Publikationen
Hier finden Sie eine Auswahl der aktuellen Publikationen unserer Arbeitsgruppe. Detaillierte und vollständige Publikationslisten finden Sie auf den jeweiligen persönlichen Homepages.
> Projektbezogene Publikationen
-
Spatially sparse optimization problems in fractional order Sobolev spaces https://arxiv.org/abs/2402.14417 (2024).
- [ arxiv ]
-
A numerical solution approach for non-smooth optimal control problems based on the Pontryagin maximum principle https://arxiv.org/abs/2406.19010 (2024).
- [ arxiv ]
-
The largest-K-norm for general measure spaces and a DC Reformulation for L^0-Constrained Problems in Function Spaces https://arxiv.org/abs/2403.19437 (2024).
- [ arxiv ]
-
Non-monotone proximal gradient methods in infinite-dimensional spaces with applications to non-smooth optimal control problems (2023).
-
Full stability for variational Nash equilibriums of parametric optimal control problems of PDEs http://arxiv.org/abs/2002.08635 (2020).
- [ arxiv ]
-
Optimal control of an evolution equation with non-smooth dissipation http://arxiv.org/abs/1801.04077 (2018).
- [ arxiv ]
Article[ to top ]
-
Optimal control problems with L^0(Ω) constraints: maximum principle and proximal gradient method Comp. Opt. Appl. 87, 811-833 (2024).
-
Optimal regularized hypothesis testing in statistical inverse problems Inverse problems 40, 015013 (2024).
-
Control in the coefficients of an elliptic differential operator: topological derivatives and Pontryagin maximum principle Mathematical Control & Related Fields (2024).
-
A topological derivative-based algorithm to solve optimal control problems with L^0(Ω) control cost J Nonsmooth Anal. Opt. 5, (2024).
-
Sparse optimization problems in fractional order {S}obolev spaces Inverse problems 39, 044001 (2023).
-
A simple proof of the {B}aillon-{H}addad theorem on open subsets of {H}ilbert spaces J. Convex Anal. 30, 1319-1328 (2023).
- [ arxiv ]
-
A Note on Existence of Solutions to Control Problems of Semilinear Partial Differential Equations SIAM J. Control Optim. 61, 1095-1112 (2023).
-
Second-order conditions for non-uniformly convex integrands: quadratic growth in L^1 J Nonsmooth Anal. Opt. 3, (2022).
-
Optimal control of ODEs with state suprema Math. Control Relat. Fields 11, 555-578 (2021).
-
A proximal gradient method for control problems with non-smooth and non-convex control cost Comp. Opt. Appl. 80, 639–677 (2021).
-
First and second order conditions for optimal control problems with an L^0 term in the cost functional SIAM J. Control Optim. 58, 3486–3507 (2020).
-
A {L}agrange multiplier method for semilinear elliptic state constrained optimal control problems Comp. Opt. Appl. 831-869 (2020).
-
Subdifferentials of marginal functions of parametric bang–bang control problems Nonlinear Analysis 195, 111743 (2020).
- [ DOI ]
-
On the uniqueness of non-reducible multi-player control problems Optimization Methods and Software (2019).
-
The multiplier-penalty method for generalized {N}ash equilibrium problems in {B}anach spaces SIAM J. Optim. 29, 767-793 (2019).
- [ DOI ]
-
Full stability for a class of control problems of semilinear elliptic partial differential equations SIAM J. Control Optim. 57, 3021-3045 (2019).
-
Iterative hard-thresholding applied to optimal control problems with L^0(Ω) control cost SIAM J. Control Optim. 57, 854-879 (2019).
-
A joint {T}ikhonov regularization and augmented {L}agrange approach for ill-posed state constrained control problems with sparse controls Numer. Funct. Anal. Optim. 39, 1543-1573 (2018).
-
Stability for bang-bang control problems of partial differential equations Optimization 67, 2157-2177 (2018).
-
Inexact Iterative {B}regman Method for Optimal Control Problems Numerical Functional Analysis and Optimization 39, 491-516 (2018).
-
An augmented {L}agrangian method for optimization problems in {B}anach spaces {SIAM} J. Control Optim. 56, 272-291 (2018).
-
An augmented {L}agrange method for elliptic state constrained optimal control problems Comp. Opt. Appl. 69, 857-880 (2018).
- [ DOI ]
-
A priori stopping rule for an iterative Bregman method for optimal control problems Optimization Methods and Software 33, 249-267 (2018).
-
Error estimates for the approximation of a discrete-valued optimal control problem Comp. Opt. Appl. 71, 857-878 (2018).
-
Second-order analysis and numerical approximation for bang-bang bilinear control problems SIAM J. Control Optim. 56, 4203-4227 (2018).
-
Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations Mathematical Control & Related Fields 8, 315-335 (2017).
-
Sufficient second-order conditions for bang-bang control problems {SIAM} J. Control Optim. 55, 3066-3090 (2017).
- [ DOI ]
-
On the switching behavior of sparse optimal controls for the one-dimensional heat equation Mathematical Control & Related Fields 8, 135-153 (2017).
-
Optimal control of a rate-independent evolution equation via viscous regularization Discrete and Continuous Dynamical Systems - Series S 10, 1467-1485 (2017).
- [ DOI ]
-
Pontryagin’s principle for optimal control problem governed by 3d Navier-Stokes equations J. Optim. Theory Appl. 173, 30-55 (2017).
- [ DOI ]
-
Exponential convergence of hp-finite element discretization of optimal boundary control problems with elliptic partial differential equations {SIAM} J. Control Optim. 54, 2526-2552 (2016).
- [ DOI ]
-
An iterative {B}regman regularization method for optimal control problems with inequality constraints Optimization 65, 2195-2215 (2016).
-
Optimal control of interface problems with hp-finite elements Numerical Functional Analysis and Optimization 37, 363-390 (2016).
- [ DOI ]
-
The regularity of the positive part of functions in L^2(I;H^1(Ω)) ∩ H^1(I;H^1(Ω)^*) with applications to parabolic equations Comment. Math. Univ. Carolin. 57, 327-332 (2016).
- [ DOI ]
-
Functional error estimators for the adaptive discretization of inverse problems Inverse Problems 32, 104004 (2016).
Inproceedings[ to top ]
-
Safeguarded augmented {L}agrangian methods in {B}anach spaces In: Hinterm"uller, M., Herzog, R., Kanzow, C., Ulbrich, M., and Ulbrich, S. (eds.) Non-Smooth and Complementarity-Based Distributed Parameter Systems. pp. 241-282. Birkh"auser (2022).
- [ DOI ]
-
How not to discretize the control In: Proceedings in Applied Mathematics and Mechanics. pp. 793-795 (2016).
- [ DOI ]
-
A sharp regularization error estimate for bang-bang solutions for an iterative Bregman regularization method for optimal control problems In: Proceedings in Applied Mathematics and Mechanics. pp. 787-788 (2016).
PhD thesis[ to top ]
-
Regularization Methods for Ill-Posed Optimal Control Problems http://nbn-resolving.org/urn:nbn:de:bvb:20-opus-163153 (2018).
Unpublished[ to top ]
-
A numerical solution approach for non-smooth optimal control problems based on the Pontryagin maximum principle https://arxiv.org/abs/2406.19010 (2024).
- [ arxiv ]
-
The largest-K-norm for general measure spaces and a DC Reformulation for L^0-Constrained Problems in Function Spaces https://arxiv.org/abs/2403.19437 (2024).
- [ arxiv ]
-
Non-monotone proximal gradient methods in infinite-dimensional spaces with applications to non-smooth optimal control problems (2023).