piwik-script

English Intern
  • Gruppenfoto Team Inverse Probleme
Inverse Probleme

Wissenschaftlicher Mitarbeiter

Dr. Remo Kretschmann

Wissenschaftlicher Mitarbeiter
Professur für Mathematik (Inverse Probleme) am Lehrstuhl für Mathematik IX
Emil-Fischer-Straße 30
97074 Würzburg
Gebäude: 30 (Mathematik West)
Raum: 00.016
Telefon: +49 931 31-89914
Portraitfoto Remo Kretschmann

Forschungsinteressen

Meine Forschungsinteressen sind u.a. statistische und Bayes'sche inverse Probleme mit hoch- oder unendlichdimensionalem Parameterraum und Regularisierungstheorie, insbesondere die rigorose statistische Interpretation von Variationsregularisierungsmethoden im Zusammenhang mit nichtparametrischer Bayes'scher Inferenz.

Experience

Since 2021 Academic Staff, Julius-Maximilians-Universität Würzburg
2019–2021 Postdoctoral Researcher, LUT University
2014–2018 Scientific Assistant, Universität Duisburg-Essen

Education 

August 2019 Doctorate in Mathematics, Universität Duisburg-Essen
November 2012 Master of Science in Mathematics, Technische Universität München
November 2009 Bachelor of Science in Mathematics, Technische Universität München
 

Preprints

  • Remo Kretschmann, Daniel Wachsmuth, Frank Werner:
    Optimal regularized hypothesis testing in statistical inverse problems
    (2022), arXiv: 2212.12897 (pdf).

  • Remo Kretschmann:
    Minimizers of the Onsager-Machlup functional are strong posterior modes
    (2022), arXiv: 2212.04275 (pdf).

Zeitschriftenartikel

Dissertation

Konferenzen

  • Bayesian hypothesis testing in statistical inverse problems,
    Imaging with Uncertainty Quantification, Helsingør, Denmark, 27-29 September 2022.

  • Optimal regularized hypothesis testing in statistical inverse problems,
    Symposium on Inverse Problems: From experimental data to models and back, Universität Potsdam, Potsdam, Germany, 19-21 September 2022.

  • Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems,
    13th International Conference on Monte Carlo Methods and Applications, Universität Mannheim, online, 16-20 August 2021.

  • Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems,
    Inverse Days 2020, Finnish Meteorological Institute/University of Helsinki, online, 14-18 December 2020.

  • Generalised modes in Bayesian inverse problems,
    25th Inverse Days, University of Jyväskylä, Jyväskylä, Finland, 16-18 December 2019.

  • Generalized modes in Bayesian inverse problems (poster presentation),
    12th International Conference on Bayesian Nonparametrics, University of Oxford, Oxford, United Kingdom, 24-28 June 2019.

  • Generalized modes in Bayesian inverse problems,
    Chemnitz Symposium on Inverse Problems 2018, Technische Universität Chemnitz, Chemnitz, Germany, 27-28 September 2018.

  • Bayesian inverse problems with non-Gaussian noise (poster presentation),
    38th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, The Alan Turing Institute, London, United Kingdom, 02-06 July 2018.

  • Bayesian inverse problems with Laplacian noise,
    Applied Inverse Problems 2017, Zhejiang University, Hangzhou, China, 29 May-2 June 2017.

Seminare

  • Generalised modes in Bayesian inverse problems,
    University of Helsinki, Helsinki, Finland, 9 December 2019.

  • Bayesian inverse problems with Laplacian noise,
    University of Graz, Graz, Austria, 28 September 2017.

2021 Course on Bayesian inverse problems
2020 Intensive course on Bayesian inverse problems
2018 Master seminar on Inverse problems
2017–2018 Tutorial on Inverse problems
2017 Tutorial on Analysis I
2016–2017 Tutorials on Regularisation of Inverse problems and Analysis II
2016 Tutorial on Iterative methods for systems of linear equations and eigenvalue problems
2015–2016 Tutorial on Inverse problems
2015 Tutorial on Functional analysis
2014–2015 Tutorial on Inverse problems
2014 Tutorial on Scientific computing for differential equations
2011 Tutorials on Analysis I and Higher mathematics for civil engineers 2