piwik-script

Deutsch Intern
  • Mathematical formula on a blackboard
  • Interior of the library of mathematics
  • Close up notes
Optimal Control

Publications

You can find the complete publication list of Prof. Dr. Daniel Wachsmuth and the members of his research group on their personal websites:

> Project-related publications


  • Safeguarded augmented Lagrangian methods in Banach spaces Karl, V., Kanzow, C., Steck, D., Wachsmuth, D. (2019).
     
  • On non-reducible multi-player control problems and their numerical computation Karl, V., Pörner, F. https://arxiv.org/abs/1805.03009v2 (2018).
     
  • Optimal control of ODEs with state suprema Geiger, T., Wachsmuth, D., Wachsmuth, G. http://arxiv.org/abs/1810.11402 (2018).
     
  • Subgradients of marginal functions in parametric control problems of partial differential equations Qui, N. T., Wachsmuth, D. http://arxiv.org/abs/1807.05831 (2018).
     
  • A Lagrange multiplier method for semilinear elliptic state constrained optimal control problems Karl, V., Neitzel, I., Wachsmuth, D. http://arxiv.org/abs/1806.08124 (2018).
     
  • Optimal control of an evolution equation with non-smooth dissipation Geiger, T., Wachsmuth, D. http://arxiv.org/abs/1801.04077 (2018).
     

Article in journal, newspaper, or magazine

  • The multiplier-penalty method for generalized Nash equilibrium problems in Banach spaces Kanzow, C., Karl, V., Steck, D., Wachsmuth, D. SIAM J. Optim. 29, 767--793 (2019).
     
  • Iterative hard-thresholding applied to optimal control problems with L0(Ω) control cost Wachsmuth, D. SIAM J. Control Optim. 57, 854--879 (2019).
     
  • Full stability for a class of control problems of semilinear elliptic partial differential equations Qui, N. T., Wachsmuth, D. SIAM J. Control Optim. 57, 3021--3045 (2019).
     
  • Error estimates for the approximation of a discrete-valued optimal control problem Clason, C., Do, T. B. T., Pörner, F. Comp. Opt. Appl. 71, 857-878 (2018).
     
  • Inexact Iterative Bregman Method for Optimal Control Problems Pörner, F. Numerical Functional Analysis and Optimization 39, 491-516 (2018).
     
  • Stability for bang-bang control problems of partial differential equations Qui, N. T., Wachsmuth, D. Optimization 67, 2157-2177 (2018).
     
  • An augmented Lagrange method for elliptic state constrained optimal control problems Karl, V., Wachsmuth, D. Comp. Opt. Appl. 69, 857--880 (2018).
     
  • An augmented Lagrangian method for optimization problems in Banach spaces Steck, D., Kanzow, C., Wachsmuth, D. SIAM J. Control Optim. 56, 272-291 (2018).
     
  • Second-order analysis and numerical approximation for bang-bang bilinear control problems Casas, E., Wachsmuth, D., Wachsmuth, G. SIAM J. Control Optim. 56, 4203--4227 (2018).
     
  • A joint Tikhonov regularization and augmented Lagrange approach for ill-posed state constrained control problems with sparse controls Karl, V., Pörner, F. Numer. Funct. Anal. Optim. 39, 1543--1573 (2018).
     
  • A priori stopping rule for an iterative Bregman method for optimal control problems Pörner, F. Optimization Methods and Software 33, 249-267 (2018).
     
  • Sufficient second-order conditions for bang-bang control problems Casas, E., Wachsmuth, D., Wachsmuth, G. SIAM J. Control Optim. 55, 3066--3090 (2017).
     
  • Pontryagin's principle for optimal control problem governed by 3d Navier-Stokes equations Kien, B. T., Rösch, A., Wachsmuth, D. J. Optim. Theory Appl. 173, 30--55 (2017).
     
  • Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations Pörner, F., Wachsmuth, D. Mathematical Control & Related Fields 8, 315--335 (2017).
     
  • On the switching behavior of sparse optimal controls for the one-dimensional heat equation Tröltzsch, F., Wachsmuth, D. Mathematical Control & Related Fields 8, 135--153 (2017).
     
  • Optimal control of a rate-independent evolution equation via viscous regularization Stefanelli, U., Wachsmuth, D., Wachsmuth, G. Discrete and Continuous Dynamical Systems - Series S 10, 1467-1485 (2017).
     
  • The regularity of the positive part of functions in L2(I; H1(Ω)) ∩ H1(I; H1(Ω)*) with applications to parabolic equations Wachsmuth, D. Comment. Math. Univ. Carolin. 57, 327--332 (2016).
     
  • Exponential convergence of hp-finite element discretization of optimal boundary control problems with elliptic partial differential equations Wachsmuth, D., Wurst, J. -E. SIAM J. Control Optim. 54, 2526-2552 (2016).
     
  • Functional error estimators for the adaptive discretization of inverse problems Clason, C., Kaltenbacher, B., Wachsmuth, D. Inverse Problems 32, 104004 (2016).
     
  • Optimal control of interface problems with hp-finite elements Wachsmuth, D., Wurst, J. -E. Numerical Functional Analysis and Optimization 37, 363-390 (2016).
     
  • An iterative Bregman regularization method for optimal control problems with inequality constraints Pörner, F., Wachsmuth, D. Optimization 65, 2195--2215 (2016).
     

Article in Conference Proceedings

  • How not to discretize the control Wachsmuth, D., Wachsmuth, G. In: Proceedings in Applied Mathematics and Mechanics. p. 793--795 (2016).
     
  • A sharp regularization error estimate for bang-bang solutions for an iterative Bregman regularization method for optimal control problems Pörner, F. In: Proceedings in Applied Mathematics and Mechanics. p. 787--788 (2016).