Publications

PreprintsSelected publications

Preprints

  1. M. Kalousek, Š. Nečasová, A. Schlömerkemper: Extensibility of a system of transport equations in the case of an impermeable boundary, arXiv:1812.03236.
  2. M. Carioni, J. Fischer,. A. Schlömerkemper: External forces in the continuum limit of discrete systems with non-convex interaction potentials: Compactness for a Γ-development, arXiv:1811.09857.
  3. O. Boussaid, C. Kreisbeck, A. Schlömerkemper: Characterizations of symmetric polyconvexity, arXiv:1806.06434.

Selected publications

  1. M. Kružı́k, P. Pelech, A. Schlömerkemper: Gradient Polyconvexity in Evolutionary Models of Shape-Memory Alloys, J. Optim. Theory Appl., online first 02/2019.
  2. B. Benešová, M. Kružı́k, A. Schlömerkemper: A note on locking materials and gradient polyconvexity, Math. Mod. Meth. Appl. Sci. 28 (2018), 2367–2401.
  3. A. Schlömerkemper, J. Žabenský: Uniqueness of solutions for a mathematical model for magnetoviscoelastic flows, Nonlinearity 31 (2018), 2989–3012, arXiv:1703.07858.
  4. B. Benešová, J. Forster, C. Liu, A. Schlömerkemper: Existence of weak solutions to an evolutionary model for magnetoelasticity, SIAM Math. Anal. 50 (2018), 1200–1236.
  5. B. Benešová;, J. Forster, C. Liu and A. Schlömerkemper, Existence of weak solutions to an evolutionary model for magnetoelasticity, SIAM J. Math. Anal. 50, 1200–1236 (2018), arXiv:1608.02992
  6. S. Neukamm, M. Schäffner and A. Schlömerkemper, Stochastic homogenization of nonconvex discrete energies with degenerate growth, SIAM J. Math. Anal. 49, 1761-1809 (2018), arXiv:1606.06533
  7. M. Schäffner and A. Schlömerkemper, On Lennard-Jones systems with finite range interactions and their asymptotic analysis,, Networks and Heterogeneous Media 18, 95-118 (2018), arXiv:1501.06423
  8. L. Lauerbach, M. Schäffner and A. Schlömerkemper, On continuum limits of herogeneous discrete systems modelling cracks in composite materials, GAMM-Mitt. 40, 178-200 (2017)
  9. G. Lazzaroni, M. Palombaro and A. Schlömerkemper, Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires, Discrete Contin. Dyn. Syst. S 10, 119-139 (2017), arXiv:1501.07505
  10. R. Fechte-Heinen, A. Schlömerkemper, About lamination upper and convexification lower bounds on the free energy of monoclinic shape memory alloys in the context of $T_3$-configurations and R-phase formation, Cont. Mech. Thermodyn. 28, 1601-1621 (2016)
  11. C. Reina, A. Schlömerkemper, S. Conti, Derivation of F=FeFp as the continuum limit of crystalline slip, J. Mech. Phys. Solids 89 231-254 (2016), arXiv:1504.06775
  12. A. Schlömerkemper, I.V. Chenchiah, R. Fechte-Heinen, D. Wachsmuth, Upper and lower bounds on the set of recoverable strains and on effective energies in cubic-to-monoclinic martensitic phase transformations, MATEC Web of Conferences 33, 02011 (2015) [Published version]
  13. G. Lazzaroni, M. Palombaro and A. Schlömerkemper, A discrete to continuum analysis of dislocations in nanowire heterostructures, Comm. Math. Sci. 13, 1105-1133 (2015), arXiv:1308.3505 [Postprint version]
  14. M. Schäffner and A. Schlömerkemper, On a Gamma-convergence analysis of a quasicontinuum method, Multiscale Model. Simul. 13, 132–172 (2015), arXiv:1405.6122 [Published version]
  15. T. Blesgen and A. Schlömerkemper, On the Allen-Cahn/Cahn-Hilliard-System with geometrically linear elastic energy, Proc. Roy. Soc. Edin. 144, 241-266 (2014), arXiv:1202.5197 [Postprint version]
  16. I.V. Chenchiah and A. Schlömerkemper, Non-Laminate Microstructures in Monoclinic-I Martensite, Arch. Rational Mech. Anal. 207, 39-74 (2013), arXiv:1201.6679 [Postprint version] [OPUS Würzburg]
  17. L. Scardia, C. Zanini and A. Schlömerkemper, Towards uniformly Gamma-equivalent theories for nonconvex discrete systems, Discrete Contin. Dyn. Syst. B, 17, 661-686 (2012) [Preprint version. Published by AMS. All rights reserved.]
  18. L. Scardia, C. Zanini and A. Schlömerkemper, Boundary layer energies for nonconvex discrete systems, Math. Models Methods Appl. Sci., 21, 777-817 (2011) [Postprint version. Electronic version © DOI]
  19. K. Bhattacharya and A. Schlömerkemper, Stress-induced phase transformations in shape-memory polycrystals, Arch. Rational Mech. Anal. 196, 715-751 (2010)
  20. B. Schmidt and A. Schlömerkemper, Discrete-to-continuum limit of magnetic forces: dependence on the distance between bodies, Arch. Rational Mech. Anal. 192, 589-611 (2009)
  21. A. Schlömerkemper, About solutions of Poisson's equation with transition condition in non-smooth domains, Z. Anal. Anwend. 27, 253-281 (2008) [MPI-MIS preprint 53/2006]
  22. N. Popovic, D. Praetorius and A. Schlömerkemper, Analysis and numerical simulation of magnetic forces between rigid polygonal bodies. Part II: Numerical Simulation, Contin. Mech. Thermodyn. 19, 81-109 (2007) [Postprint version]
  23. N. Popovic, D. Praetorius and A. Schlömerkemper, Analysis and numerical simulation of magnetic forces between rigid polygonal bodies. Part I: Analysis, Contin. Mech. Thermodyn. 19, 67-80 (2007) [Postprint version]
  24. A. Schlömerkemper, Lattice approximation of a surface integral and convergence of a singular lattice sum, Asymptot. Anal. 52, 95-115 (2007) [MPI-MIS preprint 86/2005]
  25. C. Lexcellent and A. Schlömerkemper, Comparison of several models for the determination of the phase transformation yield surface in shape-memory alloys with experimental data, Acta Mat. 55, 2995-3006 (2007) [Postprint version © 2007. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.]
  26. A. Schlömerkemper, Mathematical derivation of the continuum limit of the magnetic force between two parts of a rigid crystalline material, Arch. Rational Mech. Anal. 176, 227-269 (2005) [Postprint version]
  27. K. Bhattacharya and A. Schlömerkemper, Transformation Yield Surface of Shape-Memory Alloys, J. Phys. IV France 115, 155-162 (2004) [Published version]
  28. S. Müller and A. Schlömerkemper, Discrete-to-continuum limit of magnetic forces, C. R. Acad. Sci. Paris, Ser. I 335, 393-398 (2002) [Postprint version © 2002. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.]
  29. M. Requardt and A. Schlömerkemper, Perturbation theory of Schrödinger operators in infinitely many coupling parameters, J. Phys. A: Math. Gen. 32 (1999), 7523-7541 [arXiv math-ph/9901021]