note that it is not faithful as
we typically have e.g. many nontrivial endomorphisms of the deformed projective modules which are
the identity in zeroth order.

Corollary 6.3.18 Let AAA = (AJλK, ?) be a unital associative deformation of a unital associative
algebra A over R. Then the classical limit functor of modules restricts to a functor

cl : Proj(AAA) −→ Proj(A), (6.3.37)
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which is essentially surjective, injective on objects up to isomorphism, and full.

Proof: Indeed, the classical limit of a finitely generated projective module over AAA is again finitely
generated and projective over A. The functoriality is clear already in the larger context of Propo-
sition 6.3.3, iii.). Since we can deform every projective module over A in a unique way up to
isomorphism, the essential surjectivity and injectivity statement follows. Finally, the fullness follows
from the fourth part of the theorem. �

As an immediate consequence, we see that the K0-theory of a deformed algebra is isomorphic to
the one of the undeformed algebra:

Corollary 6.3.19 (Rosenberg [100]) Let AAA = (AJλK, ?) be a unital associative deformation of a
unital associative algebra A over R. Then the classical limit induces an isomorphism of semigroups

cl∗ : Proj(AAA)
∼=−→ Proj(A) (6.3.38)

and an isomorphism of groups
cl∗ : K0(AAA)

∼=−→ K0(A). (6.3.39)

We can give also a different interpretation of the rigidity of projective modules. The fact that
they always can be deformed in a unique way up to equivalence also follows from the computation of
their Hochschild cohomology:

Proposition 6.3.20 Let EA be a finitely generated projective module over a unital associative algebra
A over R. Then one has

HHk(A,EndR(EA)) =

{
EndA(EA) for k = 0

{0} for k 6= 0.
(6.3.40)

Proof: For k = 0 we always have that the zeroth Hochschild cohomology coincides with the right
A-linear endomorphisms, see Proposition 6.3.6, ii.), and in particular (6.3.22). To show that the
higher Hochschild cohomologies are trivial, we follow [120, Prop. 2.7.1] and consider a dual basis
{ei, ei}i∈I for EA, see Proposition 2.3.3, iii.). For a Hochschild cochain φ ∈ HCk(A,EndR(EA)) we
can then define

((hφ)(a1, . . . , ak−1))x =
∑
i∈I

φ(ei(x), a1, . . . , ak−1)ei,

where a1, . . . , ak−1 ∈ A and x ∈ EA. This defines an element hφ ∈ HCk−1(A,EndR(EA)) and hence
a map

h : HC•(A,EndR(EA)) −→ HC•−1(A,EndR(EA)),

if we set h to be zero on HC0(A,EndR(EA)). We claim that h is a homotopy of the Hochschild
differential, i.e. for k ≥ 1 we have

(hδ + δh)
∣∣∣
HCk(A,EndR(EA))

= idHCk(A,EndR(EA)) . (∗)

Indeed, this is just a computation. We have for φ ∈ HCk(A,EndR(EA))

((δhφ)(a1, . . . , ak))(x)

= ((hφ)(a2, . . . , ak))(x · a1)

+

k−1∑
r=0

(−1)r((hφ)(a1, . . . , arar+1, ak))(x) + (−1)k(((hφ)(a1, . . . , ak−1))(x)) · ak
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=
∑
i∈I

(
φ(ei(x · a1), a2, . . . , ak)

)
(ei)

+
∑
i∈I

k−1∑
r=0

(−1)r
(
φ(ei(x), a1, . . . , arar+1, ak)

)
(ei) + (−1)k

∑
i∈I

(
(φ(ei(x), a1, . . . , ak−1))(ei)

)
· ak,

where a1, . . . , ak and x ∈ EA. For the other contribution we get

((hδφ)(a1, . . . , ak))(x)

=
∑
i∈I

(
(δφ)(ei(x), a1, . . . , ak)

)
(ei)

=
∑
i∈I

(φ(a1, . . . , ak))(ei · ei(x))−
∑
i∈I

(
φ(ei(x)a1, a2, . . . , ak)

)
(ei)

+
∑
i∈I

k−1∑
r=1

(−1)r+1
(
φ(ei(x), a1, . . . , arar+1, . . . , ak)

)
(ei)

+ (−1)k+1
∑
i∈I

(
(φ(ei(x), a1, . . . , ak−1))(ei)

)
· ak.

Now the property
x =

∑
i∈I

ei · ei(x)

of a dual basis together with the right A-linearity ei(x · a) = ei(x)a of the maps ei ∈ HomA(EA,A)
shows that (∗) holds, i.e. the identity is homotopic to zero. With this homotopy equation we get
(6.3.40) for k ≥ 1 at once. �

With this result we can now apply our considerations from Section 6.3.2 and conclude that defor-
mations of projective modules always exist and are unique up to equivalence: Proposition 6.3.7 and
Proposition 6.3.9 can be applied to this case.

6.4 Exercises
Exercise 6.4.1 (Proof of Proposition 6.1.1) Prove Proposition 6.1.1.
Hint: Let Φ be given and define φ0 to be the map

φ0(v1, . . . , vn) = cl(Φ(v1, . . . , vn))

for v1 ∈ V1, . . . , vn ∈ Vn. Show that this is an R-multilinear map. Extend this map now to formal power series and
consider Φ− φ0. Why is this the starting point for an induction?

Exercise 6.4.2 (Classical limit of insertions) Let V and W be modules over R. Moreover, let
V1, . . . , Vn and W1, . . . ,Wm, as well as U be modules over R and consider the formal power series
V JλK etc. as modules over RJλK as usual.
i.) Let Φ: V1JλK × · · · × VnJλK −→ Wi+1JλK be an RJλK-multilinear map with i = 0, . . . ,m − 1.

Moreover, let also Ψ: W1JλK × · · · ×WmJλK −→ UJλK be RJλK-multilinear. Show that for the
insertion after the i-th position we have

cl(Ψ ◦i Φ) = cl(Ψ) ◦i cl(Φ). (6.4.1)

ii.) Let Φ: V JλK −→ W JλK and Ψ: W JλK −→ UJλK be RJλK-linear maps. Show that for their
composition one has

cl(Ψ ◦ Φ) = cl(Ψ) ◦ cl(Φ). (6.4.2)
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iii.) Show that the classical limit gives a monoid morphism

cl : EndRJλK(V JλK) −→ EndR(V ), (6.4.3)

which restricts to a group morphism

cl : Gl(V JλK) −→ Gl(V ). (6.4.4)

Determine the kernel and the image of this group morphism explicitly.

Exercise 6.4.3 (The λ-adic topology) Give a proof of the statements in Proposition 6.1.2.
Hint: All statements except the completeness are rather straightforward. For the completeness rewrite the condition
of being a Cauchy sequence using the order. The main step consists now in showing that for the Cauchy sequence and
for every k ∈ N0 the k-th order of the members of the sequence becomes constant after finitely many terms.

Exercise 6.4.4 (Topologically free modules)

Exercise 6.4.5 (Banach’s fixed point theorem) Let V be a module over a ring R and consider
V JλK as RJλK-module as usual.
i.) Recall Banach’s fixed point theorem for contracting maps on complete metric spaces.
ii.) Let T : V JλK −→ V JλK be a (not necessarily linear) map. Show that T is contracting with

respect to the λ-adic metric iff there is a k ∈ N with

o(T (x)− T (y)) ≥ o(x− y) + k (6.4.5)

for all x, y ∈ V JλK. In this case q = 2−k is a Lipschitz constant for T .
This gives a very simple criterion for contracting maps as one only has to count orders in λ correctly.

Exercise 6.4.6 (The induced Poisson bracket) Let (A, µ0) be an associative commutative alge-
bra with two formal associative deformations µ = µ0 + λµ1 + · · · and µ̃ = µ0 + λµ̃1 + · · · . Show that
the induced Poisson brackets according to Proposition 6.1.8 coincide if the deformations µ and µ̃ are
equivalent.
Hint: Compute explicitly how the first order term of the deformation changes if one passes from µ to an equivalent
deformation by means of an equivalence transformation S = id +λS1 + · · · .

Exercise 6.4.7 (Gerstenhaber deformation) Let A be an associative algebra over R where Q ⊆
R.
i.) Consider the formal power series AJλK equipped with the undeformed product inherited from

A. Show that in this case any derivation D of AJλK is a formal power series of derivations of
A and conclude

Der(AJλK) = Der(A)JλK. (6.4.6)

ii.) Consider 2n pairwise commuting derivations D1, . . . , Dn, E1, . . . , En ∈ Der(AJλK). Show that
Gerstenhaber’s construction as in Proposition 6.1.12 still yields an associative deformation ? of
A.

iii.) Assume that A is in addition commutative. Compute for this deformation ? the induced Poisson
bracket according to Proposition 6.1.8.

Exercise 6.4.8 (Deformation by commuting derivations) Inspired by Gerstenhaber’s construc-
tion from Proposition 6.1.12 one can consider the following slight but very useful generalization.
Suppose one has an associative algebra A and a linear map

P : A ⊗ A −→ A ⊗ A (6.4.7)
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with the following properties: First, P is a biderivation in the sense that

P (ab⊗ c) = P (a⊗ c)(b⊗ 1) + (a⊗ 1)P (b⊗ c) (6.4.8)
and

P (a⊗ bc) = P (a⊗ b)(1⊗ c) + (1⊗ b)P (a⊗ c) (6.4.9)

for all a, b, c ∈ A. Second, the three maps

P12 = P ⊗ id, P13 = (id⊗τ) ◦ P12 ◦ (id⊗τ), and P23 = id⊗P (6.4.10)

pairwise commute, where τ : A ⊗ A −→ A ⊗ A is the canonical flip map sending a⊗ b to b⊗ a.
i.) Rewrite the biderivation properties of P without using elements but just the undeformed mul-

tiplication µ0. This will lead to the maps P12, P13, and P23.
ii.) Follow now the proof of Proposition 6.1.12 to conclude that

a ? b = µ0 ◦ eλP (a⊗ b) (6.4.11)

provides an associative deformation.
This is a generalization to situations where one wants to have more than finitely many commuting
derivations in the exponent: it is then sometimes not possible to write the map P as a sum (or series)
of tensor products of commuting derivations but it may still be possible to directly prove the two
above properties, see e.g. [117, Sect. 6] for several applications in quantum field theory.

Exercise 6.4.9 (Gerstenhaber bracket) Show that the identity (6.1.38) implies the graded Jacobi
identity of the Gerstenhaber bracket (6.1.39).

Exercise 6.4.10 (The Hochschild differential) Let EA A be an (A,A)-bimodule. Prove that the
Hochschild differential δ as in (6.3.17) satisfies δ2 = 0.
Hint: Start with small n and an explicit computation. Then for arbitrary n the pattern of how the terms cancel
becomes clear. This will also give an independent and more direct proof of δ2 = 0 in the case of the algebra itself, see
Remark 6.1.17.

Exercise 6.4.11 (Multiderivations) Let A be a commutative associative algebra over a ring of
scalars R containing Q. Denote by

Alt : HCk(A,A) −→ HCk(A,A) (6.4.12)

the usual antisymmetrization operator, i.e.

Alt(φ)(a1, . . . , ak) =
1

k!

∑
σ∈Sk

sign(σ)φ(aσ(1), . . . , aσ(k)) (6.4.13)

for a1, . . . , ak ∈ A. For k = 0 we set Alt = id.
i.) Show Alt ◦Alt = Alt.
ii.) Show Alt ◦ δ = 0.

Hint: This is a lengthy but elementary computation.

iii.) Let φ ∈ HCk(A,A) be an antisymmetric cocycle. Show that φ is exact iff φ = 0.
iv.) Let X ∈ HCk(A,A) be a multiderivation, i.e. an antisymmetric map satisfying the Leibniz rule

in each argument. Show that δX = 0.
v.) Conclude that the multiderivations always contribute to the Hochschild cohomology, i.e. the

map X 7→ [X] is injective for multiderivations.
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vi.) Extend the discussion to cochains with values in a bimodule EA A. Which properties on EA A will
be useful to assume?

In many situations one can actually show more: the Hochschild cohomology is given by the multi-
derivations. This is the statement of the Hochschild-Kostant-Rosenberg theorem in its various forms
for many interesting algebras, see e.g. [34,112] for the case of smooth functions on a manifold as well
as [63] for the original setting.

Exercise 6.4.12 (Gerstenhaber product in low degrees) Let A be a module over a commuta-
tive ring R of scalars. Let a, b ∈ HC0(A,A), A,B ∈ HC1(A,A) and µ, ν ∈ HC2(A,A). Determine
all the Gerstenhaber products a ◦ b, a ◦A, a ◦ µ, etc. explicitly by evaluating them on elements of A.
Which known operations show up?

Exercise 6.4.13 (Hochschild cohomology of a ∗-algebra) Let A be a module over C = R(i)
and let ∗ : A −→ A be a C-antilinear involution. The following results are based on [24].
i.) Let φ ∈ HCk(A,A). Show that φ∗ defined by

(φ∗)(a1, . . . , ak) = φ(a∗k, . . . , a
∗
1)∗ (6.4.14)

yields a C-multilinear map φ∗ ∈ HCk(A,A) such that the map φ 7→ φ∗ is C-antilinear and
involutive.

ii.) Show that for φ ∈ HCk(A,A) and ψ ∈ HC`(A,A) one has

(φ ◦ ψ)∗ = (−1)(k−1)(`−1)φ∗ ◦ ψ∗, (6.4.15)

and compute also [φ, ψ]∗.
iii.) Show that an associative product µ ∈ HC2(A,A) on A yields a ∗-algebra structure with respect

to ∗ iff µ∗ = µ.
iv.) Suppose now that A is indeed a ∗-algebra. Compute (δφ)∗ and conclude that the involution

passes to the Hochschild cohomology HH•(A,A).
v.) Define a Hochschild cochain φ to be Hermitian if φ∗ = φ. Show that this allows to define a

Hermitian Hochschild cohomology of A.
vi.) Show that a formal deformation µ = µ0 + λµ1 + · · · is Hermitian iff its cochains µ∗r = µr are

Hermitian for all r ∈ N.
vii.) Repeat the discussion of Proposition 6.1.18 and Proposition 6.1.19 to conclude that in the case

of Hermitian deformations the obstructions for existence and equivalence are located in the
third and second Hermitian Hochschild cohomology, respectively.

viii.) Show that the Hochschild cohomology HH•(A,A) decomposes canonically into two copies of
the Hermitian Hochschild cohomology, provided that 1

2 ∈ R, by decomposing a class into its
real and imaginary part.

Exercise 6.4.14 (Unitary deformations of 1) Let A be a unital ∗-algebra over C = R(i) with
Q ⊆ R with a Hermitian deformation ?.
i.) Let a ∈ AJλK be Hermitian. Show that the ?-exponential series

Exp(iλa) =
∞∑
r=0

(iλ)r

r!
a?r (6.4.16)

is unitary.
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ii.) Conversely, let u ∈ AJλK be unitary with cl(u) = 1. Prove that there is a unique a ∈ AJλK with
u = Exp(iλa). Show that necessarily a = a∗ is Hermitian.
Hint: Discuss why the Taylor expansion of log(1 + x) around x = 0 will give the existence of a solution for a.
Why is it unique?

iii.) Let u0 ∈ A be unitary with respect to the undeformed algebra structure. Let u, v ∈ AJλK be
two deformations of u0 into unitary elements with respect to ?. Show that there exists a unique
Hermitian a ∈ AJλK with u = v ? Exp(iλa).

Exercise 6.4.15 (The ?-exponential) While the series of the exponential map as in (6.4.16) allows
to exponentiate algebra elements with respect to a deformed product ? as soon as they come with (at
least) one power of λ, this is no longer that easy if this assumption is not satisfied. Here we extend
the definition of the exponential for the case of a star product ? on a manifold M . We base our
discussion on [17,18], see also [116, Sect. 6.3.1].
i.) Let H = H0 + λH1 + · · · ∈ C∞(M)JλK be given. Show that there exists a unique solution

R 3 t 7→ f(t) ∈ C∞(M)JλK of the differential equation

d

dt
f(t) = H ? f(t) (6.4.17)

with initial condition f(0) = 1.
Hint: Factorize f(t) = e−tH0g(t) and obtain a differential equation for g which can be rewritten as an integral
equation. This you can solve by means of the Banach fixed point theorem based on a simple counting argument
as in Exercise 6.4.5.

We denote the above solution by Exp(tH) = f(t) and call this the ?-exponential function with respect
to H.
ii.) Show that one has Exp(tH) ? H = H ? Exp(tH) for all t ∈ R.
iii.) Show that t 7→ Exp(tH) is a one-parameter group, i.e. Exp(0) = 1 and Exp(tH) ? Exp(sH) =

Exp((t+ s)H).
iv.) Show that for a Hermitian star product one has Exp(tH) = Exp(tH).
v.) Show that for H0 = 0 the exponential Exp(tH) reduces to the series (6.4.16).
vi.) Show that for all f ∈ C∞(M)JλK one has Exp(tH) ? f ? Exp(−tH) = et ad(H)(f).
vii.) Let f, g ∈ C∞(M)JλK. Show that [f, g]? = 0 iff [Exp(f), g]? = 0 iff [Exp(f),Exp(g)]? = 0.

Hint: This is not completely trivial as it would be to conclude [f, g]? = 0 from [Exp(tf),Exp(sg)]? = 0 for all
t, s ∈ R where one simply can differentiate. Instead, one has to rewrite [Exp(f),Exp(g)]? = 0 as a fixed point
equation for ad(g)(Exp(f)) of a linear contracting operator to conclude that ad(g)(Exp(f)) = 0.

viii.) Suppose f, g ∈ C∞(M)JλK commute with respect to ?. Show that in this case Exp(f)?Exp(g) =
Exp(f + g).

ix.) Let M be connected. Show that Exp(H) = 1 iff H = 2πik for some k ∈ Z.

Exercise 6.4.16 (The Wick star product) Consider again the ∗-algebra A = CJz, zK with its
∗-subalgebra C[z, z] from Exercise 1.4.19. Define the Wick star product

a ?Wick b = µ ◦ exp

(
2λ

∂

∂z
⊗ ∂

∂z

)
(a⊗ b), (6.4.18)

where a, b ∈ AJλK.
i.) Show that C[z, z]JλK is a ∗-subalgebra with respect to ?Wick. Moreover, show that C[z, z][λ] is

a ∗-subalgebra with respect to ?Wick, too, when viewed as algebra over C[λ].
ii.) Show that ?Wick is a completely positive and in fact strongly positive deformation of A. Show

that this is also true for the subalgebra C[z, z].
Hint: The first statement is pretty trivial according to Exercise 1.4.19. For the second, use Proposition 6.2.18.
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iii.) Compute the Gel’fand ideal of the positive δ-functional δ : AJλK −→ CJλK with respect to ?Wick

explicitly. Conclude that the GNS pre-Hilbert space can be identified with H = (CJzK)JλK and
find the explicit formula for the inner product.
Hint: This is the analog of the Bargmann-Fock space from complex function theory.

iv.) Show that the deformed algebra (AJλK, ?Wick) has a faithful ∗-representation and hence suffi-
ciently many positive linear functionals, quite contrary to its classical limit A.

v.) Compute explicitly the classical limit of the GNS representation of δ according to the general
construction from Proposition 6.2.17 and determine the the corresponding Null space (6.2.9).

Thus deforming a ∗-algebra can sometimes have the effect that we end up with better properties for
the deformed algebra than for the classical one. In the above example all the additional positive
functionals have a trivial classical limit except for δ itself. More on this fundamental example can be
found in [18, Sect. 6] and [113, Sect. 5] as well as in [116, Sect. 7.2].

Exercise 6.4.17 (Bimodule structure of HomR(MA,M
′
A)) As a slight variation of Exercise 4.4.5

we consider an algebra A over a ring R. Moreover, let MA and M′
A be right A-modules.

i.) Show that HomR(MA,M
′
A) becomes a (A,A)-bimodule by defining a ·A and A · a by

(a ·A)(x) = A(x · a) and (A · a)(x) = (A(x)) · a (6.4.19)

for a ∈ A, A ∈ HomR(MA,M
′
A), and x ∈MA.

ii.) Show that for this bimodule structure one obtains

HH0(A,HomR(MA,M
′
A)) = HomA(MA,M

′
A). (6.4.20)

iii.) Now consider the algebras EndA(MA) and EndA(M′
A). Show that HomR(MA,M

′
A) becomes a

(EndA(M′
A),EndA(MA))-bimodule in a natural way. Is HomA(MA,M

′
A) a sub-bimodule?

Exercise 6.4.18 (Cohomological approach to deformation of modules) Provide the missing
proofs for Proposition 6.3.7 and Proposition 6.3.9. Formulate and prove the analogous results for left
modules instead of right modules.

Exercise 6.4.19 (Deformations of a particular type) Let A be an algebra over a ring R of
scalars. We consider a subset of the Hochschild complex which we denote by HC•type(A,A) where
the word “type” should characterize the allows elements compared to general elements of HC•(A,A).
We require that µ0 ∈ HC2

type(A,A), that HC0
type(A,A) = A, and that HC•type(A,A) is closed under

the insertion operations ◦i for all i.
i.) Show that under these assumptions HC•type(A,A) becomes a subcomplex of the usual Hochschild

complex HC•(A,A) which is also closed under the Gerstenhaber product and the Gerstenhaber
bracket.

ii.) Conclude that the cohomology HH•type(A,A) of the subcomplex HC•type(A,A) becomes a graded
Lie algebra itself.

iii.) Consider now a formal deformation µ = µ0 + λµ1 + · · · of A where all terms are required to
satisfy µr ∈ HC2

type(A,A). Formulate and prove the analogous statements to Proposition 6.1.18
and Proposition 6.1.19 for such more specified deformations of a given type.

In a next step we consider a right A-module MA. Now suppose that we are interested in a subal-
gebra D ⊆ EndR(MA) of the endomorphisms of MA. Moreover, we specify also a type of cochains
HC•type(A,D) with values in D subject to the conditions that HC0

type(A,D) = D, and the module
multiplication ρ0 of MA is an element of HC1

type(A,D). In addition, we want φ ◦i ψ ∈ HCk+`−1
type (A,D)
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whenever φ ∈ HCk
type(A,D) and ψ ∈ HC`

type(A,A) as well as φ ◦ ψ ∈ HCk+`
type(A,D) for all φ ∈ φ ∈

HCk
type(A,D) and ψ ∈ HC`

type(A,D) where we define

(φ ◦ ψ)(a1, . . . , ak+`) = φ(a1, . . . ak) ◦ ψ(ak+1, . . . , ak+`) (6.4.21)

for a1, . . . , ak+` ∈ A.
iv.) Show that HC•type(A,D) is a subcomplex of HC•(A,D) giving a cohomology HH•type(A,D).
v.) Formulate and prove that also for the module deformations of the specified type we have the

analogs of Proposition 6.3.7 and Proposition 6.3.9, now based on the cohomology HH•type(A,D).
In many situations a more specified type of the cochains in a deformation problem is helpful or even
required by other needs. Thus the more restricted Hochschild cohomologies respecting the type will
control such deformation problems, see also [16].

Exercise 6.4.20 (Cohomological approach to bimodule deformations) Let A and B be uni-
tal algebras over a ring R of scalars and let EB A be a (B,A)-bimodule.
i.) Consider the opposite algebra Aopp and the tensor product Aopp ⊗ext B. Show that EB A is a

Aopp ⊗ext B-left module in a natural way. Conversely, show that any Aopp ⊗ext B-left module
can be viewed as a (B,A)-bimodule.

ii.) Show that the above correspondence of bimodules and left modules is compatible with the usual
(bi-)module morphisms and establish an equivalence of categories this way.

Consider now formal deformations AAA = (AJλK, ?A) and BBB = (BJλK, ?B).
iii.) Show that the deformations ?A and ?B induce a formal deformation of Aopp⊗ext B, denoted by

? in the following.
iv.) Show that a bimodule deformation of EB A into a (BBB,AAA)-bimodule corresponds to a left module

deformation with respect to ((Aopp ⊗ B)JλK, ?). Show that this correspondence is compatible
with equivalence of (bi-) module deformations.

v.) Use this result to formulate a cohomological approach to bimodule deformations based on the
Hochschild cohomology of Aopp ⊗ext B.

While this approach is perhaps conceptually more clear than the one taken in Section 6.3.3 it typically
suffers from the fact that the relevant Hochschild cohomology for the algebra Aopp⊗ext B is, in many
cases of interest, hard to compute.

Exercise 6.4.21 (Deformation of projections) Consider again an idempotent e0 ∈ A and a for-
mal deformation ? for A.
i.) Show that the formal Taylor expansion needed in (6.1.73) converges in the λ-adic topology.
ii.) Verify by an explicit computation that (6.1.73) defines an idempotent.
iii.) Show by an explicit computation of the Taylor expansion that one only has integer coefficients

needed in (6.1.73). Hence the assumptions of Q ⊆ R are in fact superfluous.
Hint: One needs some properties of the binomial coefficients here, see also the discussion in [40, Theorem 1.54].

Exercise 6.4.22 (Classical limit of a projective module) Let AAA = (AJλK, ?) be an associative
deformation of a unital algebra A over R. Moreover, let EAEAEA be a finitely generated projective module
over AAA.
i.) Show that the classical limit module cl(EAEAEA) is a finitely generated projective module over A

with the same number of generators.
Hint: Choose an idempotent e ∈ Mn(A)JλK = Mn(AAA) with a module isomorphism Ψ: EAEAEA −→ e ? AAAn. Show
that this induces an isomorphism ψ : EA −→ e0An for e0 = cl(e) such that ψ ◦ cl = cl ◦Ψ.
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202 6. DEFORMATIONS OF ALGEBRAS, STATES, AND MODULES

ii.) Show that there is an RJλK-linear isomorphism φ : EAJλK −→ EAEAEA with cl ◦ φ = idEA
.

Hint: Let Ψ and ψ be as before. Use then the canonical isomorphism I : e0AnJλK −→ e ? AnJλK to define
φ = Ψ−1 ◦ I ◦ ψ where we extended ψ to an isomorphism ψ : EAJλK −→ e0AnJλK as usual and where I is the
isomorphism from Corollary 6.1.31.
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Chapter 7

Morita Theory of Deformed ∗-Algebras

7.1 The Ring-Theoretic Classical Limit Homomorphism

In this section we start with the ring-theoretic situation and discuss the classical limit of bimodules.
Ultimately, this will be formulated as a homomorphism of bicategories. This point of view will yield
many consequences in a clear and simple way as homomorphisms of bicategories lead to various
functors between derived concepts. In particular, we will obtain a classical limit as a groupoid
morphism on the level of the Picard groupoids. This includes a classical limit group morphism
between the corresponding Picard groups. The classical limit morphism completely encodes the
question which deformations of algebras are Morita equivalent. We restrict ourselves to the unital
case throughout this section for simplicity.

7.1.1 The Classical Limit for Bimod

Recall that the bicategory Bimod had unital rings as objects, bimodules as 1-morphisms between
them and bimodule morphisms as 2-morphisms. When working with algebras over a specified ring R
of scalars we indicate this by writing BimodR for the corresponding bicategory. With this notation,
the previous bicategory is simply given by

Bimod = BimodZ . (7.1.1)

We will fix now a ring of scalars R and consider BimodR. Then we can also consider the deformed
algebras as algebras over RJλK. However, in general, there are more algebras over RJλK than just those
which are formal unital associative deformations of algebras over R. Hence we restrict ourselves to
the following sub-bicategory:

Definition 7.1.1 (The bicategory BimodRJλK) The sub-bicategory of BimodRJλK consisting of for-
mal unital associative deformations of algebras over R as objects, all strongly non-degenerate bimodules
between them as 1-morphisms, and all bimodule morphisms as 2-morphisms is denoted by BimodRJλK.
The classifying category of BimodRJλK is denoted by BimodRJλK.

Recall that by our usual convention we consider all structure maps of algebras and bimodules to
be (multi-) linear for scalars. Since we only consider unital algebras this is automatic since we can
consider every scalar α ∈ R as element α1 ∈ A and analogously for the deformed case. In particular,
the formal parameter λ becomes an algebra element this way.

For the deformed algebras we immediately have a definition of the classical limit. For AAA =
(AJλK, ?) we set cl(AAA) = A and get a unital algebra morphism

cl : AAA −→ cl(AAA) = A (7.1.2)

203



204 7. MORITA THEORY OF DEFORMED ∗-ALGEBRAS

as usual. We want to extend this map on objects now to 1-morphisms and 2-morphisms.
Thus let AAA and BBB be two such deformations and let MB AMB AMB A be a (BBB,AAA)-bimodule. We do not

assume that MB AMB AMB A is of the form MB AJλK with some (B,A)-bimodule MB A. Nevertheless, we can
define a classical limit by the quotient

cl( MB AMB AMB A) = MB AMB AMB A

/
λ MB AMB AMB A, (7.1.3)

which on one hand is a R-module. On the other hand, it becomes a (B,A)-bimodule for the classical
limits by setting

b · cl(x) = cl(b • x) and cl(x) · a = cl(x • a) (7.1.4)

for a ∈ A, b ∈ B, and x ∈ MB AMB AMB A. Here we denote the two module structures on MB AMB AMB A with respect to
the deformed algebras by •. From Proposition 6.3.3 we know that we obtain a left B-module structure
on MB A as well as a right A-module structure. Since on MB AMB AMB A we have a bimodule structure for the
deformed algebras, it easily follows that (7.1.4) actually gives a (B,A)-bimodule. Note that it is
crucial that elements a ∈ A can be viewed as elements of the deformed algebra AAA in a canonical way.

Finally, assume that T : MB AMB AMB A −→ MMM′
BBB AAA is a (BBB,AAA)-bimodule morphism. Then we can again use

Proposition 6.3.3 to construct a morphism

cl(T ) : cl( MB AMB AMB A) −→ cl( MMM′
BBB AAA) (7.1.5)

between the classical limits by setting

cl(T )(cl(x)) = cl(T (x)) (7.1.6)

for x ∈ MB AMB AMB A. We know already that cl(T ) is a morphism of each of the module structures. Hence
we indeed obtain a bimodule morphism this way.

Lemma 7.1.2 Let AAA and BBB be formal unital associative deformations of the algebras A and B over
R. Then the classical limit yields a functor

cl : BimodRJλK(BBB,AAA) −→ BimodR(B,A). (7.1.7)

Proof: The only thing left to show is that cl preserves the identity bimodule morphisms and the com-
position. But both claims are a simple computation analogous to the one needed for Proposition 6.3.3,
iii.). �

The idea is now to combine all these individual classical limit functors into a big homomorphism
of bicategories. To this end we need to check the compatibility of cl with tensor products of bimodules.

Lemma 7.1.3 Let CCC, BBB, and AAA be formal unital associative deformations of algebras C, B, and A
over R. Moreover, let NC BNC BNC B ∈ BimodRJλK(CCC,BBB) and MB AMB AMB A ∈ BimodRJλK(BBB,AAA) be bimodules. Then the
R-linear map determined by

I : cl( NC BNC BNC B)⊗B cl( MB AMB AMB A) 3 cl(y)⊗B cl(x) 7→ cl(y ⊗BBB x) ∈ cl( NC BNC BNC B ⊗BBB MB AMB AMB A) (7.1.8)

for y ∈ NC BNC BNC B and x ∈ MB AMB AMB A yields a well-defined R-linear ( C,A)-bimodule isomorphism with inverse
determined by

I−1 : cl( NC BNC BNC B ⊗BBB MB AMB AMB A) 3 cl(y ⊗BBB x) 7→ cl(y)⊗B cl(x) ∈ cl( NC BNC BNC B)⊗B cl( MB AMB AMB A). (7.1.9)
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7.1. The Ring-Theoretic Classical Limit Homomorphism 205

Proof: We first show that the map (cl(y), cl(x)) 7→ cl(y⊗BBBx) is well-defined and R-bilinear. Indeed,
let y′ and x′ be other representatives then y − y′ = λy′′ and x− x′ = λx′′ for some y′′ ∈ NC BNC BNC B and
x′′ ∈ MB AMB AMB A, respectively. Since the tensor product over BBB is in particular also RJλK-bilinear we find

cl(y′ ⊗ x′) = cl
((
y − λy′′

)
⊗
(
x− λx′′

))
= cl

(
y ⊗ x− λy′′ ⊗ x + λ2y′′ ⊗ x′′ − λy ⊗ x′

)
= cl(y ⊗ x).

This shows that the above map is well-defined. The R-bilinearity is clear and hence the map I is well-
defined over the R-tensor product. Next we show that I is also well-defined over the tensor product
over B. Here we use that cl(y) · b = cl(y • b) as well as b · cl(x) = cl(b • x) for all b ∈ B and for
y ∈ NC BNC BNC B and x ∈ MB AMB AMB A. This shows that (cl(y) ·b, cl(x)) is mapped to cl((y •b)⊗BBBx) = cl(y⊗BBB b•x)
which is the image of (cl(y), b · cl(x)). Hence I is well-defined on the tensor product over B. In a
second step we consider the map

NC BNC BNC B ⊗BBB MB AMB AMB A 3 y ⊗BBB x 7→ cl(y)⊗B cl(x) ∈ cl( NC BNC BNC B)⊗B cl( MB AMB AMB A).

This is a well-defined R-linear map, now on the tensor product over BBB. Moreover, since the tensor
product BBB is also RJλK-bilinear we see that multiples of λ are mapped to zero under this map: both
classical limit maps cl on the right hand side have the multiples of λ in their kernel. Hence this map
passes to the quotient and yields a well-defined map (7.1.9). It is now clear that I is the inverse of
this map (7.1.9) and hence both are R-linear isomorphisms. Finally, it is easy to see that both maps
I and I−1 are left C-linear and right A-linear since we can check this on factorizing tensors. Hence
we have ( C,A)-bimodule isomorphisms as claimed. �

In this sense, the tensor product commutes with the classical limit. Of course, there is an iso-
morphism necessary to make this statement correct. In accordance with our bicategory creed it will
require particular attention to keep track of all the necessary identifications and their naturalness.
Hence we also denote the above isomorphism by I(NNN ,MMM) instead of just I in order to stress the
dependence on the bimodules NNN and MMM. Then we can formulate the fact that I is natural as follows:

Lemma 7.1.4 The isomorphisms I are natural. More precisely, for two given bimodule morphisms
S : MB AMB AMB A −→ MMM′

BBB AAA and T : NC BNC BNC B −→ NNN ′CCC BBB we have

cl(T ⊗ S) ◦ I(NNN ,MMM) = I(NNN ′,MMM′) ◦ (cl(T )⊗ cl(S)). (7.1.10)

Proof: It is sufficient to verify (7.1.10) on elementary tensors. Let x ∈ MMM and y ∈ NNN be given.
Then (

cl(T ⊗ S) ◦ I(NNN ,MMM)
)
(cl(y)⊗ cl(x)) = cl(T ⊗ S)(cl(y ⊗ x))

= cl((T ⊗ S)(y ⊗ x))

= cl(T (y)⊗ S(x))

= (I(NNN ′,MMM′))
(
cl(T (y))⊗ cl(S(x))

)
= (I(NNN ′,MMM′))

(
(cl(T )(cl(y)))⊗ (cl(S)(cl(x)))

)
=
(
I(NNN ′,MMM′) ◦ (cl(T )⊗ cl(S))

)
(cl(y)⊗ cl(x)).

Note that we have used the same ⊗-symbol for various tensor products in the above computation.�

Thus cl is compatible with tensor products in a natural way. Moreover, the classical limit is also
compatible with the unit elements of the tensor product:
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Lemma 7.1.5 The map
IA : AA A 3 a 7→ cl(a) ∈ cl( AA AAA AAA A) (7.1.11)

is an (A,A)-bimodule isomorphism.

Proof: Note that cl( AA AAA AAA A) = AA AAA AAA A

/
λ AA AAA AAA A is not equal to AA A, but only isomorphic via IA. Then

the statement is clear. �

Collecting all the above isomorphisms shows that the classical limit can be viewed as a homomor-
phism of bicategories: it only remains to be checked that cl satisfies the coherence conditions of a
homomorphism:

Theorem 7.1.6 (Classical limit for BimodRJλK) Let R be a unital commutative ring. Then the
classical limit functors cl from (7.1.7) together with the natural isomorphisms I from (7.1.8) and the
isomorphisms IA from (7.1.11) constitute a homomorphism of bicategories

cl : BimodRJλK −→ BimodR . (7.1.12)

Proof: It remains to check the coherence conditions (5.3.55), (5.3.56), and (5.3.57) from Defini-
tion 5.3.27 are fulfilled, see also Remark 5.3.28 for an explanation of the various possibilities of
morphisms between bicategories. Indeed, the classical limit of the underlying algebras provides the
map between the objects of the bicategories, the classical limit functor cl is the functor needed in
(5.3.52). The natural isomorphism I from Lemma 7.1.3 is the natural isomorphism required in (5.3.59)
and, finally, the map from Lemma 7.1.5 is the 2-morphism as requested in (5.3.60). Note that we
indeed have isomorphisms everywhere and thus will end up with a homomorphism of bicategories. We
check the coherence (5.3.55). Let DDD, CCC, BBB, and AAA, be deformations of D, C, B, and A, respectively.
Moreover, let OOODDD CCC ∈ BimodRJλK(DDD, CCC), NC BNC BNC B ∈ BimodRJλK(CCC,BBB), and MB AMB AMB A ∈ BimodRJλK(BBB,AAA) be
corresponding bimodules. Finally, let z ∈ OOO, y ∈ NNN , and x ∈MMM, respectively. For the left path of
maps in (5.3.55) applied to (cl(z)⊗ cl(y))⊗ cl(x) we get(

I(OOO,NNN ⊗MMM) ◦ (id⊗I(NNN ⊗MMM)) ◦ asso(cl(OOO), cl(NNN), cl(MMM))
)
((cl(z)⊗ cl(y))⊗ cl(x))

= I(OOO,NNN ⊗MMM)(cl(z)⊗ (I(NNN ,MMM)(cl(y)⊗ cl(x))))

= I(OOO,NNN ⊗MMM)(cl(z)⊗ cl(y ⊗ x))

= cl(z ⊗ (y ⊗ x)).

For the right path in the diagram (5.3.55) we have to evaluate the classical limit of the associativity
asso(OOO,NNN ,MMM) explicitly. Here we have(

cl(asso(OOO,NNN ,MMM))
)
(cl((z ⊗ y)⊗ x)) = cl

(
asso(OOO,NNN ,MMM)((z ⊗ y)⊗ x)

)
= cl(z ⊗ (y ⊗ x))

as expected. Using this we get for the right path of (5.3.55)(
cl(asso(OOO,NNN ,MMM)) ◦ I(OOO⊗NNN ,MMM) ◦ (I(OOO,NNN)⊗ id)

)
((cl(z)⊗ cl(y))⊗ cl(x))

= cl(asso(OOO,NNN ,MMM))
(
I(OOO⊗NNN ,MMM)(cl(z ⊗ y)⊗ cl(x))

)
= cl(asso(OOO,NNN ,MMM))(cl((z ⊗ y)⊗ x))

= cl(z ⊗ (y ⊗ x)),

which proves that (5.3.55) commutes. Next we consider the diagram (5.3.56). Here we compute for
a ∈ A

cl(right(MMM))(cl(x⊗ a)) = cl(right(MMM)(x⊗ a)) = cl(x • a) = cl(x) · cl(a).
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For a ∈ A we therefore have(
cl(right(MMM)) ◦ I(MMM, AA AAA AAA A) ◦ (id⊗IAAA)

)
(cl(x)⊗ a) = cl(right(MMM))

(
I(MMM, AA AAA AAA A)(cl(x)⊗ cl(a))

)
= cl(right(MMM))(cl(x⊗ a))

= cl(x) · cl(a)

= cl(x) · a, ,

which coincides with right(cl(MMM))(cl(x) ⊗ a) = cl(x) · a. This shows that (5.3.56) commutes, too.
The remaining diagram (5.3.57) commutes by an analogous computation. Thus cl is indeed a homo-
morphism of bicategories. �

Before we can discuss the consequences of this theorem we need to extend the results of Proposi-
tion 5.3.30 slightly. The following result on homomorphisms of bicategories holds in general and was
already used for bigroupoids:

Proposition 7.1.7 Let Φ: B −→ C be a homomorphism of bicategories. If E ∈ B1(b, a) is an
invertible 1-morphism with inverse E′ ∈ B1(a, b) and isomorphisms

φ : E′ ⊗b E −→ Ida (7.1.13)
and

ψ : E ⊗a E′ −→ Idb, (7.1.14)

then Φ(E) ∈ C1(Φ(b),Φ(a)) is invertible as well with inverse Φ(E′) and isomorphisms

ϕ−1
a ◦ Φ(φ) ◦ ϕaba(E′, E) : Φ(E′)⊗Φ(b) Φ(E) −→ IdΦ(a) (7.1.15)

and
ϕ−1
b ◦ Φ(ψ) ◦ ϕbab(E,E′) : Φ(E)⊗Φ(a) Φ(E′) −→ IdΦ(b). (7.1.16)

Proof: We extend the argument from Proposition 5.3.30, ii.), to homomorphisms between general
bicategories and not just between bigroupoids. Since Φ: B(b, a) −→ C(Φ(b),Φ(a)) is a functor for all
a, b we conclude that

Φ(φ) : Φ(E′ ⊗b E) −→ Φ(Ida) and Φ(ψ) : Φ(E ⊗a E′) −→ Φ(Idb)

are isomorphism as well. By the very definition of a homomorphism of bicategories we have (even
natural) isomorphisms

ϕaba(E
′, E) : Φ(E′)⊗Φ(b) Φ(E) −→ Φ(E′ ⊗b E)

and
ϕbab(E,E

′) : Φ(E)⊗Φ(a) Φ(E′) −→ Φ(E ⊗a E′)

as well as
ϕa : IdΦ(a) −→ Φ(Ida) and ϕb : IdΦ(b) −→ Φ(Idb).

Thus also the compositions (7.1.15) and (7.1.16) are isomorphisms. This shows that Φ(E) is a
invertible 1-morphisms. �

Note that here we indeed need the notion of a homomorphism of bicategories as we need that
all four morphisms ϕaba(E′, E), ϕbab(E,E′), ϕa, and ϕb are invertible. The weaker versions from
Remark 5.3.28 will not be sufficient for Proposition 7.1.7. A first application of the above proposition
is the following corollary:
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Corollary 7.1.8 If Φ: B −→ C is a homomorphism of bicategories then Φ restricts to a homomor-
phism of the corresponding bigroupoids on invertible 1-morphisms.

Using this, we can now consider the situation of Theorem 7.1.6 and conclude that the classical limit
restricts to the Picard bigroupoids. We denote the bigroupoid of invertible 1-morphisms in BimodRJλK
by PicRJλK: this bigroupoid has the same objects, i.e. the deformed algebras and the 1-morphisms are
now the Morita bimodules between the deformed algebras. We indicate the underlying ring RJλK of
scalars as before. The purely ring-theoretic version is then obtained by setting R = Z as usual. If the
reference to the underlying ring of scalars is clear we just omit the explicit mentioning in our notation.
The classifying groupoid Pic consists then of isomorphism classes of Morita equivalence bimodules
as usual. We emphasize once more that Pic has all equivalence bimodules between two deformed
algebras as 1-morphisms. Compared to Pic we only have restricted the objects: we are interested in
deformed algebras. With these notations we get the following result:

Corollary 7.1.9 Let R be a unital commutative ring. Then the classical limit cl : BimodRJλK −→
BimodR restricts to a homomorphism of the Picard bigroupoids

cl : PicRJλK −→ PicR . (7.1.17)

Passing to the classifying groupoids this induces a groupoid morphism

cl∗ : PicRJλK −→ PicR . (7.1.18)

Proof: By definition, the Picard bigroupoid is precisely the bigroupoid of invertible 1-morphisms
of Bimod, see Definition 5.1.8. Analogously, the sub-bigroupoid Pic of Morita equivalence bimodules
over deformed algebras is the bigroupoid of invertible 1-morphisms of Bimod. Then the first part is
clear by Corollary 7.1.8 and Theorem 7.1.6. The second part holds in general: homomorphisms of
bicategories, in our case (7.1.17), become functors of the classifying categories, in our case (7.1.18),
see also [7, p. 56]. �

Corollary 7.1.10 Let AAA = (AJλK, ?) be an associative deformation of a unital algebra A over R.
Then the classical limit yields a group morphism

cl∗ : Pic(AAA) −→ Pic(A). (7.1.19)

Proof: This is clear as a groupoid morphism induces group morphisms for the isotropy groups. �

Remark 7.1.11 The results in Corollary 7.1.9 and Corollary 7.1.10 can also be shown directly, with-
out using the bigroupoid morphism cl, see [28, Prop. 3.7 and Lem. 3.8]. However, the above approach
seems to be more conceptual.

7.1.2 The Action of Pic on Def

In a next step we want to understand which deformations of Morita equivalent algebras stay Morita
equivalent. This will ultimately result in a groupoid action of the Picard groupoid Pic on the defor-
mation theories Def( · ) of unital algebras over R. We follow closely [22,28] in this section.

To this end, we consider a deformation AAA = (AJλK, ?) of a unital algebra A over a R and another
unital algebra B over R which is Morita equivalent to A by means of an equivalence bimodule EB A.
For the ring-theoretic Morita theory we know that EA is finitely generated and projective with a full
projection representing it and B ∼= EndA(EA) via the left action of B on EA, see Theorem 4.3.5.
Thus we can assume without restriction that we already implemented the module as EA = e0An for
some full idempotent e0 ∈ Mn(A). Moreover, we can assume that B = e0Mn(A)e0 acting on e0An

by matrix multiplication as usual. We start with the following simple observation:
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Lemma 7.1.12 Let e ∈ Mn(A)JλK be an idempotent deforming cl(e) = e0. Then e is full iff e0 is
full.

Proof: Suppose e is full. Then 1 =
∑

α,i aαi ? eij ? bαi for some aαi, bαi ∈ AJλK. Taking the classical
limit gives 1 =

∑
α,i cl(aαi)(e0)ijcl(bαi), showing that 1 is contained in the two-sided ideal generated

by the components of e0. Hence cl(e) = e0 is full. Conversely, suppose e0 is full. Hence we find
aα,i, bα,i ∈ A with 1 =

∑
α,i aαi(e0)ijbα,j . Then c =

∑
α,i aαi ? eij ? bα,j = 1+ · · · coincides with 1 in

zeroth order. Thus c is invertible and contained in the ideal AJλK ? e ?AJλK which therefore is AJλK.
Thus e is full, too. �

Corollary 7.1.13 Let e0 ∈ Mn(A) be a full projection. For any deformation ? of A the algebras AAA
and e ?Mn(A) ? e are Morita equivalent via the equivalence bimodule e ?AAAn.

The next observation is now that there are, up to isomorphisms, no other possibilities to get
Morita equivalence bimodules for a deformation AAA of A. This is in fact a consequence of our much
more general consideration on the classical limit of bimodules:

Corollary 7.1.14 Let AAA and BBB be deformations of A and B with a Morita equivalence bimodule
EB AEB AEB A. Then cl( EB AEB AEB A) is a Morita equivalence bimodule for B and A.

Proof: Indeed, this is clear form Corollary 7.1.9. �

Since we can deform idempotents e0 ∈ Mn(A) into idempotents e = e0+· · · ∈ Mn(A)JλK = Mn(AAA)
preserving fullness, we can also construct a Morita equivalent algebra BBB to AAA out of a classically full
idempotent e0 based on our considerations in Proposition 6.1.30, iii.):

Proposition 7.1.15 Let AAA = (AJλK, ?) be an associative deformation of a unital algebra A over R.
Moreover, let EB A be a Morita equivalence (B,A)-bimodule for another unital algebra B.

i.) There exists an associative deformation ?′ of B and a deformed bimodule structure •′ and • of
EB A turning EB AEB AEB A = ( EB AJλK, •′, •) into a (BBB,AAA)-bimodule.

ii.) The deformations ?′, •′, and • are uniquely determined up to equivalence by the equivalence
class [?] ∈ Def(A) of ? and the isomorphism class [ EB A] ∈ Pic(B,A).

iii.) The deformed bimodule EB AEB AEB A is a Morita equivalence bimodule.

Proof: We know that we can deform the right A-module EA into a right AAA-module EAJλK, •) accord-
ing to Theorem 6.3.17, i.), unique up to equivalence by ii.). Moreover, in this case the endomorphisms
EndA(EA) inherit a deformation ?′ with a corresponding left module deformation •′ according to v.)
of the same theorem, being again unique up to equivalence. Now finally, B is isomorphic to EndA(EA)
by the classical Theorem 4.3.5 of Morita via the left action: here we have no choice in implement-
ing B ∼= EndA(EA) such that the left actions match. Hence we can pull-back to deformation of
EndA(EA) to B and get the first part. The uniqueness statements from Theorem 6.3.17 given then
the second part. The last part is clear since the deformation of a full projective module is again full
by Lemma 7.1.12. �

This proposition allows now to define a map

Φ: Pic(B,A)×Def(A) 3 ([ EB A], [?]) 7→ Φ[ EB A ]([?]) = [?′] ∈ Def(B) (7.1.20)

where ?′ is the deformation of B induced by the equivalence bimodule EB A according to Proposi-
tion 7.1.15, i.). The second statement of the proposition then ensures that this is indeed well-defined.

The last part of the proposition then shows that the obtained deformation of B is Morita equivalent
to the deformation of A. However, taking classical limits shows immediately that the converse is true
as well, leading to the following statement:
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Proposition 7.1.16 Let AAA = (AJλK, ?) and BBB = (BJλK, ?′) be two associative deformations of unital
algebras A and B over R. Then AAA and BBB are Morita equivalent iff there exists a EB A ∈ Pic(B,A)
with

[?′] = Φ[ EB A ]([?]). (7.1.21)

Proof: Given the classical equivalence bimodule EB A and a deformation ? we know from Proposi-
tion 7.1.15, iii.), that the deformation BBB = (BJλK, ?′) of B is Morita equivalent to AAA. Conversely,
suppose EB AEB AEB A is an equivalence bimodule between BBB and AAA. Then EB A = cl( EB AEB AEB A) is an equivalence
bimodule between B and A by the general result from Corollary 7.1.9. Moreover, the right AAA-module
structure on EB AEB AEB A is finitely generated and projective. Thus EAEAEA becomes RJλK-linearly isomorphic to
cl(EAEAEA)JλK via some choice of an isomorphism φ : EAJλK −→ EAEAEA. Moreover, we can adjust φ in such a
way that cl ◦ φ = idEA

by Exercise 6.4.22, ii.). Then the right A-module structure / on EAEAEA induces a
deformation • of EA such that

φ(x • a) = φ(x) / a

for all x ∈ EAJλK and a ∈ AAA, i.e. φ becomes an isomorphism of right AAA-modules. A different choice
of such a φ would lead now to a different •̃ which is nevertheless equivalent to • by the uniqueness
statement from Theorem 6.3.17, ii.). The left BBB-module structure on EB AEB AEB A induces an isomorphism
BBB ∼= EndAAA(EAEAEA) and hence φ yields an isomorphism

Φ: BBB 3 b 7→ Φ(b) ∈ EndAAA(EAJλK, •)

given by Φ(b)xφ−1(b . φ(x)) with the left BBB-module structure . of EB AEB AEB A. Defining b •′ x = Φ(b)x
this yields a bimodule deformation of EB A which in turn induces a deformation of B according to
Proposition 7.1.15. But since •′ is the module structure we already had, this induced deformation of
B coincides with ?′. �

In a last step we want to show that the map Φ from (7.1.21) is actually a groupoid action of the
Picard groupoid Pic of the undeformed algebras on their deformation theories, extending the action
of the isomorphism groupoid.

Lemma 7.1.17 Let Ψ: A −→ B be a unital isomorphism of unital algebras over R. Then for the
bimodule BΨ

B A one gets
Φ[ BΨ

B A ]([?]) = [Ψ(?)] (7.1.22)

where ?′ = Ψ(?) is defined by b ?′ b′ = Ψ(Ψ−1b ?Ψ−1b′) for b, b′ ∈ BJλK.

Proof: The definition of Ψ(?) yields a deformation of B which gives an isomorphic algebra structure
?′. Therefore we have a deformation • of the classical right A-module BΨ

A given by x•a = Ψ(Ψ−1(x)?
a) = x·Ψa+· · · . This gives a bimodule deformation with respect to the deformation ?′ of B directly.�

Corollary 7.1.18 Let AAA = (AJλK, ?) be an associative deformation of a unital algebra A over a ring
R. Then one has

Φ[ AA A ] = id . (7.1.23)

Lemma 7.1.19 Let FC B and EB A be Morita equivalence bimodules for unital algebras A, B, and C
over R. Then

Φ[ FC B] ◦ Φ[ EB A ] = Φ[ FC B⊗B EB A ]. (7.1.24)

Proof: Let ? be an associative deformation of A and denote by ?′ the induced deformation of B
coming from a corresponding bimodule deformation EB AEB AEB A = ( EB AJλK, •′, •). Similarly, we have an
induced deformation ?′′ of
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algebraC from ?′ via a bimodule deformation FC BFC BFC B = ( FC BJλK, •′′, •′) of FC B. From Theorem 7.1.6
we then know that canonically

cl( FC BFC BFC B ⊗BBB EB AEB AEB A) ∼= cl( FC BFC BFC B)⊗B cl( EB AEB AEB A) = FC B ⊗B EB A.

By the analogous argument as in the proof of Proposition 7.1.16 we see that FC BFC BFC B⊗BBB EB AEB AEB A is a bimodule
deformation of FC B ⊗B EB A. But this particular deformation yields ?′′ = (Φ[ FC B] ◦Φ[ EB A ])(?) on the
level of representatives. Hence Φ[ FC B⊗B EB A ] yields the same class [?′′], proving the claim. �

The statements can now be combined into one theorem clarifying the role of the map Φ completely,
see [22] as well as [28, Thm. 3.13]:

Theorem 7.1.20 (Morita equivalence of deformations) The map Φ yields a groupoid action of
the Picard groupoid Pic on the deformation theories Def( · )

Φ: Pic×Def −→ Def (7.1.25)

extending the canonical action of Iso. Two deformations yield Morita equivalent algebras iff they are
in the same orbit of this action.

In the spirit of Section 5.3 we have now found another Morita invariant, the deformation theories:

Corollary 7.1.21 Morita equivalent algebras have isomorphic deformation theories. In fact, every
(B,A)-equivalence bimodule EB A yields a bijection

Φ[ EB A ] : Def(A) −→ Def(B). (7.1.26)

Corollary 7.1.22 The Picard group Pic(A) of an associative unital algebra A acts on its deformation
theory Def(A) via Φ. Two deformations ? and ?′ of A are Morita equivalent iff there is a self-
equivalence EA A ∈ Pic(A) with Φ[ EA A ]([?]) = [?′].

7.1.3 Kernel and Image of cl in the Ring-Theoretic Case

In a last step we investigate now the image and the kernel of the (bi-) groupoid morphism cl : PicRJλK −→
PicR more closely. As before, we fix a ring of scalars R and consider unital algebras over R and their
formal associative deformations as algebra over RJλK.

As warming-up we investigate the situation of algebra morphisms first to establish an analog of
Theorem 7.1.6 for the categories of unital algebras directly. If AAA and BBB are deformations of unital
algebras A and B, respectively, and if Φ: AAA −→BBB is a morphism we have

Φ =
∞∑
r=0

λrΦr (7.1.27)

with unique linear maps Φr : A −→ B.

Lemma 7.1.23 If Φ =
∑∞

r=0 λ
rΦr : AAA −→BBB is an morphism then

cl(Φ) = Φ0 : A −→ B (7.1.28)

is a morphism of the undeformed algebras.

Proof: This is a trivial verification. �
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This defines a map cl : Hom(AAA,BBB) −→ Hom(A,B). It turns out that this combines into a functor
on the level of Ring: we specify the categories in question now a bit more precisely and denote by RingR
the category of unital algebras over the ring R with usual R-linear algebra morphisms and analogously
we have RingRJλK. Analogously to Definition 7.1.1, we have the full sub-category RingRJλK of deformed
algebras inside the category RingRJλK: the objects are now required to be associative deformations of
algebras over R while the morphisms are still all RJλK-linear algebra morphisms. Then we have the
classical limit functor:

Proposition 7.1.24 (Classical limit for RingRJλK) The classical limit cl of deformations of unital
algebras yields a functor

cl : RingRJλK −→ RingR. (7.1.29)

Proof: We have to check the functoriality as we already know that the classical limit of a morphism
is a morphism as wanted. But this is trivial as the classical limit of the identity map is the identity
map and since the classical limit of a composition is the composition of the classical limits in general,
see also Exercise 6.4.2. �

It follows that the functor cl restricts to a groupoid morphism between the isomorphism groupoids
of the deformed algebras and their classical limits, i.e. we have

cl : IsoRJλK −→ IsoR, (7.1.30)

where IsoRJλK ⊆ RingRJλK and IsoR ⊆ RingR are the isomorphism groupoids, respectively. As usual,
the (non-) injectivity of a groupoid morphism is entirely encoded in the kernels of the corresponding
group morphisms between the isotropy groups, see also Exercise 5.4.3. Thus we have to determine
the kernel of the group morphisms cl between the automorphism groups:

Proposition 7.1.25 Let AAA = (AJλK, ?) be a formal associative deformation of a unital algebra A
over R. Then the kernel of the classical limit

cl : Aut(AAA) −→ Aut(A) (7.1.31)

is given by the self-equivalences
ker(cl) = Equiv(?). (7.1.32)

Proof: This is obvious since for Φ =
∑∞

r=0 λ
rΦr ∈ Aut(AAA) we have cl(Φ) = Φ0. Thus Φ ∈ ker(cl)

is equivalent to say that Φ0 = idA which is precisely the definition of a self-equivalence according to
Definition 6.1.4. �

Remark 7.1.26 Of course, the image of cl is much more complicated to describe as it encodes a
deformation problem: which classical automorphism Φ0 ∈ Aut(A) allows for a deformation as an
algebra homomorphism? Note that it will necessarily be an automorphism of AAA since as usual the
invertibility is decided in zeroth order. In general, one can not say much and the answers will strongly
depend on the algebra A and the deformation ?, see also Exercise 7.4.2 and Exercise 7.4.3 for some
further considerations.

Since we can take classical limits of algebra morphisms as well as of bimodules, we can now relate
the functors ` from Proposition 4.3.3 for the deformed and undeformed situation. We first note that
the image of ` always is in the sub-category BimodRJλK when starting in RingRJλK:

Lemma 7.1.27 The functor ` from Proposition 4.3.3 restricts to a functor

` : RingRJλK −→ BimodRJλK . (7.1.33)
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Proof: Since the restriction to the sub-categories in both cases is just on the objects and since it
is in both cases the same sub-class of objects, the deformations of algebras over R, the statement is
clear. �

It turns out that the functors ` and the classical limit functors are compatible in the following sense:

Proposition 7.1.28 The functor ` commutes with the classical limit, i.e.

BimodRJλK BimodR

RingRJλK RingR

cl

`

cl

` (7.1.34)

commutes.

Proof: Let Φ: AAA −→ BBB be a morphism between two deformed algebras AAA and BBB. Then `(Φ)
is represented by the (BBB,AAA)-bimodule BBBΦ

BBB AAA according to the definition of ` in (4.3.2). As a RJλK-
module, this is just BBB = BJλK and thus its classical limit is R-linearly isomorphic to B. The induced
(B,A)-bimodule structure on this classical limit is then the usual left B-module structure as we did
not twist this on the deformed side. For the right A-module structure cl(·Φ) we obtain for x ∈ B and
a ∈ A

x cl(·Φ) a = cl(x ·Φ a) = cl(xΦ(a)) = cl(x)cl(Φ(a)) = xΦ0(a) = x ·Φ0 a,

where Φ =
∑∞

r=0 λ
rΦr with R-linear maps Φr : A −→ B as usual. This shows that the induced right

A-module structure is precisely the one from BΦ0
B A with the algebra morphism Φ0 = cl(Φ): A −→ B.

Since in the definition of morphisms of BimodR and BimodRJλK we work with isomorphism classes of
bimodules, this is all we need to show. �

7.2 Classical Limit of ∗-Representations

After the ring-theoretic situation we want to incorporate now the inner products as well. Thus we
consider inner products on (bi-)modules over deformed algebras and construct their classical limits
in a similar fashion as for the underlying module structures. However, if we want to guarantee a non-
degenerate inner product also in the classical limit, we need to modify the naive quotient procedure
as we did this already for ∗-representations on pre-Hilbert spaces. Once this is accomplished, the
next difficulty is to guarantee the complete positivity of the classical limit once we started with a
completely positive inner product. Here we need to focus on completely positive deformations of
∗-algebras instead of general Hermitian deformations. In the end, we will find a classical limit as a
homomorphism of bicategories also for the bicategories Bimod∗ and Bimodstr.

7.2.1 Classical Limit of Inner Products and ∗-Representations

Let A be a ∗-algebra over C = R(i) with a Hermitian deformation ? into a ∗-algebra AAA = (AJλK, ?).
Moreover, let EAEAEA be a right AAA-module. If we have an AAA-valued inner product 〈 · , · 〉EEE

AAA
on EAEAEA then we

can define its classical limit as in the scalar case in Proposition 6.2.14, see also [26, Sect. 9]. To this
end we consider the following subset

EEENull
AAA =

{
x ∈ EAEAEA

∣∣ cl
(
〈y, x〉EEE

AAA

)
= 0 for all y ∈ EAEAEA

}
(7.2.1)

of the module EAEAEA. Then we obtain the following result:
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Proposition 7.2.1 Let AAA be a Hermitian deformation of a ∗-algebra A over C = R(i). Let EAEAEA be a
right AAA-module with AAA-valued inner product 〈 · , · 〉EEE

AAA
.

i.) The subset EEENull
AAA ⊆ EAEAEA is a right AAA-submodule containing λEAEAEA ⊆ EEENull

AAA .
ii.) The quotient cl(EAEAEA) = EAEAEA

/
EEENull

AAA becomes a right A-module by

cl(x) · a = cl(x · a), (7.2.2)

where cl : EAEAEA −→ EAEAEA

/
EEENull

AAA denotes the quotient map and where a ∈ A ⊆ AAA and x ∈ EAEAEA.
iii.) On the quotient right AAA-module cl(EAEAEA) = EAEAEA

/
EEENull

AAA one has an A-valued non-degenerate inner
product defined by 〈

cl(x), cl(y)
〉cl(EEE)

A
= cl

(
〈x, y〉EEE

AAA

)
, (7.2.3)

where x, y ∈ EAEAEA.
iv.) Let EEE′AAA be another right AAA-module with inner product and let T : EAEAEA −→ EEE′AAA be an adjointable

map. Then T (EEENull
AAA ) ⊆ EEE′,Null

AAA and

cl(T ) : cl(EAEAEA) 3 cl(φ) 7→ cl(Tφ) ∈ cl(EEE′AAA) (7.2.4)

is a well-defined adjointable map again.
v.) The classical limit map on adjointable maps is C-linear and satisfies

cl(T )∗ = cl(T ∗), (7.2.5)
cl(idEA

EAEA
) = idcl(EA

EAEA), (7.2.6)
and

cl(S ◦ T ) = cl(S) ◦ cl(T ). (7.2.7)

Proof: The strategy is very much analogous to the one in Proposition 6.2.14, which can be also
seen as a special case. First, let x ∈ EEENull

AAA and y ∈ EAEAEA be given. Then for a ∈ AAA we have cl(〈a, x ·
a〉EEE

AAA
) = cl(〈y, x〉EEE

AAA
? a) = cl(〈y, x〉EEE

AAA
)cl(a) = 0. From this the first part follows at once. The the

second part is clear as we take the quotient by a AAA-submodule resulting in a right AAA-module. Since
λcl(x) = cl(λx) = 0 we obtain an induced A-module by (7.2.2). Next, we note that the classical limit
(7.2.3) gives indeed a well-defined inner product with values in the undeformed algebra A since for
x ∈ EEENull

AAA and y ∈ EAEAEA arbitrary we have 〈y, x〉EEE
AAA

= 0 by the very definition of EEENull
AAA . The properties

of an inner product can then be checked easily on representatives and follows directly from those of
〈 · , · 〉EEE

AAA
. As with this definition EEENull

AAA is precisely the degeneracy space of cl(〈 · , · 〉EEE
AAA

), it follows that
(7.2.3) is non-degenerate. Now let EEE′AAA be another inner-product right AAA-module and let T : EAEAEA −→ EEE′AAA
be adjointable. Then for x ∈ EEENull

AAA and y ∈ EEE′AAA we have

cl
(
〈y, T (x)〉EEE

′

AAA

)
= cl

(
〈T ∗(y), x〉EEE

AAA

)
= 0,

implying T (EEENull
AAA ) ⊆ EEE′,Null

AAA . But then cl(T ) is well-defined on the classical limits and yields an
adjointable map between them. The last statement can then be checked on representatives where it
is a trivial consequence from properties of adjointable maps. �

Note that a possible degenerate inner product on EAEAEA becomes automatically non-degenerate in the
classical limit: this is a nice side-effect of the quotient procedure above. As a first application we can
take now classical limits of ∗-representations of a ∗-algebra B on an inner-product right A-module.
This gives the following classical limit functor:

Corollary 7.2.2 Let AAA and BBB be Hermitian deformations of ∗-algebras A and B over C = R(i).
Moreover, let EB AEB AEB A be a ∗-representation of BBB on an inner-product right AAA-module.
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i.) The classical limit cl( EB AEB AEB A) = cl(EAEAEA) becomes a ∗-representation of B on the inner-product right
A-module cl(EAEAEA) via

b · cl(x) = cl(b · x) (7.2.8)

for b ∈ B and x ∈ EA.
ii.) If T : EB AEB AEB A −→ EEE′BBB AAA is an adjointable intertwiner then cl(T ) : cl( EB AEB AEB A) −→ cl( EEE′BBB AAA) is an ad-

jointable intertwiner, too.
iii.) Taking the classical limit gives a functor

cl : -mod∗
AAA(BBB) −→ -mod∗

A(B), (7.2.9)

which restricts to a functor

cl : -Mod∗
AAA(BBB) −→ -Mod∗

A(B). (7.2.10)

Proof: Since for a ∗-representation the action of b ∈BBB on EB AEB AEB A is by adjointable maps with respect to
the inner product of EAEAEA, the first part follows from Proposition 7.2.1, v.). An adjointable intertwiner
T is in particular adjointable with respect to the AAA-valued inner product of EAEAEA. Thus it induces
an adjointable right A-linear map in the classical limit by Proposition 7.2.1, iv.). Since T (b · x) =
b · T (x) for all b ∈ BBB and x ∈ EB AEB AEB A we also get b · cl(T )(cl(x)) = cl(T )(b · cl(x)) for all b ∈ B,
i.e. cl(T ) is an intertwiner again. The functoriality of the classical limit is a consequence of (7.2.6)
and (7.2.7). Finally, if the ∗-representation was strongly non-degenerate then the classical limit is
again strongly non-degenerate since for x =

∑
i bi · yi ∈ EB AEB AEB A with bi ∈ BBB and yi ∈ EB AEB AEB A we get

cl(x) =
∑

i cl(bi) · cl(yi). �

While the classical limit of ∗-representation on inner-product modules enjoys good functorial
properties, the case of pre-Hilbert modules is slightly more complicated. The difficulty is that the
classical limit of a completely positive inner product has no reason to be completely positive in general.
However, if the deformation AAA is completely positive, then the classical limit of positive matrices with
values in Mn(AAA) is again positive: this gives directly the following result:

Proposition 7.2.3 Let AAA be a completely positive deformation of a ∗-algebra A over C = R(i). For
a right AAA-module EAEAEA with completely positive inner product the classical limit cl(EAEAEA) is a pre-Hilbert
right A-module.

Proof: We know already that the classical limit is an inner-product right A-module by Proposi-
tion 7.2.1, iii.). For x1, . . . , xn ∈ EAEAEA we know (〈xi, xj〉EEEAAA) ∈ Mn(AAA)+. Since the deformation is
completely positive,

(〈cl(xi), cl(xj)〉cl(EEE)

A
) = (cl(〈xi, xj〉EEEAAA)) ∈ Mn(A)+

follows from the very definition of completely positive deformations. Hence cl(EAEAEA) is a pre-Hilbert
module as claimed. �

Corollary 7.2.4 Let AAA be a completely positive deformation of a ∗-algebra A over C = R(i). Then
for a Hermitian deformations BBB of a ∗-algebra B over C the classical limit restricts functors

cl : -rep∗
AAA(BBB) −→ -rep∗

A(B), (7.2.11)

and
cl : -Rep∗

AAA(BBB) −→ -Rep∗
A(B). (7.2.12)

Remarkably, only the deformation AAA has to be completely positive in order to guarantee the above
compatibility of the classical limit with positivity. However, this will change when we move to the
bicategory picture.
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7.2.2 The Classical Limit for Bimod∗ and Bimodstr

7.3 Classical Limit and Strong Morita Equivalence

7.4 Exercises

Exercise 7.4.1 (The category BimodRJλK) Show that the classifying category BimodRJλK of the
bicategory BimodRJλK can be identified with a full sub-category of BimodRJλK, i.e. the full sub-category
of Bimod consisting of unital algebras over RJλK.

Exercise 7.4.2 (Deformation of automorphisms) Let A be a unital associative algebra over R
with a formal associative deformation AAA = (AJλK, ?) such that the center of AAA is trivial.
i.) Suppose that D0 ∈ InnDer(A) is an inner derivation of the undeformed algebra. Show that

there exists a D ∈ InnDer(AAA) with cl(D) = D0. Show that one can arrange the choice of D in
such a way that this induces a RJλK-linear isomorphism

Der(A)JλK −→ Der(AAA). (7.4.1)

ii.) Let T ∈ Equiv(?). Show that T = 1+λT1 + · · · with a derivation T1 of the undeformed algebra
A.

iii.) Suppose that InnDer(A) = Der(A), i.e. every derivation of the undeformed algebra A is inner.
Show that in this case

ker(cl) ∼= Der(A)JλK (7.4.2)

as sets. The group structure induced on the right hand side might be very much non-abelian.
Hint: First use (7.4.1) and then Proposition 6.1.6.

iv.) Use the Baker-Campbell-Hausdorff series to describe the induced group law on the right hand
side of (7.4.2).

Exercise 7.4.3 (Deforming automorphisms of Poisson algebras) Let A be a unital associa-
tive commutative algebra over R with a formal associative deformation AAA = (AJλK, ?), not necessarily
commutative. Let { · , · } denote the induced Poisson structure on A according to Proposition 6.1.8.
i.) Let T = 1+λT1+· · · ∈ Equiv(?) be a self-equivalence of ?. Show that T1 is a Poisson derivation,

i.e. a derivation T1 ∈ Der(A) with

T1({a, b}) = {T1(a), b}+ {a, T1(b)} (7.4.3)

for all a, b ∈ A.
We denote the set of Poisson derivations of A by

PDer(A, { · , · }) =
{
D ∈ Der(A)

∣∣ D is a Poisson derivation
}
. (7.4.4)

A Poisson derivation D is called inner Poisson derivation if there exists a a ∈ A with D = {a, · }.
Moreover, a Poisson derivation is called integral Poisson derivation if there exists an invertible u ∈ A
with D = u−1{u, · }, see [28, Def. 4.9]. The sets of inner Poisson derivations and integral Poisson
derivations are denoted by InnPDer(A, { · , · }) and IntPDer(A, { · , · }).
i.) Show that inner Poisson derivations are indeed Poisson derivations. In fact, show that

InnPDer(A, { · , · }) ⊆ PDer(A, { · , · }) (7.4.5)

is a Lie ideal in the Lie algebra of all Poisson derivations.
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ii.) Show that also integral Poisson derivations are Poisson derivations. Show that the integral
Poisson derivations form an abelian group under addition. Morally, u−1{u, · } is the inner
Poisson derivation with the (hypothetical) logarithm log(u).

iii.) Consider the map
s : Equiv(?) −→ PDer(A, { · , · }) (7.4.6)

sending T to T1. Show that s is a group morphisms (with the additive group structure from +
on the right hand side).

iv.) Show that the image of the inner self-equivalences InnEquiv(?) = Equiv(?)∩ InnAut(AAA) under
s is given by IntPDer(A, { · , · }).
Hint: Use that an invertible u0 ∈ A is also invertible with respect to ?.

Exercise 7.4.4 (Algebras with exponential map) Let A be a unital algebra over R. We call a
map exp: Z(A) −→ Z(A) an exponential map if

exp(a+ b) = exp(a) exp(b) and exp(0) = 1, (7.4.7)

as well as
D(exp(a)) = exp(a)D(a) (7.4.8)

for all a, b ∈ Z(A) and D ∈ Der(A), see [115, Def. 5.3]. In case of a ∗-algebra one requires in addition
exp(a∗) = exp(a)∗ for all a ∈ Z(A).
i.) Show that D ∈ Der(A) restricts to a derivation of Z(A).
ii.) Suppose now that (A, { · , · }) is a (commutative) Poisson algebra. Show that if A has an

exponential map then

InnPDer(A, { · , · }) ⊆ IntPDer(A, { · , · }). (7.4.9)

iii.) Show that C∞(M) for a smooth manifold M has an exponential map.
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