
ACTIVE FLUX METHODS FOR HYPERBOLIC CONSERVATION1
LAWS – FLUX VECTOR SPLITTING AND2

BOUND-PRESERVATION: ONE-DIMENSIONAL CASE ∗3

JUNMING DUAN† , WASILIJ BARSUKOW‡ , AND CHRISTIAN KLINGENBERG†4

Abstract. The active flux (AF) method is a compact high-order finite volume method that5
evolves cell averages and point values at cell interfaces independently. Within the method of lines6
framework, the point value can be updated based on Jacobian splitting (JS), incorporating the up-7
wind idea. However, such JS-based AF methods encounter transonic issues for nonlinear problems8
due to inaccurate upwind direction estimation. This paper proposes to use flux vector splitting for9
the point value update, offering a natural and uniform remedy to the transonic issue. To improve10
robustness, this paper also develops bound-preserving (BP) AF methods for one-dimensional hyper-11
bolic conservation laws. Two cases are considered: preservation of the maximum principle for the12
scalar case, and preservation of positive density and pressure for the compressible Euler equations.13
The update of the cell average in high-order AF methods is rewritten as a convex combination of us-14
ing the original high-order fluxes and robust low-order (local Lax-Friedrichs or Rusanov) fluxes, and15
the desired bounds are enforced by choosing the right amount of low-order fluxes. A similar blending16
strategy is used for the point value update. Several challenging benchmark tests are conducted to17
verify the accuracy, BP properties, and shock-capturing ability of the methods.18
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1. Introduction. This paper is concerned with solving systems of hyperbolic22
conservation laws23

(1.1)
∂U(x, t)

∂t
+

∂F (U)

∂x
= 0, U(x, 0) = U0(x), (x, t) ∈ R× R+,24

where U ∈ Rm is the vector of m conservative variables, F ∈ Rm is the physical flux,25
and U0(x) is assumed to be initial data of bounded variation. In this paper, we would26
like to consider two cases. The first is a scalar conservation law (m = 1)27

(1.2)
∂u

∂t
+

∂f(u)

∂x
= 0, u(x, 0) = u0(x).28

The second case is that of compressible Euler equations of gas dynamics with U =29
(ρ, ρv,E)⊤ and F = (ρv, ρv2 + p, (E + p)v)⊤, i.e.,30

(1.3)
∂

∂t

 ρ
ρv
E

+
∂

∂x

 ρv
ρv2 + p
(E + p)v

 = 0, (ρ, v, p)(x, 0) = (ρ0, v0, p0).31

Here ρ denotes the density, v the velocity, p the pressure, and E = 1
2ρv

2 + ρe the32
total energy with e the specific internal energy. The system (1.3) should be closed by33
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2 J.M. DUAN, W. BARSUKOW, AND C. KLINGENBERG

an equation of state (EOS). This paper considers the perfect gas EOS, p = (γ− 1)ρe,34
with the adiabatic index γ > 1. Note that this paper uses bold symbols to refer to35
vectors and matrices, such that they are easier to distinguish from scalars.36

The active flux (AF) method is a new finite volume method [13, 12, 14, 34], that37
Roe took inspiration by [39]. Apart from cell averages, it incorporates additional de-38
grees of freedom as point values located at the cell interfaces, evolved independently39
from the cell average. The original AF method gives a global continuous represen-40
tation of the numerical solution using a piecewise quadratic reconstruction, leading41
naturally to a third-order accurate method with a compact stencil. The introduc-42
tion of point values at the cell interfaces avoids the usage of Riemann solvers as in43
usual Godunov methods, because the numerical solution is continuous across the cell44
interface and the numerical flux for the cell average update is available directly.45

The independence of the point value update adds flexibility to the AF methods.46
Based on the evolution of the point value, there are generally two kinds of AF methods.47
The original one uses exact or approximate evolution operators and Simpson’s rule for48
flux quadrature in time, i.e. it does not require time integration methods like Runge-49
Kutta methods. Exact evolution operators have been studied for linear equations50
in [7, 15, 14, 39]. Approximate evolution operators have been explored for Burgers’51
equation [13, 12, 34, 4], the compressible Euler equations in one spatial dimension52
[13, 25, 4], and hyperbolic balance laws [6, 5], etc. One of the advantages of the AF53
method over standard finite volume methods is its structure-preserving property. For54
instance, it preserves the vorticity and stationary states for multi-dimensional acoustic55
equations [7], and it is naturally well-balanced for acoustics with gravity [6].56

Since it may not be convenient to derive exact or approximate evolution operators57
for nonlinear systems, especially in multi-dimensions, another kind of generalized AF58
method was presented in [1, 2]. A method of lines was used, where the cell average and59
point value updates are written in semi-discrete form and advanced in time with time60
integration methods. In the point values update, the Jacobian matrix is split based on61
the sign of the eigenvalues (Jacobian splitting (JS)), and upwind-biased stencils are62
used to compute the approximation of derivatives. There are some deficiencies of the63
JS when used for the AF methods, e.g., the transonic issue [25] for nonlinear problems,64
leading to spikes in the cell average. Some remedies are suggested in the literature,65
e.g., using discontinuous reconstruction [25] or evaluating the upwind direction using66
more information from the neighbors [4].67

Solutions to hyperbolic systems (1.1) often stay in an admissible state set G, also68
called the invariant domain. For instance, the solutions to initial value problems of69
scalar conservation laws (1.2) satisfy a strict maximum principle (MP) [11], i.e.,70

(1.4) G = {u | m0 ⩽ u ⩽ M0} , m0 = min
x

u0(x), M0 = max
x

u0(x).71

Physically, both the density and pressure in the solutions to the compressible Euler72
equations (1.3) should stay positive, i.e.,73

(1.5) G =

{
U = (ρ, ρv,E)

∣∣∣ ρ > 0, p = (γ − 1)

(
E − (ρv)2

2ρ

)
> 0

}
.74

Throughout this paper, it is assumed that G is a convex set, which is obvious for the75
scalar case (1.4) and can be verified for the Euler equations (1.5), see e.g. [46]. It is de-76
sirable to conceive so-called bound-preserving (BP) methods, i.e., those guaranteeing77
that the numerical solutions at a later time will stay in G, if the initial numerical solu-78
tions belong to G. The BP property of numerical methods is very important for both79
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BOUND-PRESERVING ACTIVE FLUX 3

theoretical analysis and numerical stability. Many BP methods have been developed80
in the past few decades, e.g., a series of works by Shu and collaborators [45, 26, 43],81
a recent general framework on BP methods [42], and the convex limiting approach82
[17, 22, 29], which can be traced back to the flux-corrected transport (FCT) schemes83
for scalar conservation laws [10, 20, 32, 30]. The previous studies on the AF methods84
pay limited attention to high-speed flows, or problems containing strong discontinu-85
ities, with some efforts on the limiting for the point value update, see e.g. [4, 8].86
However, those limitings are not enough to guarantee the BP property, as shown in87
our numerical tests. In a very recent paper, the MOOD [9] based stabilization was88
adopted to achieve the BP property [3] in an a posteriori fashion.89

This paper presents a new way for the point value update to cure the transonic90
issue and develops suitable BP limiting strategies for the AF methods. The main91
contributions and findings in this work can be summarized as follows.92
i). We propose to employ the flux vector splitting (FVS) methods for the point value93
update to cure the transonic issue, since it borrows information from the neighbors94
naturally and uniformly. The FVS was originally used to identify the upwind direc-95
tions, which is simpler and somewhat more efficient than Godunov-type methods for96
solving hyperbolic systems [38]. In our numerical tests, the FVS is also shown to97
give better results than the JS, especially the local Lax-Friedrichs (LLF) or Rusanov98
FVS, in terms of the CFL number and shock-capturing ability. The FVS can also99
cure some defects in two dimensions observed in the JS, which will be shown in our100
future companion paper.101
ii). We design BP limitings for both the update of the cell average and the point value102
by blending the high-order AF methods with the first-order LLF method in a convex103
combination. The convex limiting [17, 22, 29] and the scaling limiter [31] are applied104
to the cell average and point value updates, respectively. The main idea is to retain as105
much as possible of the high-order method while guaranteeing the numerical solutions106
to be BP, and the blending coefficients are computed by enforcing the bounds. We107
show that using a suitable time step size and BP limitings, the numerical solutions108
of the BP AF methods satisfy the MP for scalar conservation laws, and give positive109
density and pressure for the compressible Euler equations.110
iii). Several challenging test cases such as the LeBlanc and double rarefaction Rie-111
mann problems, the Sedov point blast wave, and blast wave interaction problems are112
conducted to demonstrate the BP properties and the shock-capturing ability, which113
are rare in the literature for the AF methods.114

The remainder of this paper is structured as follows. Section 2 introduces the115
AF methods based on the JS or FVS for the point value update, and the power116
law reconstruction for limiting the derivatives in the point value update. To design117
BP methods, Section 3 describes our convex limiting approach for the cell average,118
while Section 4 deals with the limiting for the point value. Some numerical tests are119
conducted in Section 5 to experimentally demonstrate the accuracy, BP properties,120
and shock-capturing ability of the methods. Section 6 concludes the paper with final121
remarks and future directions.122

2. 1D active flux methods for hyperbolic conservation laws. This section123
presents the 1D semi-discrete AF methods for the hyperbolic conservation laws (1.1),124
based on the JS [2] or FVS for the point value update. The fully-discrete methods125
are obtained using Runge-Kutta methods.126

Assume that a 1D computational domain is divided into N cells Ii = [xi− 1
2
, xi+ 1

2
]127

with cell centers xi = (xi− 1
2
+xi+ 1

2
)/2 and cell sizes ∆xi = xi+ 1

2
−xi− 1

2
, i = 1, · · · , N .128
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4 J.M. DUAN, W. BARSUKOW, AND C. KLINGENBERG

The degrees of freedom of the AF methods are the approximations to cell averages129
of the conservative variable as well as point values at the cell interfaces, allowing130
some freedom in the choice of the point values, e.g. conservative variables, primitive131
variables, entropy variables, etc. This paper only considers using the conservative132
variables, and the degrees of freedom are denoted by133

(2.1) U i(t) =
1

∆xi

∫
Ii

U(x, t) dx, Ui+ 1
2
(t) = U(xi+ 1

2
, t).134

The cell average is updated by integrating (1.1) over Ii in the following semi-discrete135
finite volume manner136

(2.2)
dU i

dt
= − 1

∆xi

[
F (Ui+ 1

2
)− F (Ui− 1

2
)
]
.137

Thus, the accuracy of (2.2) is determined by the approximation accuracy of the point138
values. It was so far (e.g. in [2]) considered sufficient to update the point values with139
any finite-difference-like formula140

(2.3)
dUi+ 1

2

dt
= −R

(
Ui+ 1

2−l1(t),U i+1−l1(t), · · · ,U i+l2(t),Ui+ 1
2+l2(t)

)
, l1, l2 ⩾ 0,141

with R a consistent approximation of ∂F /∂x at xi+ 1
2
, as long as it gave rise to a142

stable method. This paper explores further conditions on R for nonlinear problems.143

2.1. Point value update using Jacobian splitting. For smooth solutions,144
we have an equivalent formulation in the form145

(2.4)
∂U

∂t
+ J(U)

∂U

∂x
= 0, J(U) =

∂F (U)

∂U
.146

Inspired by the upwind scheme, (2.4) can be discretized by the JS [1, 2] as follows147

(2.5)
dUi+ 1

2

dt
= −

[
J+(Ui+ 1

2
)D+

i+ 1
2

(U) + J−(Ui+ 1
2
)D−

i+ 1
2

(U)
]
,148

where the splitting of the Jacobian matrix J = J+ + J− is defined as149

J+ = RΛ+R−1, J− = RΛ−R−1,150

Λ+ = diag{max(λ1, 0), . . . ,max(λm, 0)},151

Λ− = diag{min(λ1, 0), . . . ,min(λm, 0)},152

based on the eigendecomposition ∂F /∂U = RΛR−1, Λ = diag{λ1, . . . , λm}, where153
λ1, · · · , λm are the eigenvalues, with the columns of R the corresponding eigenvectors.154

To derive the approximation of the derivatives in (2.5), one can first obtain a high-155
order reconstruction for U in the upwind cell, and then differentiate the reconstructed156
polynomial. As an example, a parabolic reconstruction in cell i is157

Upara,1(x) =− 3(2U i −Ui− 1
2
−Ui+ 1

2
)
x2

∆x2
i

+ (Ui+ 1
2
−Ui− 1

2
)

x

∆xi
158

+
1

4
(6U i −Ui− 1

2
−Ui+ 1

2
)(2.6)159
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BOUND-PRESERVING ACTIVE FLUX 5

satisfying Upara,1(±∆xi/2) = Ui± 1
2
, 1

∆xi

∫∆xi/2

−∆xi/2
Upara,1(x) dx = U i. Then the de-160

rivatives are161

D+
i+ 1

2

(U) = U ′
para,1(∆xi/2) =

1

∆xi

(
2Ui− 1

2
− 6U i + 4Ui+ 1

2

)
,(2.7a)162

D−
i+ 1

2

(U) =
1

∆xi+1

(
−4Ui+ 1

2
+ 6U i+1 − 2Ui+ 3

2

)
.(2.7b)163

They are third-order accurate. Higher-order extensions can be obtained by higher-164
order finite difference formulae using a larger spatial stencil, see [2] for examples.165

2.2. Point value update using flux vector splitting. One of the deficiencies166
of using the JS is the transonic issue that appears for nonlinear problems, as observed167
in [25, 4] and described in more detail next. Consider Example 5.2, where we solve168
Burgers’ equation with a square wave as the initial data. Figure 3 shows the cell169
averages and point values based on the JS with 200 cells, as well as the reference170
solution. The numerical solution based on the JS without limiting gives a spike at171
the initial discontinuity x = 0.2, which grows linearly in time. The reason for this172
behaviour is the inaccurate estimation of the upwind direction at the cell interface.173
In this example, there are two successive point values with different initial data near174
the initial discontinuity, denoted by ui− 1

2
= 2, ui+ 1

2
= −1, respectively. At the cell175

interface xi− 1
2

or xi+ 1
2
, the upwind discretization in (2.7) only uses the data from the176

left or right, leading to zero derivatives, thus the point values ui− 1
2

and ui+ 1
2

stay177

unchanged. However, according to the update of the cell average (2.2), ūi increases178
gradually (which is the observed spike). This deficiency cannot be eliminated by179
limitings, as one observes from Figure 3. Some remedies have been proposed, such180
as using discontinuous reconstruction [25] and an “entropy fix” that evaluates the181
upwind direction not only at the corresponding cell interface but also with values182
from its neighbors [4].183

In this paper, we propose to use the FVS for the point value update, which184
borrows the information from the neighbors naturally, still based on the continuous185
reconstruction, and can eliminate the generation of the spike effectively, as shown in186
Figure 4. The FVS for the point value update reads187

(2.8)
dUi+ 1

2

dt
= −

[
D̃+F+(U) + D̃−F−(U)

]
i+ 1

2

,188

where the flux F is split into the positive and negative parts F = F++F− satisfying189
190

(2.9) λ

(
∂F+

∂U

)
⩾ 0, λ

(
∂F−

∂U

)
⩽ 0,191

i.e., all the eigenvalues of ∂F+

∂U and ∂F−

∂U are non-negative and non-positive, respec-192
tively. Different FVS can be adopted as long as they satisfy the constraint (2.9),193
to be discussed later. Finite difference formulae to approximate the flux derivatives194
are obtained similarly to the computation of the derivatives in the JS. A parabolic195
reconstruction of the flux can be obtained based on the three flux values as follows196

Fpara,2(x) = 2(Fi− 1
2
− 2Fi + Fi+ 1

2
)
x2

∆x2
i

+ (Fi+ 1
2
− Fi− 1

2
)

x

∆xi
+ Fi,197
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6 J.M. DUAN, W. BARSUKOW, AND C. KLINGENBERG

satisfying Fpara,2(±∆xi/2) = Fi± 1
2
, Fpara,2(0) = Fi, with Fi± 1

2
= F (Ui± 1

2
), and the198

cell-centered point value Fi = F (Ui) is obtained by evaluating the reconstruction199
of U , i.e. according to Simpson’s rule Ui = (−Ui− 1

2
+ 6U i − Ui+ 1

2
)/4. Then the200

derivatives are201 (
D̃+F+

)
i+ 1

2

= F ′
para,2(∆xi/2) =

1

∆xi

(
Fi− 1

2
− 4Fi + 3Fi+ 1

2

)
,(2.10a)202 (

D̃−F−
)
i+ 1

2

=
1

∆xi+1

(
−3Fi+ 1

2
+ 4Fi+1 − Fi+ 3

2

)
.(2.10b)203

These finite differences are third-order accurate. While the reconstructions of both U204
and F are parabolic, the coefficients in the formula (2.10) differ from (2.7) because205
(2.10) uses the cell-centered value rather than the cell average. Our numerical tests in206
Section 5 show that the AF methods based on the FVS generally give better results207
than the JS.208

2.2.1. Local Lax-Friedrichs flux vector splitting. The first FVS we consider209
is the LLF FVS, defined as210

F± =
1

2
(F (U)± αU),211

where the choice of α should fulfill (2.9) across the spatial stencil. In our implemen-212
tation, it is determined by213

(2.11) αi+ 1
2
= max

r,ℓ
{|λℓ(Ur)|} , r ∈

{
i− 1

2
, i, i+

1

2
, i+ 1, u+

3

2

}
, ℓ = 1, · · · ,m.214

One can also choose α to be the maximal absolute value of the eigenvalues in the whole215
domain, corresponding to the (global) LF splitting. Note, however, that a larger α216
generally leads to a smaller time step size and more dissipation.217

2.2.2. Upwind flux vector splitting. One can also split the Jacobian matrix218
based on each characteristic field,219

(2.12) F± =
1

2
(F (U)± |J |U), |J | = R(Λ+ −Λ−)R−1.220

For linear systems, one has F = JU , so (2.12) reduces to the JS. To be specific,221

F± =
1

2
(J ± |J |)U = RΛ±R−1U = J±U ,222

with J± a constant matrix so that D̃±F±(U) = J±D̃±U , which is the same as223

J±D±U if D+ and D̃+ are derived from the same reconstructed polynomial. In224
other words, the AF methods using this FVS enjoy the same properties as the original225
JS-based AF methods for linear systems.226

Such an FVS is also known as the Steger-Warming (SW) FVS [36] for the Euler227
equations (1.3), since the “homogeneity property” holds [38], i.e., F = JU . One can228
write down the SW FVS explicitly229

F± =


ρ
2γα

±

ρ
2γ

(
α±v + a(λ±

2 − λ±
3 )
)

ρ
2γ

(
1
2α

±v2 + av(λ±
2 − λ±

3 ) +
a2

γ−1 (λ
±
2 + λ±

3 )
)
 ,230

where λ1 = v, λ2 = v + a, λ3 = v − a, α± = 2(γ − 1)λ±
1 + λ±

2 + λ±
3 , and a =

√
γp/ρ231

is the sound speed.232
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BOUND-PRESERVING ACTIVE FLUX 7

2.2.3. Van Leer-Hänel flux vector splitting for the Euler equations.233
Another popular FVS for the Euler equations was proposed by Van Leer [40], and234
improved by [23]. The flux can be split based on the Mach number M = v/a as235

F =

 ρaM
ρa2(M2 + 1

γ )

ρa3M( 12M
2 + 1

γ−1 )

 = F+ + F−, F± =

 ± 1
4ρa(M ± 1)2

± 1
4ρa(M ± 1)2v + p±

± 1
4ρa(M ± 1)2H

 ,236

with the enthalpy H = (E + p)/ρ, and the pressure splitting p± = 1
2 (1± γM)p. This237

FVS gives a quadratic differentiable splitting with respect to the Mach number.238

2.3. 1D power law reconstruction for point value update. When the239
numerical solutions contain discontinuities, the computation of the derivatives (2.7)240
or (2.10) based on the parabolic reconstructions may cause oscillations. Thus, it is241
reasonable to seek finite difference approximations based on differentiating a modified242
reconstruction with improved monotonicity properties. This section only considers243
the scalar case and can be extended to systems of equations in a component-wise244
fashion.245

The power law reconstruction proposed in [4] can be used to replace the original246
parabolic reconstruction to achieve monotonicity on some occasions. It is shown in247
Theorem 5 in [4] that the extremum is not avoidable in the cell Ii = [xi− 1

2
, xi+ 1

2
]248

for continuous reconstructions if the cell average lies outside the range of the point249
values (ūi − ui− 1

2
)(ui+ 1

2
− ūi) < 0. The parabola is monotone, and thus no action250

is required when (2ui− 1
2
+ ui+ 1

2
)/3 < ūi < (ui− 1

2
+ 2ui+ 1

2
)/3 or (2ui− 1

2
+ ui+ 1

2
)/3 >251

ūi > (ui− 1
2
+ 2ui+ 1

2
)/3. Upon defining r =

ui+1/2 − ūi

ūi − ui−1/2
, one can equivalently express252

that the parabola is monotone when 1/2 < r < 2. In both these cases, the parabolic253
reconstruction is used, and the derivatives are obtained by (2.7) or (2.10). Otherwise,254
the following power law reconstruction is used.255

Proposition 2.1 (Barsukow [4]). The power law reconstruction256

(2.13)


upwl,1(x) = ui− 1

2
+ (ui+ 1

2
− ui− 1

2
)

(
x− xi

∆xi
+

1

2

)r

, if r > 2

upwl,2(x) = ui+ 1
2
− (ui+ 1

2
− ui− 1

2
)

(
1

2
− x− xi

∆xi

)1/r

, if 0 < r < 1/2

257

is monotone and satisfies258

upwl,l(xi− 1
2
) = ui− 1

2
, upwl,l(xi+ 1

2
) = ui+ 1

2
,

1

∆xi

∫
Ii

upwl,l(x) dx = ūi, l = 1, 2.259

A comparison between the parabolic reconstruction (2.6) and power law recon-260
struction (2.13) is given in Figure 1 with point values fixed as −1 and 1 at the inter-261
faces, and different cell averages {−1.1,−0.8,−1/3, 0.1, 1/3, 0.8, 1.1}. One can observe262
monotone profiles for the power law reconstruction when the cell average lies between263
the two point values. Based on (2.13), the derivatives can be computed directly264 

u′
pwl,1(x) =

ui+ 1
2
− ui− 1

2

∆xi
r

(
x− xi

∆xi
+

1

2

)r−1

, if r > 2,

u′
pwl,2(x) =

ui+ 1
2
− ui− 1

2

∆xi

1

r

(
1

2
− x− xi

∆xi

)1/r−1

, if 0 < r < 1/2.

265
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−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
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2

u

ū = −1.1

ū = −0.8

ū = −1/3

ū = 0.1

ū = 1/3

ū = 0.8

ū = 1.1

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
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−1
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2

u

ū = −1.1

ū = −0.8

ū = −1/3

ū = 0.1

ū = 1/3

ū = 0.8

ū = 1.1

Fig. 1: The parabolic (2.6) and power law reconstruction (2.13) obtained with different
cell averages {−1.1,−0.8,−1/3, 0.1, 1/3, 0.8, 1.1}, and fixed point values as −1 and
1 at the left and right interfaces.

At the left interface, the derivative is266

(2.14)


u′
pwl,1(x

+
i− 1

2

) = 0, if r > 2,

u′
pwl,2(x

+
i− 1

2

) =
ui+ 1

2
− ui− 1

2

∆xi

1

r
, if 0 < r < 1/2,

267

and at the right interface, the derivative is268

(2.15)

u′
pwl,1(x

−
i+ 1

2

) =
ui+ 1

2
− ui− 1

2

∆xi
r, if r > 2,

u′
pwl,2(x

−
i+ 1

2

) = 0, if 0 < r < 1/2.
269

To avoid computational issues, when r ̸∈ [1/50, 50], the parabolic reconstruction is270
adopted directly.271

For the FVS, as the cell average of the flux can be obtained through Simpson’s272
rule, f̄i = (fi− 1

2
+4fi+fi+ 1

2
)/6, the flux derivatives can be computed by (2.14)-(2.15).273

Remark 2.2. In [2], it is mentioned that if the signs of the derivatives of the274
parabolic reconstruction and the first-order reconstruction are the same, then the275
parabolic reconstruction is adopted. This strategy is not employed in this paper as276
the numerical results may be worse.277

2.4. Time discretization. The fully-discrete scheme is obtained by using the278
SSP-RK3 method [16]279

(2.16)

U∗ = Un +∆tnL (Un) ,

U∗∗ =
3

4
Un +

1

4
(U∗ +∆tnL (U∗)) ,

Un+1 =
1

3
Un +

2

3
(U∗∗ +∆tnL (U∗∗)) ,

280

where L is the right-hand side of the semi-discrete schemes (2.2) or (2.3). The time281
step size is determined by the usual CFL condition282

(2.17) ∆tn =
CCFL

max
i,ℓ

{λℓ(U i)/∆xi}
.283
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3. Convex limiting for the cell average. Although the power law recon-284
struction [4] has been shown to effectively reduce spurious oscillations, the numerical285
solutions may still violate certain bounds, e.g., the appearance of negative density or286
pressure, leading to unphysical solutions or even causing the simulations to blow up.287
Since the degrees of freedom in the AF methods include both cell averages and point288
values, it is necessary to design suitable BP limitings for both of them to achieve the289
BP property. The limiting for the cell average has not been addressed much in the290
literature, except for a very recent work [3].291

Definition 3.1. An AF method is called bound-preserving (BP) if starting from292
cell averages and point values in the admissible state set G, the cell averages and point293
values remain in G at the next time step.294

This section presents a convex limiting approach to achieve the BP property of295
the cell average update. The basic idea of the convex limiting approaches [17, 22, 29]296
is to enforce the preservation of local and global bounds by constraining individual297
numerical fluxes. The BP or invariant domain-preserving (IDP) properties of flux-298
limited approximations are shown using representations in terms of intermediate states299
that stay in convex admissible state sets [17, 21]. The low-order scheme is chosen as300
the first-order LLF scheme301

U
L
i = U

n

i − µi

(
F̂ L
i+ 1

2
− F̂ L

i− 1
2

)
, µi = ∆tn/∆xi,302

F̂ L
i+ 1

2
=

1

2

(
F (U

n

i ) + F (U
n

i+1)
)
−

αi+ 1
2

2

(
U

n

i+1 −U
n

i

)
,303

where αi+ 1
2

is an upper bound for the maximum wave speed of the Riemann problem304
with the initial data Ui,Ui+1, whose estimation for scalar conservation laws and the305
Euler equations can be found in [19] and [18], respectively. Note that here αi+ 1

2
is306

not the same as the one in the LLF FVS (2.11). Following [19], the first-order LLF307
scheme can be rewritten as308

(3.1) U
L
i =

[
1− µi

(
αi− 1

2
+ αi+ 1

2

)]
U

n

i + µiαi− 1
2
Ũi− 1

2
+ µiαi+ 1

2
Ũi+ 1

2
,309

with the intermediate states defined as310

(3.2)

Ũi− 1
2
:=

1

2

(
U

n

i−1 +U
n

i

)
+

1

2αi− 1
2

[
F (U

n

i−1)− F (U
n

i )
]
,

Ũi+ 1
2
:=

1

2

(
U

n

i +U
n

i+1

)
+

1

2αi+ 1
2

[
F (U

n

i )− F (U
n

i+1)
]
.

311

Remark 3.2. As αi+ 1
2

is chosen to be larger than the leftmost and rightmost wave312

speed, the intermediate state defined in (3.2) is indeed an average of the exact Riemann313
solution [19], thus it belongs to G. For systems, it is also the intermediate state of the314
HLL solver [24]. Moreover, the intermediate state (3.2) preserves all convex invariants315
(e.g., density and pressure positivity, and minimum entropy principle for the Euler316
equations) of initial value problems for hyperbolic systems [19].317

Lemma 3.3 (Guermond and Popov [19]). If the time step size ∆tn satisfies318

(3.3) ∆tn ⩽
∆xi

αi− 1
2
+ αi+ 1

2

,319

then (3.1) is a convex combination, and the first-order LLF scheme (3.1) is BP.320
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The proof relies on the fact that the intermediate state (3.2) stays in the admissible321
state set G and the convexity of G.322

Upon defining the anti-diffusive flux ∆F̂i± 1
2

:= F̂ H
i± 1

2

− F̂ L
i± 1

2

with F̂ H
i± 1

2

:=323

F (Ui± 1
2
), a forward-Euler step applied to the semi-discrete high-order scheme for324

the cell average (2.2) can be written as325

U
H
i = U

n

i − µi(F̂
H
i+ 1

2
− F̂ H

i− 1
2
) = U

n

i − µi(F̂
L
i+ 1

2
− F̂ L

i− 1
2
)− µi(∆F̂i+ 1

2
−∆F̂i− 1

2
)326

=:
[
1− µi

(
αi− 1

2
+ αi+ 1

2

)]
U

n

i + µiαi− 1
2
Ũ H

i− 1
2
+ µiαi+ 1

2
Ũ H

i+ 1
2
,

(3.4)

327

Ũ H
i− 1

2
:=

(
Ũi− 1

2
+

∆F̂i− 1
2

αi− 1
2

)
, Ũ H

i+ 1
2
:=

(
Ũi+ 1

2
−

∆F̂i+ 1
2

αi+ 1
2

)
.328

With the low-order scheme (3.1) and high-order scheme (3.4) having the same329
form one can now define the limited scheme for the cell average as330

(3.5) U
Lim
i =

[
1− µi

(
αi− 1

2
+ αi+ 1

2

)]
U

n

i + µiαi− 1
2
Ũ Lim,+

i− 1
2

+ µiαi+ 1
2
Ũ Lim,−

i+ 1
2

,331

with the limited intermediate states332

Ũ Lim,+
i− 1

2

= Ũi− 1
2
+

∆F̂ Lim
i− 1

2

αi− 1
2

:= Ũi− 1
2
+

θi− 1
2
∆F̂i− 1

2

αi− 1
2

,333

Ũ Lim,−
i+ 1

2

= Ũi+ 1
2
−

∆F̂ Lim
i+ 1

2

αi+ 1
2

:= Ũi+ 1
2
−

θi+ 1
2
∆F̂i+ 1

2

αi+ 1
2

,334

where the coefficients θi± 1
2
∈ [0, 1].335

Proposition 3.4. If the cell average at the last time step U
n

i and the limited336

intermediate states Ũ Lim,∓
i± 1

2

belong to the admissible state set G, then the limited337

average update (3.5) is BP, i.e., U
Lim
i ∈ G, under the CFL condition (3.3). If the338

SSP-RK3 (2.16) is used for the time integration, the high-order scheme is also BP.339

Proof. Under the constraint (3.3), the limited cell average update U
Lim
i is a convex340

combination of U
n

i and Ũ Lim,∓
i± 1

2

, thus it belongs to G due to the convexity of G. Because341

the SSP-RK3 is a convex combination of forward-Euler stages, the high-order scheme342
equipped with the SSP-RK3 is also BP according to the convexity.343

Remark 3.5. The scheme (3.5) is conservative as it amounts to using the nu-344

merical flux F̂ L
i+ 1

2

+ θi+ 1
2
∆F̂i+ 1

2
= θi+ 1

2
F̂ H
i+ 1

2

+ (1 − θi+ 1
2
)F̂ L

i+ 1
2

, which is a convex345

combination of the high-order and low-order fluxes.346

Remark 3.6. It should be noted that the time step size (3.3) is determined based347
on the solutions at tn. If the constraint is not satisfied at the later stage of the348
SSP-RK3, the BP property may not be achieved because (3.5) is no longer a convex349
combination. In our implementation, we start from the usual CFL condition (2.17).350
Then, if the high-order AF states need BP limitings and (3.2) is not BP or (3.3) is not351
satisfied, the numerical solutions are set back to the last time step, and we rerun with352
a halved time step size until (3.2) is BP and the constraint (3.3) is satisfied. This is353
also a typical implementation to save computational costs in other BP methods.354
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The remaining task is to determine the coefficients at each interface θi± 1
2

such355

that Ũ Lim,∓
i± 1

2

∈ G and stay as close as possible to the high-order states Ũ H
i± 1

2

, i.e., the356

goal is to find the largest θi± 1
2
∈ [0, 1] such that Ũ Lim,∓

i± 1
2

∈ G.357

3.1. Application to scalar conservation laws. This section is devoted to358
applying the convex limiting approach to scalar conservation laws (1.2), such that the359
numerical solutions satisfy the global or local MP. For the global MP, the blending360
coefficient θi+ 1

2
∈ [0, 1] should be chosen such that m0 ⩽ ũLim,±

i+ 1
2

⩽ M0, with m0,M0361

defined in (1.4), which gives362

θi+ 1
2
=


min

{
1,

α
i+1

2
(ũ

i+1
2
−m0)

∆f̂
i+1

2

,
α

i+1
2
(M0−ũ

i+1
2
)

∆f̂
i+1

2

}
, if ∆f̂i+ 1

2
> 0,

min

{
1,

α
i+1

2
(m0−ũ

i+1
2
)

∆f̂
i+1

2

,
α

i+1
2
(ũ

i+1
2
−M0)

∆f̂
i+1

2

}
, if ∆f̂i+ 1

2
< 0.

363

To avoid a small denominator, the limited anti-diffusive flux can be obtained directly,364

∆f̂Lim
i+ 1

2
=

min
{
∆f̂i+ 1

2
, αi+ 1

2
(ũi+ 1

2
−m0), αi+ 1

2
(M0 − ũi+ 1

2
)
}
, if ∆f̂i+ 1

2
⩾ 0,

max
{
∆f̂i+ 1

2
, αi+ 1

2
(m0 − ũi+ 1

2
), αi+ 1

2
(ũi+ 1

2
−M0)

}
, otherwise.

365

On the other hand, one can also enforce the local MP umin
i ⩽ ũLim,−

i+ 1
2

⩽ umax
i ,366

umin
i+1 ⩽ ũLim,+

i+ 1
2

⩽ umax
i+1 , which helps to suppress spurious oscillations and improve367

shock-capturing ability. The corresponding limited anti-diffusive flux is368

∆f̂Lim
i+ 1

2
=

min
{
∆f̂i+ 1

2
, αi+ 1

2
(ũi+ 1

2
− umin

i ), αi+ 1
2
(umax

i+1 − ũi+ 1
2
)
}
, if ∆f̂i+ 1

2
⩾ 0,

max
{
∆f̂i+ 1

2
, αi+ 1

2
(umin

i+1 − ũi+ 1
2
), αi+ 1

2
(ũi+ 1

2
− umax

i )
}
, otherwise.

369

The choice of the local bounds can be based on the intermediate states370

umin
i = min

{
ūn
i , ũi− 1

2
, ũi+ 1

2

}
, umax

i = max
{
ūn
i , ũi− 1

2
, ũi+ 1

2

}
.371

Finally, the numerical flux is372

(3.6) f̂Lim
i+ 1

2
= f̂L

i+ 1
2
+∆f̂Lim

i+ 1
2
.373

3.2. Application to the compressible Euler equations. This section aims374
at enforcing the strict positivity of density and pressure, i.e., ρ > ε, p > ε, with ε a375
small positive number close to zero, chosen as 10−13 in our numerical tests.376

3.2.1. Positivity of density. The first step is to impose the density positivity377
Ũ Lim,±,ρ

i+ 1
2

> ε, where U∗,ρ denotes the density component of U∗. The corresponding378

density component of the limited anti-diffusive flux is379

∆F̂ Lim,∗,ρ
i+ 1

2

=

min
{
∆F̂ ρ

i+ 1
2

, αi+ 1
2

(
Ũρ

i+ 1
2

− ε
)}

, if ∆F̂ ρ

i+ 1
2

⩾ 0,

max
{
∆F̂ ρ

i+ 1
2

, αi+ 1
2

(
ε− Ũρ

i+ 1
2

)}
, otherwise.

380

Then the density component of the limited numerical flux is F̂ Lim,∗,ρ
i+ 1

2

= F̂ L,ρ
i+ 1

2

+381

∆F̂ Lim,∗,ρ
i+ 1

2

, with the other components remaining the same as F̂ H
i+ 1

2

.382
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3.2.2. Positivity of pressure. The second step is to enforce pressure positivity383
p(Ũ Lim,±

i+ 1
2

) > ε, where p(U∗) denotes the pressure recovered from U∗, with384

Ũ Lim,±
i+ 1

2

= Ũi+ 1
2
±

θi+ 1
2
∆F̂ Lim,∗

i+ 1
2

αi+ 1
2

, ∆F̂ Lim,∗
i+ 1

2

= F̂ Lim,∗
i+ 1

2

− F̂ L
i+ 1

2
.385

Such constraints lead to two inequalities386

(3.7)
Ai+ 1

2

α2
i+ 1

2

θ2i+ 1
2
±

Bi+ 1
2

αi+ 1
2

θi+ 1
2
< Ci+ 1

2
,387

with the coefficients388

Ai+ 1
2
=

1

2

(
∆F̂ Lim,∗,ρv

i+ 1
2

)2
−∆F̂ Lim,∗,ρ

i+ 1
2

∆F̂ Lim,∗,E
i+ 1

2

,389

Bi+ 1
2
= αi+ 1

2

(
∆F̂ Lim,∗,ρ

i+ 1
2

ŨE
i+ 1

2
+ Ũρ

i+ 1
2

∆F̂ Lim,∗,E
i+ 1

2

−∆F̂ Lim,∗,ρv
i+ 1

2

Ũρv

i+ 1
2

− ε∆F̂ Lim,∗,ρ
i+ 1

2

)
,390

Ci+ 1
2
= α2

i+ 1
2

(
Ũρ

i+ 1
2

ŨE
i+ 1

2
− 1

2

(
Ũρv

i+ 1
2

)2
− εŨρ

i+ 1
2

)
.391

Following [29], the inequalities (3.7) hold under the linear sufficient condition392

max{0, Ai+ 1
2
}+ |Bi+ 1

2
| ⩽ Ci+ 1

2
,393

if making use of θ2
i+ 1

2

⩽ θi+ 1
2
, θi+ 1

2
∈ [0, 1]. Thus the coefficient can be chosen as394

θi+ 1
2
= min

{
1,

Ci+ 1
2

max{0, Ai+ 1
2
}+ |Bi+ 1

2
|

}
,395

and the final limited numerical flux is396

(3.8) F̂ Lim
i+ 1

2
= F̂ L

i+ 1
2
+ θi+ 1

2
∆F̂ Lim,∗

i+ 1
2

.397

4. Scaling limiter for point value. To achieve the BP property, it is also nec-398
essary to introduce BP limiting for the point value. As one will see in the numerical399
tests in Section 5, using power law reconstruction or BP limiting for cell average,400
individually or in combination, cannot guarantee the bounds. As there is no conser-401
vation requirement on the point value update, a simple scaling limiter [31] is directly402
performed on the high-order point values rather than on the flux for the cell average.403

A first-order LLF scheme for the point value update can be404

(4.1) U L
i+ 1

2
= Un

i+ 1
2
− 2∆tn

∆xi +∆xi+1

(
F̂ L
i+1(U

n
i+ 1

2
,Un

i+ 3
2
)− F̂ L

i (U
n
i− 1

2
,Un

i+ 1
2
)
)
,405

with the numerical flux406

F̂ L
i (U

n
i− 1

2
,Un

i+ 1
2
) =

1

2

(
F (Un

i− 1
2
) + F (Un

i+ 1
2
)
)
− αi

2

(
Un

i+ 1
2
−Un

i− 1
2

)
,407

αi = max{λ(Un
i− 1

2
), λ(Un

i+ 1
2
)}.408

Such an LLF scheme can be interpreted as a scheme on a staggered mesh if the point409
value is viewed as the cell average on the staggered mesh. Based on the proof in [33],410
it is straightforward to obtain the following Lemma.411
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Lemma 4.1. The LLF scheme for the point value (4.1) is BP under the CFL412
condition413

(4.2) ∆tn ⩽
∆xi +∆xi+1

4αi
.414

The limited state is obtained by blending the high-order AF scheme (2.3) with415
the forward Euler scheme and the LLF scheme (4.1) as U Lim

i+ 1
2

= θi+ 1
2
U H

i+ 1
2

+ (1 −416

θi+ 1
2
)U L

i+ 1
2

, such that U Lim
i+ 1

2

∈ G.417

Remark 4.2. In the FVS for the point value update, the cell-centered value Ui418
is used. It is possible that Ui /∈ G, then it is set as U i in such cases, which is a419
reasonable second-order approximation.420

4.1. Application to scalar conservation laws. This section enforces the421
global MP m0 ⩽ uLim

i+ 1
2

⩽ M0 by choosing the coefficient as422

θi+ 1
2
=


uL
i+ 1

2

−m0

uL
i+ 1

2

− uH
i+ 1

2

, if uH
i+ 1

2

< m0,

M0 − uL
i+ 1

2

uH
i+ 1

2

− uL
i+ 1

2

, if uH
i+ 1

2

> M0.

423

The final limited state is424

(4.3) uLimi+ 1
2
= θi+ 1

2
uHi+ 1

2
+
(
1− θi+ 1

2

)
uLi+ 1

2
.425

4.2. Application to the compressible Euler equations. The limiting con-426
sists of two steps. First, the high-order state U H

i+ 1
2

is modified as U Lim,∗
i+ 1

2

, such that its427

density component satisfies U Lim,∗,ρ
i+ 1

2

> ε. Solving this inequality gives the coefficient428

θ∗i+ 1
2
=


U L,ρ

i+ 1
2

− ε

U L,ρ
i+ 1

2

−U H,ρ
i+ 1

2

, if U H,ρ
i+ 1

2

< ε,

1, otherwise.

429

Then the density component of the limited state is U Lim,∗,ρ
i+ 1

2

= θ∗
i+ 1

2

U H,ρ
i+ 1

2

+ (1 −430

θ∗
i+ 1

2

)U L,ρ
i+ 1

2

, with the other components remaining the same as U H
i+ 1

2

.431

Then the limited state U Lim,∗
i+ 1

2

is modified as U Lim
i+ 1

2

, such that it gives positive432

pressure, i.e., p
(
U Lim

i+ 1
2

)
> ε. Let U Lim

i+ 1
2

= θ∗∗
i+ 1

2

U Lim,∗
i+ 1

2

+(1−θ∗∗
i+ 1

2

)U L
i+ 1

2

. Note that the433

pressure is a concave function (see e.g. [45]) of the conservative variables, such that434

p
(
U Lim

i+ 1
2

)
⩾ θ∗∗i+ 1

2
p
(
U Lim,∗

i+ 1
2

)
+
(
1− θ∗∗i+ 1

2

)
p
(
U L

i+ 1
2

)
435

based on Jensen’s inequality and U Lim,∗,ρ
i+ 1

2

> 0, U L,ρ
i+ 1

2

> 0, θ∗∗
i+ 1

2

∈ [0, 1]. Thus a436

sufficient condition is437

θ∗∗i+ 1
2
=


p
(
U L

i+ 1
2

)
− ε

p
(
U L

i+ 1
2

)
− p

(
U Lim,∗

i+ 1
2

) , if p
(
U Lim,∗

i+ 1
2

)
< ε,

1, otherwise.

438
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The final limited state is439

(4.4) U Lim
i+ 1

2
= θ∗∗i+ 1

2
U Lim,∗

i+ 1
2

+
(
1− θ∗∗i+ 1

2

)
U L

i+ 1
2
.440

Let us summarize the main results of the BP AF methods in this paper.441

Theorem 4.3. If the initial numerical solution U
0

i ,U
0
i+ 1

2

∈ G for all i, and the442

time step size satisfies (3.3) and (4.2), then the AF methods (2.2)-(2.3) equipped with443
the SSP-RK3 (2.16) and the BP limitings444
• (3.6) and (4.3) preserve the maximum principle for scalar case;445
• (3.8) and (4.4) preserve the density and pressure positivity for the Euler equations.446

5. Numerical results. This section conducts some numerical tests to verify447
the accuracy of using the FVS for point value updates, the BP property, and the448
shock-capturing ability of our AF methods.449

5.1. Scalar conservation laws. This section shows the results for the linear450
advection equation and the Burgers’ equation, which demonstrate that the proposed451
limiting can preserve the MP and suppress oscillations well.452

Example 5.1 (Advection equation). Consider the 1D advection equation ut+ux =453
0, on the periodic domain [−1, 1] with the initial data [27]454 

1
6 (G1(x, β, z − δ) +G1(x, β, z + δ) + 4G1(x, β, z)) , if − 0.8 ⩽ x ⩽ −0.6,

1, if − 0.4 ⩽ x ⩽ −0.2,

1− |10(x− 0.1)|, if 0 ⩽ x ⩽ 0.2,
1
6 (G2(x, α, a− δ) +G2(x, α, a+ δ) + 4G2(x, α, a)) , if 0.4 ⩽ x ⩽ 0.6,

0, otherwise,

455

where G1(x, β, z) = exp(−β(x−z)2), G2(x, α, a) =
√
max(1− α2(x− a)2, 0), and the456

constants are a = −0.5, z = −0.7, δ = 0.005, α = 10, β = ln 2/(36δ2). The problem is457
solved for one period, i.e., until T = 2.458

For the advection equation, the JS and LLF FVS are equivalent. The maximal459
CFL number leading to a stable simulation is 0.41 without any limiting, and it reduces460
to 0.13 when only the power law reconstruction is activated, and it increases a little461
bit to 0.42 when only the BP limitings are used. When the power law reconstruction462
and the BP limitings are employed together, the maximal CFL number can be 0.4.463
The reduction of the CFL number with the power law reconstruction for semi-discrete464
AF has, in fact, not been noticed previously. Thus, in the following simulations we465
try not to use the power law reconstruction unless otherwise stated.466

The results obtained with different limitings are shown in Figure 2, which are467
computed with 400 cells and the CFL number is 0.1. The ranges of the numerical468
solutions are listed in Table 1, considering both the cell averages and point values.469
One can observe that there are some oscillations near the discontinuities without470
any limiting, and that the power law reconstruction can eliminate the oscillations471
effectively but is still not BP. The activation of either the BP limiting for the cell472
average alone or the BP limiting for the point value alone also fails to preserve the473
bounds [0, 1], as one can see from Table 1, as is the case when using both the BP474
limiting for the cell average and the power law reconstruction in the point value475
update. Only when a BP limiting is performed on both the cell average and the476
point value, the BP property is achieved, showing that using the two BP limitings477
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simultaneously is necessary for the preservation of the MP. Figure 2 also shows the478
results obtained by imposing the global or local MP for the cell average, and global479
MP for the point value (without power law reconstruction), indicating that the use of480
local MP tends to dissipate the numerical solutions near the discontinuities and clip481
maxima more than the global MP.482
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Fig. 2: Example 5.1, advection. The results are obtained without any limiting (upper
left), with power law reconstruction (upper right), with BP limitings imposing global
MP for the cell average and point value (lower left), with BP limitings imposing local
and global MP for the cell average and point value (lower right).

none [−5.9× 10−2, 1 + 5.9× 10−2] ✗

PLR [−2.7× 10−3, 1 + 2.6× 10−3] ✗
global MP for average [−1.7× 10−3, 1 + 1.7× 10−3] ✗
local MP for average [−1.3× 10−3, 1 + 1.3× 10−3] ✗
global MP for point [−3.0× 10−4, 1 + 2.6× 10−4] ✗

PLR + global MP for average [−9.8× 10−6, 1 + 2.7× 10−6] ✗
PLR + local MP for average [−1.4× 10−5, 1 + 1.9× 10−5] ✗

global MP for average + global MP for point [0.0, 1.0] ✓
local MP for average + global MP for point [0.0, 1− 9.4× 10−13] ✓

PLR + global MP for average + global MP for point [0.0, 1− 1.1× 10−16] ✓
PLR + local MP for average + global MP for point [0.0, 1− 7.3× 10−14] ✓

Table 1: Example 5.1, advection. The ranges of the numerical solutions (including
both the cell averages and the point values) obtained with different limitings after one
period. “PLR” denotes the power law reconstruction.

Example 5.2 (Self-steepening shock). Consider the 1D Burgers’ equation ut +483 (
1
2u

2
)
x
= 0 on the domain [−1, 1] with periodic boundary conditions. This test is484

solved until T = 0.5 with the initial condition as a square wave485

u0(x) =

{
2, if |x| < 0.2,

−1, otherwise.
486
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Figures 3 and 4 plot the cell averages and point values based on different point487
value updates with 200 cells, as well as the reference solution. The spike generation488
has been observed in [25], and the reason is also discussed in Subsection 2.2. Such489
spike generation cannot be eliminated by using the power law reconstruction, nor do490
both BP limitings help to eliminate artefacts, as can be seen from Figure 3. The491
numerical solutions based on the LLF or SW FVS are shown in Figure 4, in which no492
spike appears. There are some oscillations near the discontinuity without limitings,493
and the numerical solutions agree well with the reference solution when the limitings494
are activated.495
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Fig. 3: Example 5.2, self-steepening shock for the Burgers’ equation. The numerical
solutions are based on the JS. From left to right: without limiting, with the power
law reconstruction, with the BP limitings imposing local and global MP for the cell
average and point value update, respectively.
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Fig. 4: Example 5.2, self-steepening shock for the Burgers’ equation. From left to
right: the LLF FVS without limiting, the LLF FVS with limitings, the SW FVS
without limiting, the SW FVS with limitings. The limitings consider the local and
global MP for the cell average and point value updates, respectively.

5.2. The compressible Euler equations. This section shows some challeng-496
ing tests, which require the BP property of the numerical methods in order to prevent497
simulations from crashing at some time. The adiabatic index is γ = 1.4 unless other-498
wise stated. Note that the BP limiting naturally reduces some oscillations.499

Example 5.3 (1D accuracy test for the Euler equations). This test is used to500
examine the accuracy of using different point value updates. The domain is [0, 1] with501
periodic boundary conditions. Two manufactured solutions are constructed by adding502
additional source terms S to the Euler equations,503

ρ = 4 + 0.1s1, v1 = s1, p = (6002 + 398c2 + 305s1 + 5s3)/1000,(5.1)504

S = (π(39c1 + s2)/5, − π(905c1 + 15c3 − 776s2)/125,505

πc1(20421 + 1179c2 + 2160s1 + 20s3)/500),506
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and507

ρ = 4 + 0.1s1, v1 = 2 + 0.5s1, p = (12328 + 472c2 − 5455s1 + 5s3)/4000,(5.2)508

S = (π(42c1 + s2)/10, π(4855c1 − 15c3 + 914s2)/500,509

πc1(14991 + 369c2 − 2983s1 + 5s3)/1000),510

with sk = sin (2kπ(x− t)) , ck = cos (2kπ(x− t)) , k = 1, 2, 3. The source terms are511
discretized by using Simpson’s rule for the cell average update. The problem is solved512
until T = 0.4.513

In this test, the maximal CFL number is around 0.18 for the VH FVS, while514
around 0.43 for the JS, LLF, and SW FVS, thus we run the test with the same CFL515
number as 0.18. Figure 5 shows the following errors and corresponding convergence516
rates for the conservative variables in the ℓ1 norm. It is seen that for the first exact517
solution (5.1), the JS and all the FVS except for the SW FVS achieve the designed518
third-order accuracy, while the SW FVS only gives second-order accuracy. Figure 6519
plots the density and velocity profiles obtained by the SW FVS with 80 cells. One520
can observe some defects in the density when the velocity is zero, similar to the “sonic521
point glitch” in the literature [37]. For the second exact solution (5.2), the velocity522
stays away from zero and no such issue appears. One possible reason is that the SW523
FVS is based on the absolute value of the eigenvalues, which is not smooth when the524
velocity is zero. Such an issue remains to be further explored in the future.525
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Fig. 5: Example 5.3, the accuracy tests for the 1D Euler equations based on the
manufactured solutions (5.1) and (5.2) for the left and right plots, respectively.
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Fig. 6: Example 5.3, the density (left) and velocity (right) are obtained with the SW
FVS and 80 cells for the 1D Euler equations based on the initial data (5.1).
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Example 5.4 (Double rarefaction problem). The exact solution to this problem526
contains a vacuum, so that it is often used to verify the BP property of numerical527
methods. The test is solved on a domain [0, 1] until T = 0.3 with the initial data528

(ρ, v, p) =

{
(7,−1, 0.2), if x < 0.5,

(7, 1, 0.2), otherwise.
529

In this test, the AF method based on any kind of point value update mentioned530
in this paper gives negative density or pressure without the BP limitings. Figure 7531
shows the density computed with 400 cells and the BP limitings for the cell average532
and point value updates. The power law reconstruction is not used in this test, and533
the CFL number is 0.4 for all kinds of point value updates, except for 0.1 for the VH534
FVS. One observes that the BP AF method gets good performance for this example.535
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Fig. 7: Example 5.4, double rarefaction Riemann problem. The numerical solutions
are computed with BP limitings for the cell average and point value updates on a
uniform mesh of 400 cells. The power law reconstruction is not used. From left to
right: JS, LLF, SW, and VH FVS.

Example 5.5 (LeBlanc shock tube). This is a Riemann problem with an extremely536
large initial pressure ratio. This test is solved until T = 5 × 10−6 on a domain [0, 1]537
with the initial data538

(ρ, v, p) =

{
(2, 0, 109), if x < 0.5,

(10−3, 0, 1), otherwise.
539

Without the BP limitings, the simulation will stop due to negative density or540
pressure. Figure 8 shows the density computed on a uniform mesh of 400 and 6000 cells541
with the BP limitings for the cell average and point value updates. The CFL number542
is 0.4 for the LLF and SW FVS, and 0.15 for the JS and VH FVS for stability when543
the power law reconstruction is not used. It is seen that the numerical solutions on the544
coarse mesh deviate from the exact solutions, which has also been observed in other545
high-order BP methods, e.g., [44]. As the number of the mesh cells increases from 400546
to 6000, one can observe from Figure 8 that the numerical solutions converge to the547
exact solutions with only a few overshoots/undershoots at the contact discontinuity.548
The LLF and SW FVS give better results.549

To verify whether the power law reconstruction can suppress spurious oscillations550
and overshoots/undershoots, we rerun the test with the CFL number 0.1, and the551
density profiles are shown in Figure 9. It is obvious that only reducing the CFL552
number does not change the numerical solutions much except that the oscillations553
near the contact discontinuity based on the VH FVS are damped. When the power554
law reconstruction is activated, the overshoots/undershoots are reduced for the JS,555
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LLF, and SW FVS, while the VH FVS gives worse results even with a smaller CFL556
number (e.g. 0.02, not shown here), which needs further investigation.557
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Fig. 8: Example 5.5, LeBlanc Riemann problem. The numerical solutions are com-
puted with the BP limitings for the cell average and point value updates on a uniform
mesh of 400 cells (top) and 6000 cells (bottom). The CFL number is 0.4 and the
power law reconstruction is not used. From left to right: JS, LLF, SW, and VH FVS.
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Fig. 9: Example 5.5, LeBlanc Riemann problem. The numerical solutions are com-
puted with the BP limitings for the cell average and point value updates on a uniform
mesh of 6000 cells. From left to right: JS, LLF, SW, and VH FVS. The CFL number
is 0.1 and the power law reconstruction is not activated (top) and activated (bottom).

Example 5.6 (Sedov problem). In this problem, a volume of uniform density and558
temperature is initialized, and a large quantity of thermal energy is injected at the559
center, developing into a blast wave that evolves in time in a self-similar fashion [35].560
An exact analytical solution based on self-similarity arguments is available [28], which561
contains very low density with strong shocks. The initial density is one, velocity is562
zero, and total energy is 10−12 everywhere except that in the center cell, the total563
energy of the cell average and point values at two cell interfaces are 3.2 × 106/∆x564
with ∆x = 4/N with N the number of cells, which is used to emulate a δ-function at565
the center. The test is solved until T = 5× 10−6.566

This test is run with N = 801 cells, and the density plots in the right half domain567
are shown in Figure 10. The BP limitings are adopted for the cell average and point568
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value updates, while the power law reconstruction is not used. The maximal CFL569
numbers for different point value updates to be stable are also listed in the caption,570
i.e., 0.1 for the JS, 0.4, 0.3, and 0.25 for the LLF, SW, and VH FVS, respectively.571
The numerical solutions obtained by the three FVS are nearly the same, while there572
are some defects in the solution based on the JS. Thus the LLF FVS is superior to573
others regarding the time step size and the shock-capturing ability.574
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Fig. 10: Example 5.6, Sedov problem. The numerical solutions are computed with the
BP limitings for the cell average and point value updates on a uniform mesh of 801
cells, without the power law reconstruction. The CFL number is (from left to right):
0.1 for the JS, 0.4 for the LLF FVS, 0.3 for the SW FVS, 0.25 for the VH FVS.

Example 5.7 (Blast wave interaction [41]). This test describes the interaction of575
two strong shocks in the domain [0, 1] with reflective boundary conditions. The test576
is solved until T = 0.038.577

Due to the low-pressure region, the schemes blow up without the BP limit-578
ings. Figure 11 shows the density profiles and corresponding enlarged views in579
x ∈ [0.62, 0.82] obtained by using the BP limitings on a uniform mesh of 800 cells,580
in which the power law reconstruction is not activated. It is seen that the numerical581
solutions are close to the reference solution, although there are some oscillations in582
the enlarged views. Then the power law reconstruction is additionally adopted to583
see if it can suppress the oscillations. The results with the CFL number 0.1 and a584
refined mesh of 1600 cells are shown in Figure 12, from which one can observe that585
the oscillations reduce, and the LLF FVS gives the best result.586

Remark 5.8. In the numerical tests, the maximal CFL numbers for stability are587
obtained by experiments. Note that the constraints (3.3) and (4.2) are used to guar-588
antee the BP property, while the reduction of the CFL numbers is due to the stability589
issue for different FVS and power law reconstruction.590

6. Conclusion. In the active flux (AF) methods, the way how point values at591
cell interfaces are updated is essential to achieve stability and high-order accuracy.592
The point value update based on Jacobian splitting (JS) may lead to the so-called593
transonic issue for nonlinear problems due to inaccurate estimation of the upwind di-594
rection. This paper proposed to use the flux vector splitting (FVS) for the point value595
update instead of the JS, which keeps the continuous reconstruction as the original AF596
methods, and offers a natural and uniform remedy to the transonic issue. To further597
improve the robustness of the AF methods, this paper developed bound-preserving598
(BP) AF methods for general one-dimensional hyperbolic conservation laws, achieved599
by blending the high-order AF methods with the first-order local Lax-Friedrichs (LLF)600
or Rusanov methods for both the cell average and point value updates, where the con-601
vex limiting and scaling limiter were employed, respectively. For scalar conservation602
laws, the blending coefficient was determined based on the global or local maximum603
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Fig. 11: Example 5.7, blast wave interaction. The numerical solutions are computed
with the BP limitings for the cell average and point value updates on a uniform mesh
of 800 cells. The power law reconstruction is not used, and from left to right: the
CFL number is 0.4, 0.4, 0.4, 0.35 for the JS, LLF, SW, and VH FVS, respectively.
The corresponding enlarged views in [0.62, 0.82] are shown in the bottom row.
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Fig. 12: Example 5.7, blast wave interaction. The numerical solutions are computed
with the power law reconstruction and the BP limitings for the cell average and point
values update on a uniform mesh of 1600 cells. The CFL number is 0.1 for all the
point value updates, and the corresponding enlarged views in [0.62, 0.82] are shown
in the bottom row. From left to right: JS, LLF, SW, and VH FVS.

principle, while for the compressible Euler equations, it was obtained by enforcing604
the positivity of density and pressure. Some challenging benchmark tests were con-605
ducted based on different choices of the point value update, including the JS, LLF,606
Steger-Warming, and Van Leer-Hänel FVS. The numerical results confirmed the ac-607
curacy, BP property, and shock-capturing ability of our methods, and also showed608
that the LLF FVS is generally superior to others in terms of the CFL number and609
shock-capturing ability. Our future work will include, among others, extending the610
current BP limitings to two-dimensional cases. We may also explore other ways to611
further suppress oscillations for the Euler equations.612
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