Inhaber der Professur für Optimale Steuerung
Prof. Dr. Daniel Wachsmuth
Inhaber der Professur
Professur für Mathematik am Lehrstuhl Mathematik VII
Emil-Fischer-Straße 30
97074
Würzburg
Gebäude:
30 (Mathematik West)
Raum:
02.011
Telefon:
+49 931 31-89071
Fax:
+49 931 31-84675

- Seit 2012: Professor in Würzburg
- 2008-2012: Postdoc am RICAM, Linz, Österreich
- 2002-2008: wissenschaftlicher Mitarbeiter, TU Berlin
- optimale Steuerung bei partiellen Differentialgleichungen
- nichtglatte Optimierungsprobleme
- Regularisierung von Problemen mit bang-bang Steuerungen
Publikationen
-
1.Sparse optimization problems in fractional order Sobolev spacesAntil, H., Wachsmuth, D.http://arxiv.org/abs/2204.11456 (2022)[arxiv]
-
2.A simple proof of the Baillon-Haddad theorem on open subsets of Hilbert spacesWachsmuth, D., Wachsmuth, G.http://arxiv.org/abs/2204.00282 (2022)[arxiv]
-
3.A Note on Existence of Solutions to Control Problems of Semilinear Partial Differential EquationsCasas, E., Wachsmuth, D.http://arxiv.org/abs/2203.12996 (2022)[arxiv]
-
4.Optimal control problems with L^0(Ω) constraints: maximum principle and proximal gradient methodWachsmuth, D.http://arxiv.org/abs/2201.05360 (2022)[arxiv]
-
5.A penalty scheme to solve constrained non-convex optimization problems in BV(Ω)Natemeyer, C., Wachsmuth, D.http://arxiv.org/abs/2110.01849 (2021)[arxiv]
-
6.Full stability for variational Nash equilibriums of parametric optimal control problems of PDEsQui, N. T., Wachsmuth, D.http://arxiv.org/abs/2002.08635 (2020)[arxiv]
-
1.Second-order conditions for non-uniformly convex integrands: quadratic growth in L^1Wachsmuth, D., Wachsmuth, G.J Nonsmooth Anal. Opt. 3, (2022)
-
2.A proximal gradient method for control problems with non-smooth and non-convex control costNatemeyer, C., Wachsmuth, D.Comp. Opt. Appl. 80, 639–677 (2021)
-
3.Optimal control of ODEs with state supremaGeiger, T., Wachsmuth, D., Wachsmuth, G.Math. Control Relat. Fields 11, 555-578 (2021)
-
4.Subgradients of marginal functions in parametric control problems of partial differential equationsQui, N. T., Wachsmuth, D.SIAM J. Opt. 30, 1724-1755 (2020)
-
5.A Lagrange multiplier method for semilinear elliptic state constrained optimal control problemsKarl, V., Neitzel, I., Wachsmuth, D.Comp. Opt. Appl. 831-869 (2020)
-
6.First and second order conditions for optimal control problems with an L^0 term in the cost functionalCasas, E., Wachsmuth, D.SIAM J. Control Optim. 58, 3486–3507 (2020)
-
7.Iterative hard-thresholding applied to optimal control problems with L^0(Ω) control costWachsmuth, D.SIAM J. Control Optim. 57, 854-879 (2019)
-
8.Full stability for a class of control problems of semilinear elliptic partial differential equationsQui, N. T., Wachsmuth, D.SIAM J. Control Optim. 57, 3021-3045 (2019)
-
9.The multiplier-penalty method for generalized Nash equilibrium problems in Banach spacesKanzow, C., Karl, V., Steck, D., Wachsmuth, D.SIAM J. Optim. 29, 767-793 (2019)[ DOI ]
-
10.Second-order analysis and numerical approximation for bang-bang bilinear control problemsCasas, E., Wachsmuth, D., Wachsmuth, G.SIAM J. Control Optim. 56, 4203-4227 (2018)
-
11.An augmented Lagrangian method for optimization problems in Banach spacesSteck, D., Kanzow, C., Wachsmuth, D.SIAM J. Control Optim. 56, 272-291 (2018)
-
12.Stability for bang-bang control problems of partial differential equationsQui, N. T., Wachsmuth, D.Optimization 67, 2157-2177 (2018)
-
13.An augmented Lagrange method for elliptic state constrained optimal control problemsKarl, V., Wachsmuth, D.Comp. Opt. Appl. 69, 857-880 (2018)[ DOI ]
-
14.On the switching behavior of sparse optimal controls for the one-dimensional heat equationTröltzsch, F., Wachsmuth, D.Mathematical Control & Related Fields 8, 135-153 (2017)
-
15.Sufficient second-order conditions for bang-bang control problemsCasas, E., Wachsmuth, D., Wachsmuth, G.SIAM J. Control Optim. 55, 3066-3090 (2017)[ DOI ]
-
16.Tikhonov regularization of optimal control problems governed by semi-linear partial differential equationsPörner, F., Wachsmuth, D.Mathematical Control & Related Fields 8, 315-335 (2017)
-
17.Pontryagin’s principle for optimal control problem governed by 3d Navier-Stokes equationsKien, B., Rösch, A., Wachsmuth, D.J. Optim. Theory Appl. 173, 30-55 (2017)[ DOI ]
-
18.Optimal control of a rate-independent evolution equation via viscous regularizationStefanelli, U., Wachsmuth, D., Wachsmuth, G.Discrete and Continuous Dynamical Systems - Series S 10, 1467-1485 (2017)[ DOI ]
-
19.Functional error estimators for the adaptive discretization of inverse problemsClason, C., Kaltenbacher, B., Wachsmuth, D.Inverse Problems 32, 104004 (2016)
-
20.The regularity of the positive part of functions in L^2(I;H^1(Ω)) ∩ H^1(I;H^1(Ω)^*) with applications to parabolic equationsWachsmuth, D.Comment. Math. Univ. Carolin. 57, 327-332 (2016)[ DOI ]
-
21.Exponential convergence of hp-finite element discretization of optimal boundary control problems with elliptic partial differential equationsWachsmuth, D., Wurst, J.-E.SIAM J. Control Optim. 54, 2526-2552 (2016)[ DOI ]
-
22.An iterative Bregman regularization method for optimal control problems with inequality constraintsPörner, F., Wachsmuth, D.Optimization 65, 2195-2215 (2016)
-
23.Optimal control of interface problems with hp-finite elementsWachsmuth, D., Wurst, J.-E.Numerical Functional Analysis and Optimization 37, 363-390 (2016)[ DOI ]
-
24.Boundary concentrated finite elements for optimal control problems with distributed observationBeuchler, S., Hofer, K., Wachsmuth, D., Wurst, J.-E.Comp. Opt. Appl. 62, 31-65 (2015)[ DOI ]
-
25.Newton methods for the optimal control of closed quantum spin systemsBorzì, A., Ciaramella, G., Dirr, G., Wachsmuth, D.SIAM J. Sci. Comput. 37, A319-A346 (2015)[ DOI ]
-
26.An interior point method designed for solving linear quadratic optimal control problems with \($hp$\) finite elementsWachsmuth, D., Wurst, J.-E.Optimization methods and software 30, 1276-1302 (2015)[ DOI ]
-
27.Robust error estimates for regularization and discretization of bang-bang control problemsWachsmuth, D.Comp. Opt. Appl. 62, 271-289 (2014)[ DOI ]
-
28.Optimal control of an oblique derivative problemWachsmuth, G., Wachsmuth, D.Ann. Acad. Rom. Sci. Ser. Math. Appl. 6, 50-73 (2014)
-
29.On time optimal control of the wave equation, its regularization and optimality systemKunisch, K., Wachsmuth, D.ESAIM Control Optim. Calc. Var. 19, 317-336 (2013)[ DOI ]
-
30.On Time Optimal Control of the Wave Equation and its Numerical Realization as Parametric Optimization ProblemKunisch, K., Wachsmuth, D.SIAM J. Control Optim. 51, 1232-1262 (2013)[ DOI ]
-
31.Convergence analysis of smoothing methods for optimal control of stationary variational inequalitiesSchiela, A., Wachsmuth, D.ESAIM Math. Model. Numer. Anal. 47, 771-787 (2013)[ DOI ]
-
32.Adaptive regularization and discretization of bang-bang optimal control problemsWachsmuth, D.ETNA 40, 249-267 (2013)
-
33.A-posteriori error estimates for optimal control problems with state and control constraintsRösch, A., Wachsmuth, D.Numerische Mathematik 120, 733-762 (2012)[ DOI ]
-
34.A-posteriori verification of optimality conditions for control problems with finite-dimensional control spaceAkindeinde, S., Wachsmuth, D.Numerical Functional Analysis and Optimization 33, 473-523 (2012)[ DOI ]
-
35.Sufficient Optimality Conditions and Semi-Smooth Newton Methods for Optimal Control of Stationary Variational InequalitiesKunisch, K., Wachsmuth, D.ESAIM Control Optim. Calc. Var. 18, 520-547 (2012)[ DOI ]
-
36.Boundary concentrated finite elements for optimal boundary control problems of elliptic PDEsBeuchler, S., Pechstein, C., Wachsmuth, D.Comp. Opt. Appl. 51, 883-908 (2012)[ DOI ]
-
37.Semi-smooth Newton’s Method for an optimal control problem with control and mixed control-state constraintsRösch, A., Wachsmuth, D.Optimization methods and software 26, 169-186 (2011)[ DOI ]
-
38.Path-following for Optimal Control of Stationary Variational InequalitiesKunisch, K., Wachsmuth, D.Comp. Opt. Appl. 51, 1345-1373 (2011)[ DOI ]
-
39.Convergence and regularization results for optimal control problems with sparsity functionalWachsmuth, G., Wachsmuth, D.ESAIM Control Optim. Calc. Var. 17, 858-886 (2011)[ DOI ]
-
40.On the regularization of optimization problems with inequality constraintsWachsmuth, G., Wachsmuth, D.Control and Cybernetics 4, 1125-1154 (2011)
-
41.Optimal control of planar flow of incompressible non-Newtonian fluidsRoubívc}}ek, T., Wachsmuth, D.J. for Analysis and its Applications 29, 351-376 (2010)[ DOI ]
-
42.Sensitivity analysis and the adjoint update strategy for optimal control problems with mixed control-state constraintsGriesse, R., Wachsmuth, D.Comp. Opt. Appl 44, 57-81 (2009)[ DOI ]
-
43.Optimal Dirichlet boundary control of Navier-Stokes equations with state constraintJohn, C., Wachsmuth, D.Numerical Functional Analysis and Optimization 30, 1309-1338 (2009)[ DOI ]
-
44.Update strategies for perturbed nonsmooth equationsGriesse, R., Grund, T., Wachsmuth, D.Optimization methods and software 23, 321-343 (2008)[ DOI ]
-
45.Numerical verification of optimality conditionsRösch, A., Wachsmuth, D.SIAM J. Control Optim. 47, 2557-2581 (2008)[ DOI ]
-
46.Analysis of the SQP-method for optimal control problems governed by the instationary Navier-Stokes equations based on \(${L}^p$\)-theoryWachsmuth, D.SIAM J. Control Optim. 46, 1133-1153 (2007)[ DOI ]
-
47.Regularity of solutions for an optimal control problem with mixed control-state constraintsRösch, A., Wachsmuth, D.TOP 14, 263-278 (2006)[ DOI ]
-
48.Sufficient second-order optimality conditions for convex control constraintsWachsmuth, D.J. Math. Anal. App. 319, 228-247 (2006)[ DOI ]
-
49.Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equationsTröltzsch, F., Wachsmuth, D.ESAIM: COCV 12, 93-119 (2006)[ DOI ]
-
50.Regularity and Stability of optimal controls of instationary Navier-Stokes equationsWachsmuth, D.Control and Cybernetics 34, 387-410 (2005)
-
51.Regularity of the adjoint state for the instationary Navier-Stokes equationsRösch, A., Wachsmuth, D.J. for Analysis and its Applications 24, 103-116 (2005)[ DOI ]
-
52.On convergence of a receding horizon method for parabolic boundary controlTröltzsch, F., Wachsmuth, D.Optimization methods and software 19, 201-216 (2004)[ DOI ]
-
53.On instantaneous control for a nonlinear parabolic boundary control problemWachsmuth, D.Numerical Functional Analysis and Optimization 25, 151-181 (2004)[ DOI ]
-
1.Safeguarded augmented Lagrangian methods in Banach spacesKarl, V., Kanzow, C., Steck, D., Wachsmuth, D.In: Hintermüller, M., Herzog, R., Kanzow, C., Ulbrich, M., and Ulbrich, S. (eds.) Non-Smooth and Complementarity-Based Distributed Parameter Systems. pp. 241-282. Birkhäuser (2022)[ DOI ]
-
2.How not to discretize the controlWachsmuth, D., Wachsmuth, G.In: Proceedings in Applied Mathematics and Mechanics. pp. 793-795 (2016)[ DOI ]
-
3.Upper and lower bounds on the set of recoverable strains and on effective energies in cubic-to-monoclinic martensitic phase transformationsSchlömerkemper, A., Chenchiah, I., Fechte-Heinen, R., Wachsmuth, D.In: MATEC Web of Conferences 33 (2015)[ DOI ]
-
4.Necessary conditions for convergence rates of regularizations of optimal control problemsWachsmuth, G., Wachsmuth, D.In: Hömberg, D. and Tröltzsch, F. (eds.) System Modelling and Optimization. pp. 145-154. Springer (2013)[ DOI ]
-
5.Adaptive methods for control problems with finite-dimensional control spaceAkindeinde, S., Wachsmuth, D.In: Hömberg, D. and Tröltzsch, F. (eds.) System Modelling and Optimization. pp. 59-69. Springer (2013)[ DOI ]
-
6.Optimal Boundary Control Problems Related to High-Lift ConfigurationsJohn, C., Noack, B. R., Schlegel, M., Tröltzsch, F., Wachsmuth, D.In: King, R. (ed.) Active Flow Control II. pp. 405-419. Springer, Berlin, Heidelberg (2010)[ DOI ]
-
7.Numerical Study of the Optimization of Separation ControlCarnarius, A., Günther, B., Thiele, F., Wachsmuth, D., Tröltzsch, F., Reyes, J. C.In: Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit (2007)[ DOI ]
-
8.Numerical solution of optimal control problems with convex control constraintsWachsmuth, D.In: Ceragioli, F., Dontchev, A., Furuta, H., and Pandolfi, L. (eds.) Systems, Control, Modeling and Optimization. pp. 319-327. Springer (2006)[ DOI ]
-
9.Second-order sufficient optimality conditions for the optimal control of instationary Navier-Stokes equationsTröltzsch, F., Wachsmuth, D.In: Proceedings in Applied Mathematics and Mechanics. pp. 628-629 (2004)[ DOI ]
-
10.Fast closed loop control of the Navier-Stokes systemHinze, M., Wachsmuth, D.In: Bock, H. G., Kostina, E., Phu, H. X., and Rannacher, R. (eds.) Modelling, Simulation and Optimization of Complex Processes. pp. 189-202. Springer (2004)[ DOI ]