Dippell Marvin
Doktorand
Marvin Dippell
Emil-Fischer-Straße 31

- Deformation Quantization
- Morita Theory
- (Higher) Category Theory
- Reduction, e.g. in symplectic and Poisson geometry
Aktuelles Semester (WS 2020):
Mathematik für Informatiker 1: Übungsorganisation, Dozent: Knut Hüper.
Vorherige Semester:
Lineare Algebra 2: Übungsorganisation, Übungsleitung, Dozent: Daniel Wachsmuth. (SS 2020)
Geometrische Mechanik: Übungsorganisation, Übungsleitung, Dozent: Stefan Waldmann. (WS 2019)
Lineare Algebra II: Übungsorganisation, Übungsleitung, Dozent: Knut Hüper. (SS 2019)
- A General Framework for Reduction, Invited talk at University of Göttingen, 15.07.2020.
- Deformation of Coisotropic Algebras, Invited talk at Geometry Seminar Université Libre de Bruxelles, 21.01.2020.
- Reduction and Morita Theory for Coisotropic Triples, Bayrischzell Workshop 2019, 13.04.2019.
- Reduction and Morita Theory for Coisotropic Triples, Invited talk at Geometry Seminar University of Salerno, 18.03.2019.
- Reduction and Morita Theory for Coisotropic Triples, Invited talk at Geometry and Algebra Seminar at Université de Haute-Alsace, 31.01.2019.
- Math in the Mill 2019. Local organisation team.
- Noncommutative Geometry and Higher Structures, Würzburg 2017. Local organisation team.
- From Poisson Geometry to Quantum Fields on Noncommutative Spaces, Würzburg 2015. Local organisation team.
Publikationen
- Marvin Dippell, Felix Menke, Stefan Waldmann: A Serre-Swan Theorem for Coisotropic Algebras. Preprint arXiv:2012.12576 (2020), 31 pages. [arxiv]
- Marvin Dippell, Chiara Esposito, Stefan Waldmann: Deformation and Hochschild Cohomology of Coisotropic Algebras. Preprint arXiv:2008.03495 (2020), 26 pages. [arxiv]
- Marvin Dippell, Chiara Esposito, Stefan Waldmann: Coisotropic Triples, Reduction and Classical Limit. Documenta Mathematica 24 (2019), 1811-1853 pages. [Article][arxiv]
- Marvin Dippell: Morita Theory for Generalized Coisotropic Reduction.
Master thesis in mathematical physics, Fakultät für Mathematik und Informatik, Institut für Mathematik, Julius-Maximilians-Universität, Würzburg (2018). - Marvin Dippell: Poisson Structures in R^n.
Bachelor thesis in mathematical physics, Fakultät für Mathematik und Informatik, Institut für Mathematik, Julius-Maximilians-Universität, Würzburg (2015).