Deutsch Intern
  • Students on the campus
Number Theory

Prof. Dr. Jörn Steuding

Prof. Dr. Jörn Steuding

Professor of Number Theory
Emil-Fischer-Straße 40
97074 Würzburg
Germany
Building: 40 (Mathematik Ost)
Room: 02.012
Portrait Joern Steuding

  • Since 2006: Professor for Number Theory at the University of Würtzburg
  • 2004-2006: ‘Ramon y Cajal’-investigador at Universidad Autónoma de Madrid 
  • 2004: Habilitation at the University of Frankfurt (venia legendi)
  • 1999-2004: Postdoc in the working group of Prof. Dr. W. Schwarz and Prof. Dr. J. Wolfart at  Frankfurt
  • 1999: PhD supervised by Prof. Dr. G.J. Rieger at the University of Hannover
  • 1996-1999: Assistant of Prof. G.J. Rieger at  Hannover
  • 1991-1995: Studies of Mathematics at the University of Hannover

  • ζ

 

My research area is number theory:

 

  • Zeta- and L-Functions (zero distribution, universality, Random Matrix Theory, Selberg class)
  • Diophantine analysis (diophantine approximation and diophantine equations, abc, continued fractions)
  • Modular forms and elliptic curves 
  • Algebraic number theory
  • Elementary number theory

 

Selected Publications:
  • On simple zeros of the Riemann zeta-function in short intervals on the critical line, Acta Mathematica Hungarica  96 (2002), 259-308
  • On the number of prime divisors of elliptic curves modulo p, Acta Arithmetica  117 (2005), 341-352; erratum  119 (2005), 407-408 (mit A. Weng)
  • On the zero-distribution of Epstein zeta-functions, Mathematische Annalen  333 (2005), 689-697
  • Joint universality for sums and products of Dirichlet L-functions,  Analysis  26 (2006), 295-312 (mit J. Sander)
  • Arithmetic progressions of four squares over quadratic fields, Publicationes Mathematicae Debrecen  77 (2010), 125-138 (mit E. González-Jiménez)
  • Universality for L-functions in the Selberg class, Lith. Math. J.  50 (2010), 293-311 (mit H. Nagoshi)
  • The Riemann zeta function on arithmetic progressions, Exp. Math.  21 (2012), 235-240 (mit E. Wegert)
  • Negative values of the Riemann zeta function on the critical line, Mathematika  59 (2013), 443-462 (mit J. Kalpokas, M.A. Korolev)
  • Extreme values of L-functions from the Selberg class, International Journal of Number Theory  9 (2013), 1113-1124 (mit L. Pankowski)
  • Differential universality, Mathematische Nachrichten  286 (2013), 160-170 (mit T. Christ, V. Vlachou)
  • Complex continued fractions: early work of the brothers Adolf and Julius Hurwitz, Archive for History of Exact Sciences  68 (2014), 499-528 (mit N.Oswald)
  • The least prime number in a Beatty sequence, Journal of Number Theory  169 (2016), 144-159 (mit M. Technau)
  • Zeta-functions associated with quadratic forms in Adolf Hurwitz’s estate, Bull. Am. Math. Soc.  53 (2016), 477-481 (mit N. Oswald)
  • Spirals of Riemann’s zeta-function – curvature, denseness and universality, Math. Proc. Camb. Philos. Soc. 176, No. 2, 325-338 (2024) (with A. Sourmelidis)
  • The Lindelöf hypothesis for zeta zero ordinates, Ramanujan J. 68, No. 2, Paper No. 57, 18 p. (2025) (with R. Garunkštis, A. Sourmelidis)

  • An asymptotic estimate for the characteristic and number of fixed points of the Riemann zeta-function, Nagoya Math. J., (2025), 1-18 DOI 10.1017/nmj.2025.10066 (with B.Q. Li, Y. Suzuki)

Monographs:
  • Diophantine Analysis, CRC Press/Chapman-Hall 2005
  • Value distribution of L-functions, Lecture Notes in Mathematics 1877, Springer 2007
  • Elementare Zahlentheorie. Ein sanfter Einstieg in die höhere Mathematik, Springer Spektrum, 2015 (mit N. Oswald)
  • Hurwitz’s lectures on the number theory of quaternions, Heritage of European Mathematics. Berlin: European Mathematical Society (EMS), 2023 (mit N. Oswald)
  • Three mathematical friends. The correspondence of David Hilbert, Adolf Hurwitz, and Hermann Minkowski. (Drei mathematische Freunde. Der Briefwechsel von David Hilbert, Adolf Hurwitz und Hermann Minkowski.) (German), Mathematik im Kontext. Berlin: Springer Spektrum (ISBN 978-3-662-71860-5/pbk; 978-3-662-71861-2/ebook) (2025) (mit J.M. Hänel, N. Oswald, K. Volkert)