piwik-script

English Intern
  • Blauer Hintergrund mit Logo Enneper
Optimale Steuerung

Prof. Dr.DanielWachsmuth

Inhaber der Professur
Professur für Mathematik am Lehrstuhl Mathematik VII
Emil-Fischer-Straße 30
97074Würzburg
Gebäude: 30 (Mathematik West)
Raum: 02.011
Porträt Daniel Wachsmuth
Lebenslauf
  • Seit 2012: Professor in Würzburg
  • 2008-2012: Postdoc am RICAM, Linz, Österreich
  • 2002-2008: wissenschaftlicher Mitarbeiter, TU Berlin
Forschungsinteressen
  • optimale Steuerung bei partiellen Differentialgleichungen
  • nichtglatte Optimierungsprobleme
  • Regularisierung von Problemen mit bang-bang Steuerungen
Auszeichnungen und Preise

Publikationen

Aktuelle Preprints
  • Optimal control of ODEs with state supremaGeiger, T., Wachsmuth, D., Wachsmuth, G.http://arxiv.org/abs/1810.11402 (2018).
     
  • Subgradients of marginal functions in parametric control problems of partial differential equationsQui, N. T., Wachsmuth, D.http://arxiv.org/abs/1807.05831 (2018).
     
  • A Lagrange multiplier method for semilinear elliptic state constrained optimal control problemsKarl, V., Neitzel, I., Wachsmuth, D.http://arxiv.org/abs/1806.08124 (2018).
     
  • Optimal control of an evolution equation with non-smooth dissipationGeiger, T., Wachsmuth, D.http://arxiv.org/abs/1801.04077 (2018).
     
  • Full stability for a class of control problems of semilinear elliptic partial differential equationsQui, N. T., Wachsmuth, D.http://arxiv.org/abs/1710.07488 (2017).
     
Publikationen in Fachzeitschriften
  • The multiplier-penalty method for generalized Nash equilibrium problems in Banach spacesKanzow, C., Karl, V., Steck, D., Wachsmuth, D.SIAM J. Optim. 29, 767--793 (2019).
     
  • Iterative hard-thresholding applied to optimal control problems with L0(Ω) control costWachsmuth, D.SIAM J. Control Optim. 57, 854--879 (2019).
     
  • An augmented Lagrangian method for optimization problems in Banach spacesSteck, D., Kanzow, C., Wachsmuth, D.SIAM J. Control Optim. 56, 272-291 (2018).
     
  • An augmented Lagrange method for elliptic state constrained optimal control problemsKarl, V., Wachsmuth, D.Comp. Opt. Appl. 69, 857--880 (2018).
     
  • Stability for bang-bang control problems of partial differential equationsQui, N. T., Wachsmuth, D.Optimization 67, 2157-2177 (2018).
     
  • Second-order analysis and numerical approximation for bang-bang bilinear control problemsCasas, E., Wachsmuth, D., Wachsmuth, G.SIAM J. Control Optim. 56, 4203--4227 (2018).
     
  • Optimal control of a rate-independent evolution equation via viscous regularizationStefanelli, U., Wachsmuth, D., Wachsmuth, G.Discrete and Continuous Dynamical Systems - Series S 10, 1467-1485 (2017).
     
  • Pontryagin's principle for optimal control problem governed by 3d Navier-Stokes equationsKien, B. T., Rösch, A., Wachsmuth, D.J. Optim. Theory Appl. 173, 30--55 (2017).
     
  • Tikhonov regularization of optimal control problems governed by semi-linear partial differential equationsPörner, F., Wachsmuth, D.Mathematical Control & Related Fields 8, 315--335 (2017).
     
  • On the switching behavior of sparse optimal controls for the one-dimensional heat equationTröltzsch, F., Wachsmuth, D.Mathematical Control & Related Fields 8, 135--153 (2017).
     
  • Sufficient second-order conditions for bang-bang control problemsCasas, E., Wachsmuth, D., Wachsmuth, G.SIAM J. Control Optim. 55, 3066--3090 (2017).
     
  • The regularity of the positive part of functions in L2(I; H1(Ω)) ∩ H1(I; H1(Ω)*) with applications to parabolic equationsWachsmuth, D.Comment. Math. Univ. Carolin. 57, 327--332 (2016).
     
  • Exponential convergence of hp-finite element discretization of optimal boundary control problems with elliptic partial differential equationsWachsmuth, D., Wurst, J. -E.SIAM J. Control Optim. 54, 2526-2552 (2016).
     
  • Functional error estimators for the adaptive discretization of inverse problemsClason, C., Kaltenbacher, B., Wachsmuth, D.Inverse Problems 32, 104004 (2016).
     
  • An iterative Bregman regularization method for optimal control problems with inequality constraintsPörner, F., Wachsmuth, D.Optimization 65, 2195--2215 (2016).
     
  • Optimal control of interface problems with hp-finite elementsWachsmuth, D., Wurst, J. -E.Numerical Functional Analysis and Optimization 37, 363-390 (2016).
     
  • An interior point method designed for solving linear quadratic optimal control problems with \($hp$\) finite elementsWachsmuth, D., Wurst, J. -E.Optimization methods and software 30, 1276--1302 (2015).
     
  • Newton methods for the optimal control of closed quantum spin systemsBorzì, A., Ciaramella, G., Dirr, G., Wachsmuth, D.SIAM J. Sci. Comput. 37, A319--A346 (2015).
     
  • Boundary concentrated finite elements for optimal control problems with distributed observationBeuchler, S., Hofer, K., Wachsmuth, D., Wurst, J. -E.Comp. Opt. Appl. 62, 31--65 (2015).
     
  • Robust error estimates for regularization and discretization of bang-bang control problemsWachsmuth, D.Comp. Opt. Appl. 62, 271--289 (2014).
     
  • Optimal control of an oblique derivative problemWachsmuth, G., Wachsmuth, D.Ann. Acad. Rom. Sci. Ser. Math. Appl. 6, 50--73 (2014).
     
  • On Time Optimal Control of the Wave Equation and its Numerical Realization as Parametric Optimization ProblemKunisch, K., Wachsmuth, D.SIAM J. Control Optim. 51, 1232--1262 (2013).
     
  • Adaptive regularization and discretization of bang-bang optimal control problemsWachsmuth, D.ETNA 40, 249-267 (2013).
     
  • Convergence analysis of smoothing methods for optimal control of stationary variational inequalitiesSchiela, A., Wachsmuth, D.ESAIM Math. Model. Numer. Anal. 47, 771--787 (2013).
     
  • On time optimal control of the wave equation, its regularization and optimality systemKunisch, K., Wachsmuth, D.ESAIM Control Optim. Calc. Var. 19, 317--336 (2013).
     
  • Boundary concentrated finite elements for optimal boundary control problems of elliptic PDEsBeuchler, S., Pechstein, C., Wachsmuth, D.Comp. Opt. Appl. 51, 883--908 (2012).
     
  • A-posteriori verification of optimality conditions for control problems with finite-dimensional control spaceAkindeinde, S., Wachsmuth, D.Numerical Functional Analysis and Optimization 33, 473--523 (2012).
     
  • Sufficient Optimality Conditions and Semi-Smooth Newton Methods for Optimal Control of Stationary Variational InequalitiesKunisch, K., Wachsmuth, D.ESAIM Control Optim. Calc. Var. 18, 520--547 (2012).
     
  • A-posteriori error estimates for optimal control problems with state and control constraintsRösch, A., Wachsmuth, D.Numerische Mathematik 120, 733--762 (2012).
     
  • Semi-smooth Newton's Method for an optimal control problem with control and mixed control-state constraintsRösch, A., Wachsmuth, D.Optimization methods and software 26, 169--186 (2011).
     
  • Path-following for Optimal Control of Stationary Variational InequalitiesKunisch, K., Wachsmuth, D.Comp. Opt. Appl. 51, 1345--1373 (2011).
     
  • On the regularization of optimization problems with inequality constraintsWachsmuth, G., Wachsmuth, D.Control and Cybernetics 4, 1125--1154 (2011).
     
  • Convergence and regularization results for optimal control problems with sparsity functionalWachsmuth, G., Wachsmuth, D.ESAIM Control Optim. Calc. Var. 17, 858--886 (2011).
     
  • Optimal control of planar flow of incompressible non-Newtonian fluidsRoubívc}}ek, T., Wachsmuth, D.J. for Analysis and its Applications 29, 351--376 (2010).
     
  • Optimal Dirichlet boundary control of Navier-Stokes equations with state constraintJohn, C., Wachsmuth, D.Numerical Functional Analysis and Optimization 30, 1309--1338 (2009).
     
  • Sensitivity analysis and the adjoint update strategy for optimal control problems with mixed control-state constraintsGriesse, R., Wachsmuth, D.Comp. Opt. Appl 44, 57--81 (2009).
     
  • Numerical verification of optimality conditionsRösch, A., Wachsmuth, D.SIAM J. Control Optim. 47, 2557--2581 (2008).
     
  • Update strategies for perturbed nonsmooth equationsGriesse, R., Grund, T., Wachsmuth, D.Optimization methods and software 23, 321--343 (2008).
     
  • Analysis of the SQP-method for optimal control problems governed by the instationary Navier-Stokes equations based on \(${L}^p$\)-theoryWachsmuth, D.SIAM J. Control Optim. 46, 1133-1153 (2007).
     
  • Sufficient second-order optimality conditions for convex control constraintsWachsmuth, D.J. Math. Anal. App. 319, 228-247 (2006).
     
  • Regularity of solutions for an optimal control problem with mixed control-state constraintsRösch, A., Wachsmuth, D.TOP 14, 263--278 (2006).
     
  • Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equationsTröltzsch, F., Wachsmuth, D.ESAIM: COCV 12, 93--119 (2006).
     
  • Regularity and Stability of optimal controls of instationary Navier-Stokes equationsWachsmuth, D.Control and Cybernetics 34, 387-410 (2005).
     
  • Regularity of the adjoint state for the instationary Navier-Stokes equationsRösch, A., Wachsmuth, D.J. for Analysis and its Applications 24, 103--116 (2005).
     
  • On convergence of a receding horizon method for parabolic boundary controlTröltzsch, F., Wachsmuth, D.Optimization methods and software 19, 201--216 (2004).
     
  • On instantaneous control for a nonlinear parabolic boundary control problemWachsmuth, D.Numerical Functional Analysis and Optimization 25, 151--181 (2004).
     
Konferenzbeiträge
  • How not to discretize the controlWachsmuth, D., Wachsmuth, G. In: Proceedings in Applied Mathematics and Mechanics. p. 793--794 (2016).
     
  • Upper and lower bounds on the set of recoverable strains and on effective energies in cubic-to-monoclinic martensitic phase transformationsSchlömerkemper, A., Chenchiah, I. V., Fechte-Heinen, R., Wachsmuth, D. In: MATEC Web of Conferences 33 (2015).
     
  • Necessary conditions for convergence rates of regularizations of optimal control problemsWachsmuth, G., Wachsmuth, D. In: Hömberg, D. and Tröltzsch, F. (eds.) System Modelling and Optimization. pp. 145-154. Springer (2013).
     
  • Adaptive methods for control problems with finite-dimensional control spaceAkindeinde, S., Wachsmuth, D. In: Hömberg, D. and Tröltzsch, F. (eds.) System Modelling and Optimization. pp. 59-69. Springer (2013).
     
  • Numerical Study of the Optimization of Separation ControlCarnarius, A., Günther, B., Thiele, F., Wachsmuth, D., Tröltzsch, F., Reyes, J. C. In: Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit (2007).
     
  • Numerical solution of optimal control problems with convex control constraintsWachsmuth, D. In: Ceragioli, F., Dontchev, A., Furuta, H., and Pandolfi, L. (eds.) Systems, Control, Modeling and Optimization. p. 319--327. Springer (2006).
     
  • Second-order sufficient optimality conditions for the optimal control of instationary Navier-Stokes equationsTröltzsch, F., Wachsmuth, D. In: Proceedings in Applied Mathematics and Mechanics. p. 628--629 (2004).
     
  • Fast closed loop control of the Navier-Stokes systemHinze, M., Wachsmuth, D. In: Bock, H. G., Kostina, E., Phu, H. X., and Rannacher, R. (eds.) Modelling, Simulation and Optimization of Complex Processes. p. 189--202. Springer (2004).
     

Hinweis zum Datenschutz

Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Facebook weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

Hinweis zum Datenschutz

Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Twitter weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

Kontakt

Professur für Mathematik (Optimale Steuerung) am Lehrstuhl für Mathematik VII
Emil-Fischer-Straße 30
Campus Hubland Nord
97074 Würzburg

Tel.: +49 931 31-89071
E-Mail

Suche Ansprechpartner

Hubland Nord, Geb. 30
Hubland Nord, Geb. 30
Hubland Nord, Geb. 31
Hubland Nord, Geb. 31
Hubland Nord, Geb. 40
Hubland Nord, Geb. 40