Publikationen
Hier finden Sie eine Auswahl der aktuellen Publikationen unserer Arbeitsgruppe. Detaillierte und vollständige Publikationslisten finden Sie auf den jeweiligen persönlichen Homepages.
> Projektbezogene Publikationen
-
1.Sparse optimization problems in fractional order Sobolev spaces Antil, H., Wachsmuth, D. http://arxiv.org/abs/2204.11456 (2022).[arxiv]
-
2.A simple proof of the Baillon-Haddad theorem on open subsets of Hilbert spaces Wachsmuth, D., Wachsmuth, G. http://arxiv.org/abs/2204.00282 (2022).[arxiv]
-
3.A Note on Existence of Solutions to Control Problems of Semilinear Partial Differential Equations Casas, E., Wachsmuth, D. http://arxiv.org/abs/2203.12996 (2022).[arxiv]
-
4.Optimal control problems with L^0(Ω) constraints: maximum principle and proximal gradient method Wachsmuth, D. http://arxiv.org/abs/2201.05360 (2022).[arxiv]
-
5.A penalty scheme to solve constrained non-convex optimization problems in BV(Ω) Natemeyer, C., Wachsmuth, D. http://arxiv.org/abs/2110.01849 (2021).[arxiv]
-
6.Full stability for variational Nash equilibriums of parametric optimal control problems of PDEs Qui, N. T., Wachsmuth, D. http://arxiv.org/abs/2002.08635 (2020).[arxiv]
-
7.Optimal control of an evolution equation with non-smooth dissipation Geiger, T., Wachsmuth, D. http://arxiv.org/abs/1801.04077 (2018).[arxiv]
Artikel in einem Journal, einer Zeitung oder einem Magazin
-
1.Second-order conditions for non-uniformly convex integrands: quadratic growth in L^1 Wachsmuth, D., Wachsmuth, G. J Nonsmooth Anal. Opt. 3, (2022).
-
2.A proximal gradient method for control problems with non-smooth and non-convex control cost Natemeyer, C., Wachsmuth, D. Comp. Opt. Appl. 80, 639–677 (2021).
-
3.Optimal control of ODEs with state suprema Geiger, T., Wachsmuth, D., Wachsmuth, G. Math. Control Relat. Fields 11, 555-578 (2021).
-
4.A Lagrange multiplier method for semilinear elliptic state constrained optimal control problems Karl, V., Neitzel, I., Wachsmuth, D. Comp. Opt. Appl. 831-869 (2020).
-
5.Subdifferentials of marginal functions of parametric bang–bang control problems Qui, N. T. Nonlinear Analysis 195, 111743 (2020).[ DOI ]
-
6.First and second order conditions for optimal control problems with an L^0 term in the cost functional Casas, E., Wachsmuth, D. SIAM J. Control Optim. 58, 3486–3507 (2020).
-
7.Iterative hard-thresholding applied to optimal control problems with L^0(Ω) control cost Wachsmuth, D. SIAM J. Control Optim. 57, 854-879 (2019).
-
8.On the uniqueness of non-reducible multi-player control problems Karl, V., Pörner, F. Optimization Methods and Software (2019).
-
9.Full stability for a class of control problems of semilinear elliptic partial differential equations Qui, N. T., Wachsmuth, D. SIAM J. Control Optim. 57, 3021-3045 (2019).
-
10.The multiplier-penalty method for generalized Nash equilibrium problems in Banach spaces Kanzow, C., Karl, V., Steck, D., Wachsmuth, D. SIAM J. Optim. 29, 767-793 (2019).[ DOI ]
-
11.Second-order analysis and numerical approximation for bang-bang bilinear control problems Casas, E., Wachsmuth, D., Wachsmuth, G. SIAM J. Control Optim. 56, 4203-4227 (2018).
-
12.Stability for bang-bang control problems of partial differential equations Qui, N. T., Wachsmuth, D. Optimization 67, 2157-2177 (2018).
-
13.Inexact Iterative Bregman Method for Optimal Control Problems Pörner, F. Numerical Functional Analysis and Optimization 39, 491-516 (2018).
-
14.An augmented Lagrange method for elliptic state constrained optimal control problems Karl, V., Wachsmuth, D. Comp. Opt. Appl. 69, 857-880 (2018).[ DOI ]
-
15.A priori stopping rule for an iterative Bregman method for optimal control problems Pörner, F. Optimization Methods and Software 33, 249-267 (2018).
-
16.Error estimates for the approximation of a discrete-valued optimal control problem Clason, C., Do, T. B. T., Pörner, F. Comp. Opt. Appl. 71, 857-878 (2018).
-
17.An augmented Lagrangian method for optimization problems in Banach spaces Steck, D., Kanzow, C., Wachsmuth, D. SIAM J. Control Optim. 56, 272-291 (2018).
-
18.A joint Tikhonov regularization and augmented Lagrange approach for ill-posed state constrained control problems with sparse controls Karl, V., Pörner, F. Numer. Funct. Anal. Optim. 39, 1543-1573 (2018).
-
19.Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations Pörner, F., Wachsmuth, D. Mathematical Control & Related Fields 8, 315-335 (2017).
-
20.Sufficient second-order conditions for bang-bang control problems Casas, E., Wachsmuth, D., Wachsmuth, G. SIAM J. Control Optim. 55, 3066-3090 (2017).[ DOI ]
-
21.On the switching behavior of sparse optimal controls for the one-dimensional heat equation Tröltzsch, F., Wachsmuth, D. Mathematical Control & Related Fields 8, 135-153 (2017).
-
22.Pontryagin’s principle for optimal control problem governed by 3d Navier-Stokes equations Kien, B., Rösch, A., Wachsmuth, D. J. Optim. Theory Appl. 173, 30-55 (2017).[ DOI ]
-
23.Optimal control of a rate-independent evolution equation via viscous regularization Stefanelli, U., Wachsmuth, D., Wachsmuth, G. Discrete and Continuous Dynamical Systems - Series S 10, 1467-1485 (2017).[ DOI ]
-
24.Exponential convergence of hp-finite element discretization of optimal boundary control problems with elliptic partial differential equations Wachsmuth, D., Wurst, J.-E. SIAM J. Control Optim. 54, 2526-2552 (2016).[ DOI ]
-
25.An iterative Bregman regularization method for optimal control problems with inequality constraints Pörner, F., Wachsmuth, D. Optimization 65, 2195-2215 (2016).
-
26.The regularity of the positive part of functions in L^2(I;H^1(Ω)) ∩ H^1(I;H^1(Ω)^*) with applications to parabolic equations Wachsmuth, D. Comment. Math. Univ. Carolin. 57, 327-332 (2016).[ DOI ]
-
27.Optimal control of interface problems with hp-finite elements Wachsmuth, D., Wurst, J.-E. Numerical Functional Analysis and Optimization 37, 363-390 (2016).[ DOI ]
-
28.Functional error estimators for the adaptive discretization of inverse problems Clason, C., Kaltenbacher, B., Wachsmuth, D. Inverse Problems 32, 104004 (2016).
Artikel in Konferenzband
-
1.Safeguarded augmented Lagrangian methods in Banach spaces Karl, V., Kanzow, C., Steck, D., Wachsmuth, D. In: Hintermüller, M., Herzog, R., Kanzow, C., Ulbrich, M., and Ulbrich, S. (eds.) Non-Smooth and Complementarity-Based Distributed Parameter Systems. pp. 241-282. Birkhäuser (2022).[ DOI ]
-
2.How not to discretize the control Wachsmuth, D., Wachsmuth, G. In: Proceedings in Applied Mathematics and Mechanics. pp. 793-795 (2016).[ DOI ]
-
3.A sharp regularization error estimate for bang-bang solutions for an iterative Bregman regularization method for optimal control problems Pörner, F. In: Proceedings in Applied Mathematics and Mechanics. pp. 787-788 (2016).